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Estimation of rank-tracking probabilities using
nonparametric mixed-effects models for
longitudinal data
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An important scientific objective of longitudinal studies
involves tracking the probability of a subject having cer-
tain health status over the course of the study. Proper def-
initions and estimates of disease risk tracking have impor-
tant implications in the design and analysis of long-term
biomedical studies and in developing guidelines for disease
prevention and intervention. We study in this paper a class
of “rank-tracking probabilities” (RTP) to describe a sub-
ject’s conditional probabilities of having certain health out-
comes at two different time points. Structural nonparamet-
ric estimation and inferences for the RTPs and their func-
tions are developed based on nonparametric mixed-effects
models and B-spline smoothing methods. Statistical proper-
ties of our procedures are investigated through a simulation
study. We apply our methods to an epidemiological study of
childhood cardiovascular risk factors, and demonstrate that
the RTPs and their nonparametric estimators provide useful
tools to quantitatively evaluate whether the cardiovascular
risks, such as obesity and hypertension, can be tracked from
early childhood to adolescence.

AMS 2000 subject classifications: Primary 62H10,
62G08; secondary 62P10, 65D10.
Keywords and phrases: Basis approximation, Condi-
tional distribution, Longitudinal study, Mixed model, Time-
varying coefficient model, Rank-tracking probability.

1. INTRODUCTION

Because the subjects are repeatedly measured over time,
longitudinal studies are commonly used in biomedical re-
search for the evaluation of population-means or subject-
specific temporal trends of the outcome variables. Most sta-
tistical methods in longitudinal analysis, such as the mixed-
effects models or nonparametric regression models, are fo-
cused on evaluating the effects of time and covariates on
the conditional-means of the outcome variables with the po-
tential serial correlations taken into account. Recent sum-
maries of longitudinal methods can be found, for example,
in Verbeke and Molenberghs (2000), Diggle et al. (2002) and
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Fitzmaurice et al. (2009), among others. In addition to the
conditional-mean based regression approaches, conditional-
distribution or quantile based regression models have also
been shown to be an effective tool for the analysis of re-
peated measurements data (e.g., Hall et al., 1999; Wei et al.,
2006; Wu et al., 2010). These methods focus on evaluating
the covariate effects on the distributions of the outcome vari-
ables over time, and may lead to better interpretations when
the underlying scientific objectives are specified by the dis-
tribution functions.

In addition to the above regression analysis, many
biomedical studies require the evaluation of subjects at mul-
tiple time points. An important scientific objective of longi-
tudinal studies is to track the likelihood of a subject having
certain health status at a later time point given the subject’s
health status at an earlier time point. Kavey et al. (2003)
discussed the importance of tracking the cardiovascular risk
factors over the years beginning in childhood with regard to
primary prevention of the subsequent cardiovascular disease
in adulthood. The existing statistical methods for longitu-
dinal analysis mentioned above, although useful in various
settings, do not provide a direct measure for this type of
“tracking ability” of disease risk factors. Another class of
statistical methods that is somewhat relevant to the con-
cept of tracking ability is the estimation of serial correla-
tions across different time points. Intuitively, if a subject’s
health conditions at different time points are positively cor-
related, then subjects with undesirable health status at an
earlier time are expected to be more likely to have undesir-
able health status at a later time. Statistical evidence for the
strength of correlation is then presented by the estimates of
the covariance matrices. Some recent covariance estimation
methods are discussed, for example, in Wu and Pourahmadi
(2003) and Fan and Wu (2008). Serial correlations, however,
may give some evidence of the tracking ability, but are insuf-
ficient to be used as a quantitative measure of the likelihood
of risk factor tracking over time.

The National Growth and Health Study (NGHS) is a
good example that illustrates the importance of developing
a novel statistical quantity to directly measure the track-
ing probability under this context. This is a large epidemi-
ological study of childhood growth and cardiovascular risks
of 2,379 girls, who were 9 or 10 years old at enrollment,
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with up to 10 annual visits during 1986–1997 and detailed
anthropometric and laboratory measurements obtained dur-
ing each visit (NGHSRG, 1992). Previous publications, such
as Daniels et al. (1998) and Obarzanek et al. (2010), in-
vestigated the effects of age, race and obesity on the car-
diovascular risk factors, such as blood pressures (BP), us-
ing the conditional-mean based methods. One question that
has not been investigated for the NGHS data is: What is
the probability that a girl, who had obesity or hyperten-
sion at a younger age, will still have such high risk fac-
tors at an older age? Since obesity and hypertension of a
child are defined by the conditional distributions and condi-
tional quantiles of body mass index (BMI) and BP given the
child’s age, gender and height (NHBPEP, 2004; Obarzanek
et al., 2010), an appropriate answer to this question may
be used to justify longitudinal studies in young children
and track those who are already overweight or hyperten-
sive.

We study in this paper the estimation of a class of con-
ditional probabilities, namely the “rank-tracking probabil-
ities” (RTP), to quantitatively measure a subject’s condi-
tional probabilities of having certain health status at two
different time points. The RTPs and their nonparametric es-
timators have been recently studied by Wu and Tian (2013a)
with discrete and time-invariant covariates and Wu and
Tian (2013b) under a two-step local smoothing method with
a class of time-varying transformation models. We propose
a class of structural nonparametric global smoothing meth-
ods for the estimation of the RTPs and the related RTP
ratios (RTPR) with continuous and time-dependent covari-
ates. Two classes of nonparametric mixed-effects models are
used to predict the subject-specific outcome trajectories and
estimate the RTPs of the outcome variables given certain
time-invariant or time-dependent covariates. A resampling-
bootstrap procedure is used to construct the pointwise con-
fidence intervals. Applying our procedures to the NGHS
data, we demonstrate that the RTPs and their estimates
lead to useful interpretations for large longitudinal studies.
For the statistical properties, we conduct a simulation study
to evaluate the biases, variances and mean-squared errors of
our smoothing estimation methods. Due to the limitation of
space, we focus on the methodology development and po-
tential applications of the RTPs and their functions, so that
the asymptotic properties of our estimation methods are not
developed here.

The rest of the paper is organized as follows. We intro-
duce the definitions of the RTPs and RTPRs in Section 2,
derive the estimation methods and their bootstrap confi-
dence intervals in Section 3, and present in Section 4 and
Section 5 the application of our procedures to the NGHS
data and the results from our simulation study, respectively.
In Section 6, we discuss some potential extensions and mod-
eling approaches for the RTPs and their applications in lon-
gitudinal studies.

2. RANK-TRACKING PROBABILITIES

2.1 Data structure and assumptions

We consider a data structure that is both mathemati-
cally tractable and commonly used in longitudinal stud-
ies. Following the NGHS design (NGHSRG, 1992), we as-
sume that our longitudinal sample contains n independent
subjects and the ith subject has ni number of visits at
time points tij ∈ T , where T is the time interval of the
study. At any time t ∈ T , Y (t) is the real-valued out-
come variable and X(t) = (X1(t), . . . , XP (t))

T is the RP -
valued covariate vector including time-invariant baseline co-
variates or time-dependent covariates. The observed longi-
tudinal sample for {X(t), Y (t), t} is {Xi(tij), Yi(tij), tij ; j =
1, . . . , ni, i = 1, . . . , n}. While the study investigators usu-
ally prespecify the numbers of visits and each visit time at
the design stage, in practice, the actual visit times and the
number of visits may vary across individual subjects.

2.2 Rank-tracking probabilities

In many situations, a subject’s health status is deter-
mined by its rank relative to the population of interest,
such as quantiles or conditional quantiles, of certain out-
come variables. This is particularly important in pediatric
studies, since risk classifications established for adults may
not be appropriate for children. To introduce the idea of
“rank-tracking”, we consider first the case of time-invariant
covariate, i.e., X(t) ≡ X for all t ∈ T . For any t ∈ T , we
have a risk set A(X, t) such that the health status of a sub-
ject at time t is determined by whether Y (t) ∈ A(X, t). For
example, Y (t) is the BMI for young girls, and A(X, t) is the
set of overweight and obese girls at age t defined by the 85th
percentile of the CDC growth chart (Obarzanek et al. 2010).

Following the definition of Wu and Tian (2013a), for a
given set X and a subject with covariate X ∈ X , the track-
ing ability of Y (t) at any two time points s1 < s2 can be
measured by the conditional probability of Y (s2) ∈ A(X, s2)
given Y (s1) ∈ A(X, s1) and X ∈ X . A natural definition for
the RTP based on A(·, ·) at s1 < s2 is

RTPA

(
s1, s2;X

)
(1)

=P
[
Y (s2) ∈ A

(
X, s2

)∣∣∣Y (s1) ∈ A
(
X, s1

)
,X ∈ X

]
.

In some applications, we may not need the condition of X ∈
X , so that X is chosen to be the entire space of the covariates
and the RTP is
(2)

RTPA

(
s1, s2

)
= P

[
Y (s2) ∈ A

(
X, s2

)∣∣∣Y (s1) ∈ A
(
X, s1

)]
.

When A(·, ·) does not depend on X, RTPA(s1, s2;X ) =
P [Y (s2) ∈ A(s2)

∣∣Y (s1) ∈ A(s1),X ∈ X ] and

RTPA(s1, s2) = P [Y (s2) ∈ A(s2)
∣∣Y (s1) ∈ A(s1)].

In general, both the outcome Y (t) and the risk set A(·, ·)
may depend on the time-varying covariates X(t). The re-
sults of Thompson et al. (2007) and Obarzanek et al. (2010)
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suggest that tracking the risk factors of cardiovascular dis-
ease, such as BP and lipids, depends on the subject’s time-
varying covariates, such as height and BMI. In this case,
we have a time-varying subset X (t) for the covariates and
a risk set A[X(t), t)]. Substituting {X , A[X, t]} of (1) with
{X (t), A[X(t), t]} and conditioning on X(s1) ∈ X (s1), the
RTP is

RTPA

[
s1, s2;X (s1)

]
(3)

=P
{
Y (s2) ∈ A

[
X(s2), s2

]∣∣∣Y (s1) ∈ A
[
X(s1), s1

]
,

X(s1) ∈ X (s1)
}
.

Similarly, if X (s1) is the entire space of the covariates at time
s1, the RTP, which generalizes (2) to time-varying covariates
X(t), is

RTPA

(
s1, s2

)
(4)

=P
{
Y (s2) ∈ A

[
X(s2), s2

]∣∣∣Y (s1) ∈ A
[
X(s1), s1

]}
.

Other special cases, such as A[X(t), t] ≡ A(t), may be
derived from (3) and (4). Although the choices of A(·, ·)
depend on the specific scientific objectives, it is common
in biomedical studies to define the health status at time t
based on the conditional quantiles of Y (t) given X(t), so
that A[X(t), t] may be specified as

(5) Aα

[
X(t), t

]
=

{
Y (t) : Y (t) > qα

[
t,X(t)

]}
,

where qα[t,X(t)] is the (100 × α)th quantile of Y (t) given
X(t).

2.3 Rank-tracking probability ratios

The strength of “rank-tracking ability” is measured
by comparing RTPA[s1, s2;X (s1)] with PA[s2;X (s1)] =
P{Y (s2) ∈ A[X(s2), s2]|X(s1) ∈ X (s1)}, and RTPA(s1, s2)
with PA(s2) = P{Y (s2) ∈ A[X(s2), s2]}. Thus, it is conve-
nient to measure the “rank-tracking abilities” of Y (t) by the
RTP-Ratios (RTPRs),

RTPRA

[
s1, s2;X (s1)

]
(6)

=RTPA

[
s1, s2;X (s1)

]/
PA

[
s2;X (s1)

]
where PA[s2;X (s1)] = P{Y (s2) ∈ A[X(s2), s2]|X(s1) ∈
X (s1)}, and

(7) RTPRA(s1, s2) = RTPA

(
s1, s2

)/
PA(s2),

respectively. For the RTP of (3), the strength of
“rank-tracking ability” is measured by comparing
RTPRA[s1, s2;X (s1)] with 1. If RTPRA[s1, s2;X (s1)] = 1,
Y (s1) has no “tracking ability” for Y (s2). If
RTPRA[s1, s2;X (s1)] < 1, Y (s1) has “negative tracking
ability” for Y (s2). The strength of “positive tracking abil-
ity” is then determined by how much RTPRA[s1, s2;X (s1)]

is larger than 1. Both the RTPs and RTPRs are useful tools
for identifying the risk factors with strong “rank-tracking
abilities” in longitudinal studies, which may be used to
develop new guidelines and intervention strategies for early
disease prevention.

3. METHODS OF ESTIMATION AND
INFERENCES

We establish a class of smoothing methods based on B-
spline approximations for the estimation and inferences of
the RTPs in (3) and (4) and the RTPRs in (6) and (7).
When the covariates are discrete and time-invariant, non-
parametric estimation based on kernel smoothing has been
studied by Wu and Tian (2013a). For the more general situ-
ations that involve continuous and time-varying covariates,
the kernel methods may be computationally infeasible be-
cause of the well-known “curse of dimensionality”. Our pro-
posed estimation methods have the advantage of incorpo-
rating multiple continuous and time-dependent covariates.

3.1 Nonparametric mixed-effects models

As a natural extension of the linear mixed-effects models,
global smoothing through basis approximations is a popular
approach in nonparametric longitudinal analysis. For the
simple case of evaluating {Y (t), t; t ∈ T } without covariates,
Shi et al. (1996) and Rice and Wu (2001) suggested to model
Yi(t) at time t by the nonparametric mixed-effects model,

(8) Yi(t) = μ(t) + ζi(t) + εi(t),

where μ(t) is the mean curve of Yi(t), ζi(t) is the random
departure from μ(t) for the ith subject with E[ζi(t)] = 0,
and εi(t) are the mean zero measurement errors.

When a set of covariates X(t) is incorporated, Liang
et al. (2003) proposed a class of multivariate extensions of
(8). For simplicity, we illustrate the case of a single covari-
ate X(t) with P = 1. The case of multivariate covariates
can be extended analogously. Let {Yi(t), Xi(t)} be the out-
come and covariate of the ith subject at time t, {β0(t), β1(t)}
be two smooth functions of t, β0i(t) = β0(t) + γ0i(t) and
β1i(t) = β1(t) + γ1i(t), {γ0i(t), γ1i(t)} be the mean zero
stochastic processes that represent the individual random
deviations. The mixed-effects varying-coefficient model of
Liang et al. (2003) is

(9) Yi(tij) = β0i(tij) +Xi(tij)β1i(tij) + εi(tij),

where εi(t) are mean zero measurement error processes with
ρε(s, t) = cov{εi(s), εi(t)}, εi(t) and {γ0i(t), γ1i(t)} are mu-
tually independent for given i and {εi(t), γ0i(t), γ1i(t)} and
{εk(t), γ0k(t), γ1k(t)} are independent for i �= k.

When the model structure of (9) does not hold, Zhou
et al. (2008) suggested a joint model framework for pre-
dicting the multivariate subject-specific trajectories of cor-
related time-dependent curves. The approach of Zhou
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et al. (2008) does not need the distinction between outcome
and covariate variables, but requires the specification of the
joint model correlation structures of the time-dependent
curves.

3.2 B-spline estimation and prediction of
trajectories

Under the data structure of Section 2.1, e.g., the NGHS
design, the correlation structures of the data are completely
unknown, and our objective is to estimate the RTPs and
RTPRs nonparametrically. The first step is to estimate the
coefficient curves and predict the outcome trajectories based
on the mixed-effects models of (8) and (9) with B-spline
basis approximations. Other smoothing methods, such as
smoothing splines and penalized splines, may also be ap-
plied for curve estimation and outcome trajectory predic-
tion. We focus on B-splines because of their good numerical
properties and simplicity in practical implementation.

When B-splines are used for (9), we have the approx-
imations β0(t) ≈ b0(t)

T ξ0, β1(t) ≈ b1(t)
T ξ1, γ0i(t) ≈

b0(t)
T ηi, and γ1i(t) ≈ b1(t)

Tφi based on the B-spline
basis functions b0(t) = (b01(t), . . . , b0m(t))T and b1(t) =
(b11(t), . . . , b1q(t))

T for some integers m, q > 0. Here
ξ0 = (ξ01, . . . , ξ0m)T and ξ1 = (ξ11, . . . , ξ1q)

T are the vec-
tors of coefficients for the fixed-effects components, ηi =
(ηi1, . . . , ηim)T and φi = (φi1, . . . , φiq)

T are the vectors of
coefficients for the subject-specific normal random compo-
nents with mean zero and covariance matrices Γ and Φ. If
we denote by Yi and Xi the column vectors consisting of
the observed Yi(ti) and Xi(ti) values at the time points
ti = (ti1, . . . , tini), B0i and B1i the corresponding ni × m
and ni × q spline basis matrices, and εi the measurement
errors evaluated at these time points, respectively, the B-
spline approximation for (9) is

(10) Yi = B0i(ξ0 + ηi) +B1i(ξ1 + φi) ∗Xi + εi,

where “∗” denotes a component-wise product. The B-spline
approximation for (8) is simply Yi = B0i(ξ0 + ηi) + εi.

For a given distribution function of εi, such as εi ∼
N(0,Σ), the maximum likelihood estimators (MLEs) or the

restricted MLEs of {ξ0, ξ1,Σ,Γ,Φ} are {ξ̂0, ξ̂1, Σ̂, Γ̂, Φ̂}, and
the best linear unbiased predictors (BLUPs) of the random

effects η̂i and φ̂i can be computed by the EM algorithm as
described in Liang et al. (2003). By plugging in the coeffi-
cient estimates, the B-spline predicted outcome trajectory
curve for the ith subject at any time point t can be com-
puted by

(11) Ŷi(t) = b0(t)
T
(
ξ̂0 + η̂i

)
+ b1(t)

T
(
ξ̂1 + φ̂i

)
Xi(t).

For the estimation and prediction of (8), only ξ0 and ηi
need to be estimated, so that the predicted subject-specific
outcome trajectory curve is

(12) Ŷ ∗
i (t) = b0(t)

T
(
ξ̂0 + η̂i

)
.

When the time-varying covariateXi(t) are measured with
errors, we can approximate Xi(t) by a smoothing function
with a random component as in model (8),

(13) Xi(t) = μx(t) + ζxi(t) + ui(t),

and use similar B-spline basis approximations to compute
μ̂x(t), the estimator of the mean curve μx(t), and ζ̂xi(t),
the predicted subject-specific curve ζxi(t). The predicted

subject-specific trajectory curve X̂i(t) for Xi(t) can be ob-
tained by setting ui(t) = 0 and substituting {μx(t), ζxi(t)}
of (13) with {μ̂x(t), ζ̂xi(t)}.
Remark 3.1. The predicted subject-specific trajectory
curves X̂i(t) can be used in the RTP and RTPR estima-
tion when Xi(t) are expected to have measurement errors.
When the mixed-effects varying-coefficient model (9) is sat-
isfied andXi(t) are measured with errors, Liang et al. (2003)
suggests replacing the observed Xi(t) in model (9) with the

predicted curves X̂i(t) to correct the measurement errors in

Xi(t). Thus in the first approach, we use {Ŷi(t), X̂i(t); i =
1, . . . , n} from models (9) and (13) to estimate the RTPs

and RTPRs. Note that the predicted trajectory curves Ŷi(t)
from (9) depend on the linear relationship between Yi(t) and
Xi(t) at each time point t, so that it may not be appropriate

to estimate the RTPs and RTPRs based on Ŷi(t) when the
time-varying model (9) does not necessarily hold. Thus as
an alternative approach, for the more general case that (9)
is not satisfied and the actual relationship between Yi(t) and
Xi(t) is unknown, a plausible unstructured nonparametric

approach is to first compute the trajectories Ŷ ∗
i (t) and X̂i(t)

from the mixed-effects models (8) and (13), respectively, and
then estimate the RTPs and RTPRs based on the available
{Ŷ ∗

i (t), X̂i(t); i = 1, . . . , n}. For the cases with more than
one covariate Xi(t), i.e., P > 1 in Xi(t), each continuous
time-varying component of the Xi(t) may be predicted by
model (13) separately. For multivariate covariates in models
(9) and (10), the same estimation methods can be applied
by a simple modification of the design matrix.

3.3 Estimation with predicted outcome
trajectories

We present the estimation and inferences of the RTPs and
RTPRs based on the predicted trajectory curves obtained
under three scenarios: (a) the mixed-effects model of (8)
without covariates, (b) the mixed-effects varying-coefficients
model of (9), and (c) the combined unstructured mixed-
effects models of (8) and (13). Each scenario is a special
case of the later one. Because different predicted trajectory
curves are used under each of these scenarios, the estimation
methods for the RTPs and RTPRs are different.

3.3.1 Estimation without covariates

We first consider the estimation of the RTPs and RTPRs
based on the observations {Yi(tij); j = 1, . . . , ni, i =
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1, . . . , n} without covariates. By (1), the RTP is

(14) RTPA(s1, s2) =
E

{
1[Y (s2)∈A(s2),Y (s1)∈A(s1)]

}
E

{
1[Y (s1)∈A(s1)]

} ,

where 1[·] is the indicator function and A(t) is a prespeci-
fied and known risk set at time t, such as Aα(t) = {Y (t) :
Y (t) > qα(t)} with qα(t) being the known (100×α)th quan-
tile of Y (t). The RTPRA(s1, s2) of (6) is given by divid-
ing RTPA(s1, s2) of (14) by E{1[Y (s2)∈A(s2)]}. The estima-
tor of RTPA(s1, s2) based on the predicted curves of (12)
is

(15) ̂RTPA(s1, s2) =

∑n
i=1 1[˜Y ∗

i (s2)∈A(s2),˜Y ∗
i (s1)∈A(s1)]∑n

i=1 1[˜Y ∗
i (s1)∈A(s1)]

,

and the estimator of RTPRA(s1, s2) is

(16) ̂RTPRA(s1, s2) =
̂RTPA(s1, s2)

(1/n)
∑n

i=1 1[˜Y ∗
i (s2)∈A(s2)]

.

where Ỹ ∗
i (t) = Ŷ ∗

i (t) + ε̂i(t), Ŷ
∗
i (t) is the B-spline predicted

trajectory curves given in (12) and ε̂i(t) is the estimated
errors.

In some cases, A(·) is not known and has to be estimated
from the same sample that is used to estimate the RTPs and
RTPRs. For example, the (100 × α)th quantile qα(t) used
in Aα(t) may not be known for a given study population
and has to be estimated from the predicted trajectories. We
describe in Section 3.3.4 a split sample approach for dealing
with such situations.

Remark 3.2. Because Ŷ ∗
i (t) is the subject-specific mean

curve for the ith subject at t, we need to use Ỹ ∗
i (t), which

includes the random measurement errors of the subject, in
the estimators (15) and (16), instead of using Ŷ ∗

i (t) alone.
Here, the estimated errors ε̂i(t) may be computed from the
fitted model residuals or from the maximum likelihood es-
timators of εi(t) in model (8). If the estimated measure-

ment errors ε̂i(t) were ignored and Ỹ ∗
i (t) in (15) and (16)

were replaced by Ŷ ∗
i (t), the estimators of RTPA(s1, s2) and

RTPRA(s1, s2) could be biased. The potential biases of re-

placing Ỹ ∗
i (t) with Ŷ ∗

i (t) in (15) and (16) can be seen from
a simulation. The asymptotic results of the estimators war-
rant further research.

3.3.2 Estimation with mixed-effects varying-coefficient
models

When the model (9) is satisfied with a time-varying co-
variate vector X(t), we can compute the B-spline predicted

subject-specific trajectory curves Ŷi(t) and X̂i(t) from (11)
and (13), respectively. For a given time-varying subset X (s1)

at time s1, we estimate the RTPs of (3) and (4) by

(17) ̂RTPA

[
s1, s2;X (s1)

]

=

∑n
i=11

{
˜Yi(s2)∈A[̂Xi(s2),s2],˜Yi(s1)∈A[̂Xi(s1),s1],̂Xi(s1)∈X (s1)

}
∑n

i=11
{

˜Yi(s1)∈A[̂Xi(s1),s1],̂Xi(s1)∈X (s1)
}

and
(18)

̂RTPA(s1, s2)=

∑n
i=11

{
˜Yi(s2)∈A[̂Xi(s2),s2],˜Yi(s1)∈A[̂Xi(s1),s1]

}
∑n

i=11
{

˜Yi(s1)∈A[̂Xi(s1),s1]
} ,

where Ỹi(t) = Ŷi(t) + ε̂i(t) and ε̂i(t) is the maximum like-
lihood estimator of εi(t) or the estimated error computed
from the fitted model residuals. Based on (17) and (18), the
estimators of the corresponding RTPRs are given by

̂RTPRA

[
s1, s2;X (s1)

]
(19)

=
̂RTPA

{
s1, s2;X (s1)

}
(1/nX )

∑n
i=1 1

{
˜Yi(s2)∈A[̂Xi(s2),s2],̂Xi(s1)∈X (s1)

} ,

where nX =
∑n

i=1 1[̂Xi(s1)∈X (s1)]
, and

(20) ̂RTPRA(s1, s2) =
̂RTPA(s1, s2)

(1/n)
∑n

i=1 1
{

˜Yi(s2)∈A[̂Xi(s2),s2]
} .

Remark 3.3. The predicted covariate trajectories X̂i(t) are
used in (17) through (20) for the cases that Xi(tij) are ex-
pected to have measurement errors. When Xi(tij) are not
expected to have measurement errors or Xi(tij) are time –
invariant baseline covariates, the observed Xi(tij) are used.
In addition to estimators in (17) through (20), which rely

on the predicted trajectory curves {Ỹi(s1), Ỹi(s2)}, an alter-
native method for the estimation of the RTPs and RTPRs
based on the model (9) is to first estimate the mean, variance
and covariance curves of (9) using the procedures described
in Liang et al. (2003), and then estimate the RTPs and RT-
PRs based on the estimated mean, variance and covariance
curves and the assumptions that the random effects and the
measurement errors of (9) and (13) have normal distribu-
tions. This estimation approach gives similar results to our
estimators of (17) through (20) in our simulation study when
the normal distribution assumptions on (9) hold.

3.3.3 Estimation with unstructured mixed-effects models

For the general situations that the time-varying linear
structure of (9) may not hold, we approximate the subject-
specific curves of Yi(t) and Xi(t) using B-splines on (8)
and (13), respectively. When Xi(t) is multivariate with
P > 1, (13) is used to approximate each component ofXi(t).

Based on the predicted trajectory curves {Ŷ ∗
i (t), X̂i(t); i =

1, . . . , n}, we obtain {Ỹ ∗
i (t); i = 1, . . . , n} as in (16), and

Estimation of rank-tracking probabilities 91



compute the estimators ̂RTP
∗
A[s1, s2;X (s1)], ̂RTP

∗
A(s1, s2),

̂RTPR
∗
A[s1, s2;X (s1)] and ̂RTPR

∗
A(s1, s2) by substituting

{Ỹi(s1), Ỹi(s2)} with {Ỹ ∗
i (s1), Ỹ

∗
i (s2)} in (17), (18), (19) and

(20), respectively. As discussed in Remark 3.1, the advan-

tage of using the trajectory curves {Ỹ ∗
i (t), X̂i(t); t ∈ T }

is that the RTP and RTPR estimators can still be com-
puted as long as the B-spline approximations for (8) and
(13) hold, while the relationship between Yi(t) and Xi(t) is
unknown.

3.3.4 A split sample approach for the estimation of A(·, ·)
When A[X(t), t] is unknown but can be estimated from

the available sample, a practical approach is to randomly
split the data into sub-samples, so that one sub-sample can
be used to estimate A[X(t), t], while the other sub-sample
can be use to estimate the RTPs and RTPRs using the es-
timator Â[X(t), t] of A[X(t), t]. Specifically, we randomly
split the sample into sub-samples I1 and I2 with corre-
sponding sample sizes nI1 and nI2 , such that nI1 +nI2 = n.
The first sub-sample I1 is used to estimate A[X(t), t], and
then the RTPs and RTPRs can be estimated using the sec-
ond sub-sample with the methods of Section 3.3.1 through
Section 3.3.3 and Â[X(t), t] in place of A[X(t), t]. The es-

timators Â[X(t), t] depend on the specific definitions of
A[X(t), t] and have to be constructed on a case-by-case ba-

sis. For example, for Aα[X(t), t] defined in (5), Âα[X(t), t]
can be obtained by using the estimated conditional quantile
q̂α[t,X(t)] from the first sub-sample.

3.4 Bootstrap pointwise confidence intervals

Asymptotically approximated inferences for the estima-
tors developed in Sections 3.3 are still unavailable be-
cause the asymptotic distributions of these estimators have
not yet been explicitly derived. As a practical approach,
we can use the “resampling-subject” bootstrap which has
been commonly used in longitudinal analysis (e.g., Hoover
et al., 1998). In this approach, we obtain B bootstrap sam-
ples by resampling the subjects with replacement one at a
time, and compute the corresponding estimates within each
bootstrap sample. The average and the lower and upper
[100× (α/2)]th percentiles of the B bootstrap estimates are
obtained as our bootstrap estimate and the [100×(1−α)]th
bootstrap confidence intervals. Alternatively, we can also
compute the sample standard deviations (SD) of the esti-
mates from the bootstrap samples, and approximate the
[100 × (1 − α)]% confidence intervals by the “estimate ±
zα/2 × SD” error bands.

4. APPLICATION TO NGHS DATA

4.1 Brief background

The NGHS is a multi-center population-based cohort
study, which enrolled Caucasian and African-American girls
at 9 or 10 years of age and measured their height, weight,

BP and other cardiovascular risk factors annually for up
to 10 visits. Among the 2,379 girls enrolled in the NGHS,
there were 1,166 Caucasians and 1,213 African-Americans.
The number of observed follow-up visits varied from 1 to 10,
and had median 10, mean 8.8 and standard deviation 2.0.
The study design was described in NGHSRG (1992), and
the main findings were reported in Thompson et al. (2007).

Based on NHBPEP (2004) and Obarzanek et al. (2010),
a lower bound of the age- and sex-adjusted 85th percentile
of the Centers for Disease Control and Prevention (CDC)
BMI growth chart is used to define overweight and obese
girls at a given age. The age-, sex-, and height-specific con-
ditional percentiles for the systolic blood pressure (SBP) and
diastolic blood pressure (DBP) are used to define prehyper-
tension, and stage 1 and stage 2 hypertension in children.
Due to the limitation of the statistical methodology, existing
publications on the temporal trends of BMI and BP among
children and adolescents, such as Thompson et al. (2007)
and Obarzanek et al. (2010), have not systematically inves-
tigated the question of how to quantitatively measure the
“rank-tracking abilities” for BMI and BP over age.

4.2 Rank-tracking for BMI

We first estimate the RTPs and RTPRs of BMI based on
the NGHS subjects with race taken as a binary covariate,
so that Xi = 0 if the ith girl is Caucasian, and Xi = 1
if she is African-American. We consider the set A0.85(t) to
be the set of subjects whose BMI values at t years old are
greater than q0.85(t), the 85th percentile of BMI for girls
at age t years as defined in the CDC BMI growth chart.
After fitting the nonparametric mixed-effect model (8) sep-
arately for the Caucasian and African-American girls us-
ing the BMI observations over age based on cubic B-spline
approximations with four and three equally spaced inte-
rior knots selected from BIC, respectively, we computed the
subject-specific BMI trajectory curves over age, and esti-
mated RTPA(s1, s1+δ;x) and RTPRA(s1, s1+δ;x) of BMI
for Caucasian (x = 0) and African-American (x = 1) girls
over the age range 9 ≤ s1 ≤ 17, δ = 2 and δ = 4.

Figure 1 shows the estimated 2-year and 4-year RTPs and
RTPRs curves for both Caucasian and African-American
girls with their 95% pointwise bootstrap percentile confi-
dence intervals based on B = 500 bootstrap replications.
Figure 1 (a–b) and (e–f) show that the conditional proba-
bilities of being overweight or obese are 78% to 94% and
75% to 91% for those girls who were already overweight
or obese 2 years and 4 years earlier, respectively. Since the
NGHS participants are slightly more overweight than the
general population of the CDC growth chart, we examined
the relative strength of the BMI tracking ability through the
RTPR curves displayed in Figure 1 (c–d) and (g–h). Our
spline smoothing estimation results are consistent with the
results based on the kernel estimation procedures of Wu and
Tian (2013a), suggesting that BMI has high rank-tracking
ability for adolescent girls in both ethnic groups.
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Figure 1. The estimated BMI RTPA0.85(s1, s1 + 2;x), RTPRA0.85(s1, s1 + 2;x), RTPA0.85(s1, s1 + 4;x),
RTPRA0.85(s1, s1 + 4;x) and their 95% bootstrap percentile confidence intervals for Caucasian (x = 0) and African-American

(x = 1) girls.
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Figure 2. Upper panels (a)–(c): The longitudinal SBP measurements for three girls from NGHS with predicted subject-specific
curves and mean population curves plotted in solid and dash lines. Lower panels (d)–(f): The mean baseline curve β0(t), and
two coefficient curves for race and height percentile β1(t) and β2(t) with 95% confidence interval based on model (9) with the

cubic B-spline basis approximations.

4.3 Rank-tracking for SBP

The BP levels have been shown to depend on the

girl’s race and height percentile (Daniels et al. 1998, Wu

et al. 2010). We can estimate the RTPs and RTPRs of

SBP based on the predicted SBP trajectory curves ob-

tained either from the model (9) or the separate univari-

ate mixed-effects models (8) and (13) with the NGHS SBP

data D = {Yi(tij), X1i, X2i(tij); j = 1, . . . , ni, i = 1, . . . , n}.
Here Yi(t), X1i and X2i(t) are ith girl’s SBP (in mmHg),

race and age-adjusted height percentile at t years of age,

with X1i = 0 if the girl is Caucasian and X1i = 1 if she is

African-American. The random variables corresponding to

D at time t are {Y (t), X1, X2(t)}. Let q0.9[t,X2(t)] be the
conditional 90th percentile of SBP for girls given that they
are t years old and have height percentile X2(t). Our objec-
tive is to estimate the 2-year “rank-tracking ability” of SBP,
RTPA(s1, s1 + 2;x1) and RTPRA(s1, s1 + 2;x1), for Cau-
casian (x1 = 0) and African-American (x1 = 1) girls based
on A0.9[X2(t), t] defined in (5). Here A0.9[X2(t), t] represents
the girls whose SBP values are above the conditional 90th
percentile for the given age and height percentile.

Using the framework of (9), the mixed-effects varying-
coefficient model for D is
(21)
Yi(tij) = β0i(tij) +X1iβ1i(tij) +X2i(tij)β2i(tij) + εi(tij),
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Figure 3. The estimated SBP RTPA0.9(s1, s1 + 2;x1) and RTPRA0.9(s1, s1 + 2;x1), and their 95% bootstrap percentile
confidence intervals for Caucasian (x1 = 0) and African-American (x1 = 1) girls.

where, for l = 0, 1, 2, βli(t) = βl(t)+γli(t) with mean curves
βl(t) and mean zero stochastic processes γli(t), and εi(t) are
independent normal random variables with mean zero and
variance σ2. Figure 2 (a–c) show the raw data of longitudi-
nal SBP measurements for three randomly selected subjects,
and the mean curves and predicted subject-specific SBP tra-
jectories based on (21). These scatter plots and trajectory
curves suggest that the model (21) provides a reasonable
fit to the data. Figure 2 (d–f) show the mean baseline curve
β0(t), and the two mean coefficient curves for race and height
percentile β1(t) and β2(t), respectively, estimated by cubic
B-spline basis approximation with the numbers of knots cho-
sen from BIC. These curves suggest that the mean SBP in-
creases with age, and the SBP measurements also depend
on race and height percentile with both coefficient curves
being positive and varying with age. The African-American
girls tend to have higher SBP values than the Caucasian
girls, and the mean SBP differences in race increase with
age. The effect of height percentiles on SBP tapers off at
older age.

Since the conditional 90th percentile q0.9[t,X2(t)] is not
known, we randomly split the subjects into two sub-samples

with approximately equal sample sizes, and computed the
estimates of q0.9[t,X2(t)] using the first sub-sample. We
then used the cubic B-spline predicted SBP trajectories val-

ues to compute the estimators ̂RTPA(s1, s1 + 2;x1) and
̂RTPRA(s1, s1 + 2;x1) of the 2-year RTPs and RTPRs for
SBP at ages s1 and s1 + 2 for both Caucasian (x1 = 0) and
African-American (x1 = 1) girls. Figure 3 shows the corre-
sponding RTPs and RTPRs estimates and their 95% point-
wise bootstrap percentile confidence intervals obtained with
B = 500 bootstrap replications. The RTPs in Figure 3 (a–b)
are between approximately 30% and 40% for both Caucasian
and African-American girls across s1 ∈ [9, 17] years, and
these values are significantly larger than 10%, which is ap-
proximately the conditional probability of SBP greater than
q0.9[t,X2(t)] at t = s1+2 given race only. To evaluate the rel-
ative strength of the “rank-tracking ability” of SBP for these
girls, we compare the estimates of RTPRA(s1, s1 + 2;x1) in
Figure 3 (c–d) for Caucasian and African-American girls,
and the estimated RTPRs are approximately between 2.6
and 3.6 for Caucasian girls and between 2.9 and 3.1 for
African-American girls. The 95% confidence intervals for the
RTPRs are greater than 1, suggesting that SBP has high
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Figure 4. The solid lines are true curves of RTPA0.9(s1, s1 + 2;x1) in (a) and (b) and RTPRA0.9(s1, s1 + 2;x1) in (c) and (d)
for x1 = 0 and x1 = 1. The middle dashed lines are the averages of the estimated curves, and the dotted dash lines are the

pointwise lower and upper 2.5% percentiles of the estimated curves at s1 ∈ [0, 8] from 1,000 simulations.

“positive tracking ability” for both Caucasian and African-
American girls within this age range. We also estimate RTPs
and RTPRs based on the separate univariate mixed-effects
models (8) and (13) and the procedure in Section 3.3.3, the
estimate curves are very similar to the results presented in
Figure 3.

5. SIMULATION

We consider a simulation study that mimic the NGHS
data structure. The simulated samples are generated based
on the model Yi(t) = β0(t) + γ0i(t) + X1i(t)β1(t) +
X2i(t)β2(t) + εi(t) for t ∈ [0, 10]. Each simulated sample
has n = 1, 000 subjects, and each subject has 10 visits.
Within each sample, we generate the ith subject’s visit-
ing time of the jth visit tij from the uniform distribution
U [(j−1), j] for j = 1, . . . , 10, so that, ti1 ∼ U [0, 1], . . . , ti10 ∼
U [9, 10]. Given each tij , X1i(tij) = X1i is a binary time-
invariant covariate with the Bernoulli(0.5) distribution, and
X2i(tij) is a time-varying covariate generated from the dis-
crete uniform distribution on {1, 2, . . . , 100}. Similar to the
patterns of the coefficient curves in Figure 2, we choose

β0(t) = 100 − 0.1t2 + 1.9t, β1(t) = 0.65t − 0.04t2, and
β2(t) = 0.02 + 0.02 cos(0.11πt). The random coefficient is
γ0i(t) = γ01i + γ02it, where (γ01i, γ02i)

T follows the bivari-
ate normal distribution with zero-mean and covariance Γ =
(Γ1,Γ2) such that Γ1 = (6.25, 2.5)T and Γ2 = (2.5, 4)T . The
random error ε(tij) is uncorrelated with γ0(tij) and has the
N(0, 4) distribution.

For each simulated sample, our objective is to estimate
RTPAα(s1, s2;x1) and RTPRAα(s1, s2;x1) defined in (3)
and (6) for x1 = 0 and x1 = 1, where Aα(·) is defined
in (5) with qα[t,X2(t)] computed from the normal distri-
bution based on the simulation model. Using the proce-
dures in Section 3, we fit a mixed-effects varying coefficient
model (9) with the cubic B-spline basis and equally spaced
knots selected from BIC to each sample, and compute the

estimators ̂RTPAα(s1, s2;x1) and ̂RTPRAα(s1, s2;x1) using

the predicted subject-specific curves Ŷi(t) for t ∈ [0, 10].
The bootstrap confidence intervals for the RTP and RTPR
estimators are computed with B = 500 bootstrap samples.

We repeated the simulation M = 1, 000 times. Figure 4
shows the true curves computed based on the simulation
model with known coefficient curves, the averages of their
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Table 1. The true values of RTPAα(s1, s1 + δ;x1) under the simulation model, the averages and the square root of the MSEs
for the estimates and the empirical coverage probabilities of the bootstrap 95% pointwise confidence intervals from 1,000

simulations

α = 90% α = 75%
True Ave. Ave. Cov. True Ave. Ave. Cov.

s1 Value Est. Root MSE Prob. Value Est. Root MSE Prob.

δ = 2 x1 = 0 0 0.331 0.327 0.032 0.955 0.472 0.471 0.024 0.945
2 0.353 0.354 0.035 0.976 0.488 0.491 0.024 0.978
4 0.391 0.392 0.040 0.986 0.521 0.524 0.025 0.982
6 0.440 0.437 0.045 0.985 0.564 0.565 0.027 0.983
8 0.496 0.487 0.053 0.978 0.611 0.610 0.033 0.973

x1 = 1 0 0.489 0.481 0.033 0.982 0.631 0.627 0.022 0.952
2 0.529 0.529 0.027 0.969 0.666 0.668 0.017 0.986
4 0.557 0.556 0.025 0.968 0.687 0.690 0.016 0.980
6 0.573 0.569 0.026 0.960 0.698 0.698 0.016 0.974
8 0.580 0.573 0.035 0.947 0.701 0.699 0.023 0.948

δ = 4 x1 = 0 0 0.290 0.292 0.032 0.929 0.427 0.430 0.025 0.946
2 0.337 0.339 0.037 0.952 0.470 0.474 0.026 0.973
4 0.399 0.396 0.044 0.976 0.527 0.528 0.027 0.976
6 0.471 0.461 0.053 0.982 0.592 0.588 0.034 0.972

x1 = 1 0 0.545 0.549 0.032 0.965 0.682 0.681 0.021 0.986
2 0.561 0.564 0.027 0.983 0.693 0.692 0.017 0.982
4 0.565 0.565 0.026 0.964 0.694 0.691 0.017 0.962
6 0.561 0.555 0.034 0.934 0.687 0.681 0.023 0.927

estimates and the lower and upper 2.5% pointwise per-

centiles of the estimated curves ̂RTPAα(s1, s1 + δ;x1) and
̂RTPRAα(s1, s1 + δ;x1) for x1 = 0 and 1 computed at α =
90%, δ = 2 and s1 ∈ [0, 8]. These plots indicate that these
average curves are very close to the true curves, and the
widths of the lower and upper 2.5% pointwise percentiles are
reasonably small. To evaluate the overall performance of our
estimators, we computed the empirical mean squared errors

MSE
[
̂RTPAα(t, t+ δ;x1)

]

=
1

M

M∑
m=1

{
̂RTP

(m)

Aα

(
t, t+ δ;x1

)
− RTPAα

(
t, t+ δ;x1

)}2

,

where t can be chosen from a grid of time points in [0, 10−δ]

and ̂RTP
(m)

Aα
(·) is the estimate computed from the mth

simulated sample.
We carried out the simulation for a range of (α, δ) val-

ues. For α = 90% or 75% and δ = 2 or 4, the averages and
MSEs of the RTP estimates and the empirical coverage prob-
abilities for the bootstrap percentile confidence intervals are
summarized in Table 1. These results show that the RTP
estimates based on our proposed models and procedures are
closed to the true RTP curves and the coverage probabil-
ities of the bootstrap confidence intervals are also close to
the nominal level of 95%. We omit the simulation results
for the RTPRs, because the RTPR estimators are also close
to the true RTPR curves and their bootstrap confidence
intervals have satisfactory empirical coverage probabilities.

Note, we have applied the procedure in Section 3.3.3 with
unstructured mixed-effects models (8) and (13) to the same
simulation samples, the estimates are similar to Figure 4
and Table 1 and thus due to the limit of space those results
are not presented here.

6. DISCUSSION

We developed in this paper a class of global smoothing
methods for the estimation of the RTPs and RTPRs, which
quantitatively measure the “rank-tracking abilities” of a
time-dependent outcome variable in a longitudinal study.
The RTPs can be intuitively interpreted as the conditional
probabilities of a subject’s health status at a later time point
given that the same subject has certain health status at an
earlier time point. Compared with serial correlations, which
have been commonly used in the literature to evaluate the
“tracking abilities” of time-dependent variables in longitu-
dinal studies, the RTPs have two distinct advantages. First,
as an intuitive quantitative measure that can incorporate
subject’s baseline or time-varying covariates, the RTPs and
RTPRs have simple and straightforward interpretations in
practice. Second, the RTPs and RTPRs do not depend on
the restrictive assumptions of serial correlations, which may
not be satisfied in many practical settings. In contrast, se-
rial correlations may not have adequate interpretations if
the relationship between the outcome variable evaluated at
two time points are not linear or their joint distribution is
significantly different from normality. The estimation and
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inferences of an RTP may be constructed entirely nonpara-
metrically or under certain structural nonparametric models
which are sufficiently flexible in many longitudinal settings.
The inherent model flexibility and scientific interpretability
enable the RTPs and RTPRs to be used as a convenient sta-
tistical tool to identify certain disease risk factors that track
over time.

We have attempted to minimize the data structural as-
sumptions in developing our estimation methods, although
the nonparametric mixed-effects models have been used to
reduce the model and computational complexity. However,
our application to the NGHS BMI and SBP data shows
that the RTPs and RTPRs may be approximated by certain
parametric or nonparametric models in practice. For exam-
ple, if RTPA(s1, s1+δ) does not change with s1 for any given
risk set A(·), then it is appropriate to consider this RTP as a
parametric or nonparametric function of δ only, so that more
efficient estimators than the basis approximation estimators
or other smoothing approaches may be constructed. Clearly,
depending on the scientific questions and the nature of the
data, various statistical models for the RTPs and RTPRs
may be considered in a given situation. Thus, goodness-of-
fit tests or model selection methods are needed to evaluate
the adequacy of the RTP and RTPR models. Further re-
search is warranted for the estimation and inferences of the
RTPs and RTPRs under appropriate models.
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