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Approaches to retrospective sampling for
longitudinal transition regression models
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For binary diseases that relapse and remit, it is often of
interest to estimate the effect of covariates on the transition
process between disease states over time. The transition pro-
cess can be characterized by modeling the probability of the
binary event given the individual’s history. Designing stud-
ies that examine the impact of time varying covariates over
time can lead to collection of extensive amounts of data.
Sometimes it may be possible to collect and store tissue,
blood or images and retrospectively analyze this covariate
information. In this paper we consider efficient sampling de-
signs that do not require biomarker measurements on all
subjects. We describe appropriate estimation methods for
transition probabilities and functions of these probabilities,
and evaluate efficiency of the estimates from the proposed
sampling designs. These new methods are illustrated with
data from a longitudinal study of bacterial vaginosis, a com-
mon relapsing-remitting vaginal infection of women of child
bearing age.
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1. INTRODUCTION

For chronic diseases that flair up and then go away (re-
lapse and remit) or for diseases that can occur repeatedly
over time, it is often of interest to estimate the effect of
covariates on the transition process between disease states
over time. For a binary disease, the transition process can
be characterized by modeling the probability of the binary
event, given the individual’s history of prior events and im-
portant time-dependent or subject-specific covariates. These
so-called transition models have been used to describe the
effect of sleep on episodes of depression or mania in patients
with bipolar disorder [9], the relationship between age and
asthma events [15], or the relationship of sucking patterns
in premature infants to time dependent covariates [17].

With time varying covariates, information on the covari-
ates must be collected at the same time points as the re-
sponse. This can lead to extensive amounts of data being
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collected. Sometimes it may be possible to collect and store
tissue, blood or images for later evaluation. A retrospective
analysis of covariate information may be desirable since it al-
lows any new technology that is developed during the course
of a study to be used on samples from all individuals at all
time points. Also, since longitudinal studies may be per-
formed over many years, it allows investigators to identify
and answer important new scientific questions years after
follow-up is complete.

Evaluation of biomarker covariate data (which are of-
ten based on measurements obtained from assays on tissue,
blood or images) on all subjects and all time points can
be expensive. Therefore, it is of interest to consider efficient
sampling designs that do not require evaluation of biomarker
measurements on all patients. We evaluate the efficiency of
sampling subjects from a longitudinal study and describe
appropriate estimation techniques. Note, this implies that
for a subject who is sampled all covariates at all times will
be obtained. This approach allows for efficient estimation of
transition probabilities and functions of the transition prob-
abilities.

Others [13, 10] have considered this sampling problem for
analyzing binary longitudinal data, but have focused on es-
timating the marginal probability of response. Schildcrout
& Heagerty proposed obtaining covariate data on subjects
where the longitudinal responses are not all the same. That
is, subjects with all positive responses or all negative re-
sponses would not be evaluated, while subjects with both
positive and negative response over time would have their
longitudinal covariate data evaluated. In their estimation
approach they accounted for the sampling design using max-
imum likelihood with conditional logistic regression models.
Further, they showed that, in some situations, this sampling
design provides estimates of the parameters associated with
covariates that are nearly fully efficient. Neuhaus & Jew-
ell considered an approach based on sampling longitudinal
binary response data when the sampling depends on the
response patterns. They discussed the use of weighted lo-
gistic regression to analyze the data and obtained unbiased
estimates of the parameters along with correct estimation
of the variance of the parameter estimates when estimating
the marginal probability of response. Schildcrout & Hea-
gerty extend their previous paper by stratifying on a coarser
categorization of the total number of responses.

In this paper, we focus on transition models for analyz-
ing longitudinal binary data and the efficiency of estimating
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parameters from the transition models under various sam-
pling and estimation methods. The efficiency of the following
sampling and corresponding parameter estimation methods
for a transition model are compared: 1) A subset of sub-
jects from the full data set are randomly sampled. For each
sampled subject all measurements for each time point are
obtained and maximum likelihood is used to estimate the
parameters of the transition model. 2) A specified number
of subjects are randomly sampled from each pattern of re-
sponse (stratum) and weighted maximum likelihood is used
to estimate the parameters of the transition model. Again,
all observations per sampled subject are obtained. 3) Schild-
crout and Heagerty’s (2008) method of only sampling from
subjects with longitudinal measurements that are a mix of
positive and negative outcomes (if a subject is sampled all
measurements are obtained). In this approach the data are
analyzed using maximum likelihood with a conditional lo-
gistic regression type model. We consider sampling methods
when an individual is sampled and all longitudinal measure-
ments are obtained.

The interest in this problem arose from The Longitudinal
Study of Vaginal Flora (LSVF), which enrolled 3,620 par-
ticipants presenting for routine health care at Birmingham,
Alabama health clinics from August 1999 to February 2002.
Details of this study have been described elsewhere [6]. At
baseline and quarterly for up to 1 year, vaginal symptoms
were recorded and a vaginal swab was collected to diag-
nose bacterial vaginosis (BV). Additionally, a vaginal wash
sample was obtained at each visit and stored for future eval-
uation.

Microbiologically, BV is characterized by an imbalance in
vaginal flora [12]. In research settings, the diagnosis of BV
is often made using Nugent Gram stain criteria [8]. This
method assigns a score from 0 to 10 based on the prevalence
of anaerobic bacteria and inverse prevalence of lactobacilli
[11]. Clinically, a diagnosis of BV is made if three of the four
criteria are present: 1) homogenous, white adherent vaginal
discharge, 2) vaginal pH > 4.5, 3) detection of include cells
on saline wet smear, and 4) presence of amine odor with ad-
ditional of KOH (whiff test) [1]. This method is preferred in
clinical settings because it is relatively simple to perform and
allows point of care treatment. BV is a relapsing-remitting
condition which is characterized by periods of BV followed
by periods without BV.

Recent technological advances in DNA sequencing have
opened up a new field of molecular amplification-based re-
search on the human microbiota, including detection of
previously uncultivatable organisms. A question of interest
within the LSVF was whether these new methods could be
applied to stored vaginal wash samples to evaluate human
vaginal microflora. A further question is whether these or-
ganisms initiate an active period of BV or initiate a remis-
sion. Other interest is on examining the relationship between
these new biomarkers and the natural history of BV as mea-
sured by either Gram staining (dichotomized) or a clinical

diagnosis. However, in order to preserve samples and min-
imize cost, it was of interest to use a sampling design that
reduced the number of samples required for analysis. Al-
though this particular study has not been completed, data
from the LSVF was used to demonstrate methods described
in this paper.

The outline of the paper is as follows. Section 2 discusses
the model and estimation. Section 3 describes a simulation
study and Section 4 presents the results of the simulation
study. Section 5 demonstrates the approach on the BV data
set. A discussion follows in Section 6.

2. METHODS

The following first-order Markov regression model [3] can
be used to estimate transition probabilities:
(1)
logit (Prob(Yij = 1|Yij−1, Xij)) = β0 + β1Xij + β2Yij−1,

where Xij is the biomarker value and Yij is a binary in-
dicator of outcome status for the jth measurement on the
ith subject. We assume the Yij are equally spaced and ob-
served at the same time intervals for all individuals, which
is a reasonable approximation for the LSVF data set.

A slightly more flexible model [16] allows for an inter-
action between the biomarker and the previous lagged out-
come:

logit(Prob(Yij = 1|Yij−1, Xij)) = β0 + β1Xij +

β2Yij−1 + β3XijYij−1.(2)

An underlying assumption in Markov models is that the
transition probabilities depend on the past history through
a specified number of past or lagged outcomes. Higher order
Markov dependence can be incorporated by including addi-
tional lagged outcome terms (e.g. a term corresponding to
Yij−2).

For a first-order model, the transition probability matrix
for a specified covariate X corresponding to 2 is

P (X) =

[
1− p01(X) p01(X)
1− p11(X) p11(X)

]
where p01(X) = Prob(Yij = 1|Yij−1 = 0, Xij) =
logit−1(β0 + β1Xij) and p11(X) = Prob(Yij = 1|Yij−1 =
1, Xij) = logit−1(β0 + β1Xij + β2 + β3Xij). The subscripts
on p are used to indicate the states, so for example p01 is
used to denote transitioning from state 0 to 1. The diago-
nal elements characterize the probability of staying in the
same state and the off-diagonal elements characterize the
probability of transitions.

In order to estimate the transition matrices, estimates
of the parameters in equation (2) must be obtained. In a
longitudinal data set with covariates collected at all time
points on all subjects or on a random sample of subjects,
maximum likelihood can be used to obtain parameter and
variance estimates that are asymptotically consistent.
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As discussed in Neuhous & Jewell when outcome depen-
dent sampling is performed and the Xij are sampled with
probability only depending on Yij (not on other Yik values
for subject i or on Y j , where Y j is the vector of outcome
responses for subject j), the maximum likelihood estimates
(MLE) of β1 and β3 from (2) will be asymptotically un-
biased, but estimates of β0 and β2 will be biased. Since
our interest is in estimating the transition probabilities, it
is important to obtain unbiased estimates of all parame-
ters. Thus, we explore using weighted maximum likelihood
(WMLE) with outcome dependent sampling to estimate the
parameters from the transition model. Due to the outcome
dependent sampling, the standard variance estimates ob-
tained from the weighted likelihood using maximum likeli-
hood estimation are not correct.

Obtaining correct weighted maximum likelihood variance
estimates has been discussed in the survey literature. We use
these methods to calculate correct variance estimates of the
WMLE parameter estimates. In survey data it is common
for a data set to include subjects with unequal probability
of selection. With outcome dependent sampling, unless all
strata occur with equal probability, subjects will be sampled
with unequal probability. Weights which are the inverse of
the probability of selection (or the inverse of the sampling
fraction) are used with survey data to account for the un-
equal probability of selection. In this setting, the probability
of selection is the number of subjects sampled from a par-
ticular pattern of response (stratum) divided by the total
number of subjects in the full data set with that particular
pattern of response. The weights are the same for all obser-
vations within a subject and for all subjects in a stratum.

The correct variance estimates are derived as follows.
Since the WMLE parameter estimates are differentiable
functions of the data [5, 14, 4], the correct variance estimates
can be obtained by using the Taylor linearization method [2].
We first form the l vector (where l is the number of parame-
ters in the model) of Taylor deviates zhij which is obtained
by differentiating the sample weighted estimators (in this
case the WMLE’s) with respect to their weights [5, 14, 4].
Then

zhij = whij
∂β̂

∂whij
and

∂β̂

∂whij
=⎡⎣ H∑

h=1

Ih∑
i=1

m∑
j=1

whijxhijx
′
hij(1− p̂hij)p̂hij

⎤⎦−1

xhij(yhij−p̂hij)

for stratum h, individual i, and measurement j. (The ap-

pendix provides details on the derivation of
∂

̂β
∂whij

). Now the

sample-weighted sum T =
∑H

h

∑Ih
i

∑m
j whijzhij (where

H is the number of strata, Ih is the number of individu-
als sampled in the stratum and m is the number of ob-
servations per individual) is an asymptotically consistent
linear approximation to the WMLE parameter estimates.
Therefore the variance estimate of T is a consistent esti-
mator for the variance estimate of the WMLE parameter

estimates [5]. We can compute ̂Var(β̂) by computing the
variance of T̂ based on the sample design. In this case,
it is that of a multistage stratified cluster sample [7]. Let

zhi· =
∑m

j=1 zhij and zh = 1
Ih

∑Ih
i=1 zhi· and v̂ar(zhi·) =∑th

i=1(zhi· − zh)(zhi· − zh)
′/(th − 1) then

v̂ar

⎛⎝ H∑
h

Ih∑
i

m∑
j

whijzhij

⎞⎠ =

v̂ar

(
H∑
h

Ih∑
i

zhi·

)
=

H∑
h

Ih∑
i

v̂ar(zhi·) =

H∑
h=1

Ih
Ih − 1

Ih∑
i=1

(zhi· − zh)(zhi· − zh)
′.

In the simulations we also perform the outcome depen-
dent sampling method of Shildcrout & Heagerty where sub-
jects with discrepant outcomes (i.e. a subject has both posi-
tive and negative outcomes across time) are randomly sam-
pled (all observations within a subject are obtained) and pa-
rameters are estimated by maximum likelihood. We briefly
review the estimation procedure and implementation in this
paper. Let Si =

∑m
j=1 Yij , then the likelihood is

L =
N∏
i=1

P (Y i|0 < Si < m)I(0<Si<m)

where N is the number of subjects in the sample and I(·) is
the indicator function so that when the condition is true the
function is 1 and 0 otherwise. Now let

P (Y i|0 < Si < m) =

P (Yi1 = yi1)
∏m

j=2 Pyij−1,yij (xij)

1− P (Yi1 = 0)
∏m

j=2 P00(xij)− P (Yi1 = 1)
∏m

j=2 P11(xij)

where

Pyij−1,1(xij) =

exp(β0 + β1xij + β2yij−1 + β3xijyij−1)

1 + exp(β0 + β1xij + β2yij−1 + β3xijyij−1)
.

Note, P (Yi1) is from the full data set and not just the out-
come dependent sample.

3. SIMULATIONS

We performed simulations to compare bias and efficiency
of different sampling and estimation methods. In the rest of
this paper we refer to the sampling/estimation methods as
follows.
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Table 1. Medians(true), median absolute differences (MAD) of parameter estimates and median of estimated asymptotic
standard errors (SE). Outcome data is generated according to

logitP (Yij = 1|Yij−1, Xij) = β0 + β1Xij + β2Yij−1 + β3XijYij−1. The covariates are independent and are generated
according to Simulation 1 with binary xij ∼ binomial(1, .5) or with continuous xij ∼ .5 +N(0, 1). For the top half of the
table the marginal probability of a positive response, P (Y ∗), is .24 and in the bottom half P (Y ∗) is .024. The mean number

of observations sampled for each simulation is 320 for β0 = −1.5 with binary and continuous x and 120 and 132 for
β0 = −4.0 with binary and continuous x

Binary Continuous
NOD strat strat DOD NOD strat strat DOD
MLE WMLE MLE CMLE MLE WMLE MLE CMLE

med β0(−1.5) −1.503 −1.501 −0.268 −1.501 −1.503 −1.501 −0.314 −1.500
MAD 0.118 0.128 0.089 0.125 0.099 0.083 0.057 0.113
med asy SE 0.118 0.125 0.117 0.128 0.099 0.081 0.098 0.114

med β1(.5) 0.502 0.505 0.503 0.499 0.502 0.504 0.502 0.501
MAD 0.157 0.237 0.167 0.144 0.080 0.124 0.085 0.077
med asy SE 0.156 0.232 0.160 0.143 0.082 0.122 0.086 0.077

med β2(.2) 0.193 0.201 −0.110 0.194 0.196 0.201 −0.126 0.194
MAD 0.231 0.172 0.125 0.219 0.196 0.125 0.086 0.184
med asy SE 0.230 0.176 0.167 0.214 0.193 0.120 0.141 0.186

medβ3(.2) 0.202 0.200 0.194 0.203 0.198 0.201 0.200 0.202
MAD 0.306 0.315 0.230 0.267 0.164 0.180 0.128 0.145
med asy SE 0.304 0.325 0.227 0.266 0.163 0.176 0.126 0.145

med β0(−4.0) −4.043 −4.001 −1.044 −3.999 −4.031 −4.004 −1.077 −3.995
MAD 0.496 0.247 0.157 0.251 0.388 0.187 0.117 0.226
med asy SE 0.168 0.168 0.169 0.168 0.394 0.184 0.149 0.231

medβ1(.5) 0.507 0.508 0.503 0.501 0.507 0.513 0.501 0.502
MAD 0.671 0.430 0.238 0.233 0.291 0.247 0.118 0.115
med asy SE 0.168 0.169 0.168 0.168 0.287 0.237 0.118 0.115

med β2(.2) −12.937 0.184 −0.661 0.071 −13.737 0.177 −0.706 0.070
MAD 4.423 0.427 0.362 1.195 18.392 0.367 0.284 0.856
med asy SE 0.168 0.169 0.169 0.168 1640.742 0.312 0.322 0.817

medβ3(.2) 3.191 0.212 0.210 0.310 0.178 0.216 0.209 0.218
MAD 13.695 0.655 0.497 1.828 3.586 0.387 0.249 0.575
med asy SE 0.168 0.169 0.169 0.169 1499.745 0.361 0.242 0.561

NOD/MLE Non-outcome dependent sampling. Randomly
sample any subject from the full data set, use maximum
likelihood for estimation.

strat/MLE Outcome dependent stratified sampling. Ten
subjects are randomly sampled within each stratum,
use maximum likelihood for estimation.

strat/WMLE Outcome dependent stratified sampling.
Ten subjects are randomly sampled within each stra-
tum, use weighted maximum likelihood for estimation.

DOD/CMLE Discrepant outcome dependent sampling
where only subjects with discrepant outcomes are ran-
domly sampled. Use maximum likelihood estimation
from a conditional logistic regression type model.

In all simulations for each replication, longitudinal data were
generated for 10,000 subjects at five time points. With five
time points there are 25 = 32 possible strata. Then, a sam-
ple of 320 subjects (with all data at each time point) were
selected from the data set of 10,000 using the different sam-
pling methods. Weights for each pattern of response (stra-
tum) were estimated using the 10,000 subjects (note, the

same stratum weight was used for each subject and obser-
vation in a stratum).

In all simulations we explore two values for the intercept,
β0, so that the prevalence of an event is not uncommon
(β0 = −1.5) and also where the prevalence is very small
(β0 = −4.0). The initial values for each simulation were
generated with logit(P (Yi0 = 1)) = β0 (i.e. no dependence
on previous responses or covariates). We generated data to
explore the bias and efficiency of the sampling/estimation
methods with different covariate structures and when the
outcome model is misspecified. The following simulations
were performed.

Simulation 1 (Results in Table 1). The covariate xij is in-
dependent across time and subject and is unrelated to
the lag term. Two scenarios are considered for the co-
variate x. One is with the x’s generated with xij ∼
binomial(1, .5) and one is with the x’s generated with
xij ∼ .5 + N(0, 1). Outcome data were generated ac-
cording to equation (2) with β1 = .5, β2 = .2 and
β3 = .2.
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Table 2. Medians(true), median absolute differences (MAD) of parameter estimates and median of estimated asymptotic
standard errors(SE). Outcome data is generated according to

logitP (Yij = 1|Yij−1, Xij) = β0 + β1Xij + β2Yij−1 + β3XijYij−1. The covariates are correlated and are generated according
to Simulation 2 and 3. With results in the first 4 columns from the model with xij = .5 + bi + εij , bi ∼ N(0, 4) and

εij ∼ N(0, 1). Results in the last four columns from the model with xij = .5 + bi + εij + yij−1 where bi ∼ N(0, 4) and
εij ∼ N(0, 1). For the top half of the table the marginal probability of a positive response, P (Y ∗) is .30 and .40 for the

correlation structures of Simulations 2 and 3 respectively. For the bottom half P (Y ∗) is .043 and .058 for correlation structures
of Simulations 2 and 3 respectively. The mean number of observations sampled for each simulation is 320 for β0 = −1.5 for
both correlation structures and 241 and 278 for β0 = −4.0 with correlation structures of Simulations 2 and 3 respectively

Correlation within x’s Correlation with x’s and with lag
NOD strat strat DOD NOD strat strat DOD
MLE WMLE MLE CMLE MLE WMLE MLE CMLE

med β0(−1.5) −1.501 −1.497 −0.430 −1.262 −1.501 −1.497 −0.332 −1.022
MAD 0.098 0.078 0.059 0.103 0.105 0.068 0.052 0.094
med asy SE 0.098 0.078 0.100 0.110 0.106 0.069 0.098 0.110

med β1(.5) 0.502 0.510 0.393 0.391 0.502 0.513 0.334 0.263
MAD 0.051 0.074 0.043 0.050 0.060 0.083 0.047 0.067
med asy SE 0.050 0.064 0.049 0.051 0.059 0.070 0.054 0.066

med β2(.2) 0.187 0.187 −0.628 −0.028 0.198 0.172 −0.950 −0.043
MAD 0.214 0.142 0.115 0.183 0.256 0.223 0.146 0.208
med asy SE 0.214 0.139 0.173 0.193 0.254 0.203 0.207 0.227

med β3(.2) 0.203 0.197 0.160 0.238 0.200 0.195 0.138 0.255
MAD 0.095 0.089 0.065 0.082 0.096 0.100 0.067 0.093
med asy SE 0.095 0.084 0.075 0.086 0.096 0.091 0.080 0.095

med β0(−4.0) −4.017 −4.037 −1.200 −3.665 −4.011 −4.064 −1.062 −2.672
MAD 0.281 0.240 0.117 0.175 0.271 0.282 0.119 0.195
med asy SE 0.283 0.218 0.168 0.192 0.270 0.236 0.175 0.211

medβ1(.5) 0.504 0.557 0.302 0.296 0.503 0.569 0.283 −0.104
MAD 0.089 0.172 0.037 0.066 0.091 0.192 0.038 0.062
med asy SE 0.091 0.121 0.045 0.060 0.088 0.134 0.048 0.063

med β2(.2) 0.039 0.202 −1.222 −0.104 0.126 0.236 −1.446 −0.957
MAD 1.373 0.419 0.277 0.510 1.101 0.459 0.289 0.480
med asy SE 1.313 0.382 0.342 0.527 1.092 0.428 0.374 0.504

med β3(.2) 0.234 0.157 0.259 0.387 0.220 0.140 0.226 0.752
MAD 0.344 0.195 0.073 0.134 0.242 0.206 0.064 0.114
med asy SE 0.327 0.152 0.081 0.134 0.234 0.156 0.079 0.116

Simulation 2 (Results in Table 2). The covariate xij is
correlated across time within a subject so xij = .5+bi+
εij where bi ∼ N(0, 4) and εij ∼ N(0, 1). With these
parameters, ρ, the correlations between the x’s is ρ =

σ2
b

(σ2
b+σ2

ε )
= .8 where σ2

b = 4 and σ2
ε = 1. Outcome data

were generated according to equation (2) with β1 =
.5, β2 = .2 and β3 = .2.

Simulation 3 (Results in Table 2). The covariate xij de-
pends on the lag term and there is correlation in xi. The
data is generated with xij = .5 + bi + εij + yij−1 where
bi ∼ N(0, 4) and εij ∼ N(0, 1). Outcome data were gen-
erated according to equation (2) with β1 = .5, β2 = .2
and β3 = .2.

Simulation 4 (Results in Table 3). The analysis model
is misspecified. Data were generated according to a
model with 2 lag terms and binary xij . The model
is logit(Prob(Yij = 1|Yij−1, Yij−2, Xij) = β0 +
β1xij + β2yij−1 + β3xijyij−1 + β4yij−2 with xij ∼

binomial(1, .5) with β1 = .5, β2 = .2, β3 = .2andβ4 =
.2. Model (2) is then fit to the data.

In some replications of the simulations not all strata had
at least ten subjects. To accommodate this, the stratified
sampling methods use all subjects in those strata and the
total number of subjects in the sample is reduced. Therefore,
in order to maintain the same sample size across methods
the sample size from the stratified methods is used for all
methods. Because some replications in the simulations have
strata with less than 10 subjects the total sample size varies
from replication to replication.

When presenting the simulation results, we provide the
median estimate for each parameter, the median absolute
deviations (MAD) of the simulated parameter estimates and
the median of the asymptotic estimates of the standard er-
rors. The medians and median absolute deviations are pro-
vided since sometimes there are large outliers that heavily
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Table 3. Medians(true), median absolute differences (MAD)
of parameter estimates and median of estimated asymptotic
standard errors (SE). Outcome data is generated according to

logitP (Yij = 1|Yij−1, Xij) =
β0 + β1Xij + β2Yij−1 + β3XijYij−1 + β4Yij−2 and

xij ∼ binomial(1, .5). The estimation model is misspecified
and is given in equation 2. For the top half of the table the

marginal probability of a positive response, P (Y ∗) is .247 and
the average sample size is 320. For the bottom half P (Y ∗) is
.024 and the mean number of observations sampled was 123

NOD strat strat DOD
MLE WMLE MLE CMLE

med β0(−1.5) −1.501 −1.497 −0.430 −1.262
MAD 0.098 0.078 0.059 0.103
med asy SE 0.098 0.078 0.100 0.110

med β1(.5) 0.502 0.510 0.393 0.391
MAD 0.051 0.074 0.043 0.050
med asy SE 0.050 0.064 0.049 0.051

med β2(.2) 0.187 0.187 −0.628 −0.028
MAD 0.214 0.142 0.115 0.183
med asy SE 0.214 0.139 0.173 0.193

med β3(.2) 0.203 0.197 0.160 0.238
MAD 0.095 0.089 0.065 0.082
med asy SE 0.095 0.084 0.075 0.086

med β0(−4.0) −4.017 −4.037 −1.200 −3.665
MAD 0.281 0.240 0.117 0.175
med asy SE 0.283 0.218 0.168 0.192

med β1(.5) 0.504 0.557 0.302 0.296
MAD 0.089 0.172 0.037 0.066
med asy SE 0.091 0.121 0.045 0.060

med β2(.2) 0.039 0.202 −1.222 −0.104
MAD 1.373 0.419 0.277 0.510
med asy SE 1.313 0.382 0.342 0.527

med β3(.2) 0.234 0.157 0.259 0.387
MAD 0.344 0.195 0.073 0.134
med asy SE 0.327 0.152 0.081 0.134

influence the mean and standard errors. All model fits con-
verge in all simulations.

We were also interested in investigating whether there
were general statements that could be made about opti-
mal designs. To this end we considered “asymptotic” effi-
ciency of parameter estimates under the various sampling
and estimation procedures with a data set approximating
asymptotic conditions. To implement this, we generated
a data set with 1,000,000 subjects and 5 time points per
subject. We generated data according to equation 2 with
xij ∼ binomial(1, .5). The parameter value for β0 was var-
ied from −4 to 0 at intervals of .1 and the parameter value
for β1 was varied from 0 to .5 at intervals of .02. The pa-
rameter value for β2 and β3 were held constant at .2. For
each set of parameter values the xij values were the same
and the same random variates were used to generate the
outcome variables. Once a data set was generated, weights
were calculated from the large data set, 1,000 patients per

stratum were sampled for the stratified methods and 32,000
observations were sampled in the NOD and DOD methods.
We then created contour plots of the ratio of the variance of
the estimates for all pairs of methods for β0 and β1. Note,
since the data sets are very large all estimates of β1 are un-
biased. Estimates of β0 are unbiased for all methods except
strat/MLE.

4. SIMULATION RESULTS

For Simulation 1 where the covariate xij are independent
across time and unrelated to the lag term, Table 1 shows
that the parameter estimates associated with x (β1 and β3)
are unbiased for all sampling and estimation methods when
the marginal probability of a positive response (defined as
P (Y ∗)) is largest. But, as expected β0 and β2 are biased
for the strat/MLE method with the other methods provid-
ing unbiased estimates of these parameters. When P (Y ∗) is
small the estimates of β2 and β3 from the NOD/MLE and
DOD/CMLE methods are biased. The estimates from the
strat/WMLE are all unbiased while the estimates from the
strat/MLE are biased for β0 and β2 and unbiased for β1

and β3. The results are the same for continuous or binary
xij . We only discuss efficiency of estimates that are unbi-
ased. For β1 and β3 the strat/MLE either provides similar
MAD or smaller MAD than the other three methods. For
β0 and β2, the strat/WMLE method either provides similar
or smaller standard errors than the other methods.

For all methods, the MAD estimates of the variability
in the simulated parameter estimates is either smaller or
very close to the median of the asymptotic estimates of the
standard errors when the prevalence (probability of a pos-
itive response) is largest. When the prevalence is low and
the xij covariate is binary the asymptotic estimates can un-
derestimate the variability of the parameter estimates while
for continuous xij the asymptotic standard error estimates
and the Monte-carlo estimates are close. This result suggests
that asymptotic standard errors perform well even when the
prevalence is low for continuous covariates.

In Simulations 2 and 3, we study the effects of correla-
tion on the bias and efficiency of the sampling/estimation
methods. In Table 2, the first four columns of the nu-
merical section of the table show results with correlation
among the xij but independent of the lag term (Simula-
tion 2) while in the last four columns the xij are corre-
lated within a person and also correlated with the lag term
(Simulation 3). The strat/MLE and DOD/CMLE meth-
ods estimates are all biased for each of the four scenar-
ios in Table 2 so they will not be discussed further when
discussing this table. When the marginal probability of a
positive response (P (Y ∗)) is largest .30 and .40 for Sim-
ulations 2 and 3 respectively the parameter estimates for
the NOD/MLE and strat/WMLE both give unbiased esti-
mates. The variability in the estimates is similar for both
methods. When the marginal probability is small (.043 and

80 S. Hunsberger, P. S. Albert, and M. Thoma



.058) the estimates for β0 and β1 are unbiased with the vari-
ability larger for β1 with the strat/WLME. β2 is biased for
the NOD/MLE method but unbiased for the strat/WMLE
method and β3 is biased for both methods. This suggests
that the strat/MLE and DOD/CMLE are very sensitive
to the correlation structure in the covariates, while the
strat/WMLE and NOD/MLE are not sensitive unless the
prevalence is very low, with the strat/WMLE less sensitive
than the NOD/MLE for low prevalence. The MAD Monte-
Carlo standard error is very close to the median of the
asymptotic estimates of the standard errors for all parame-
ters and scenarios.

We also examine the effect on the parameters when the
estimation model is misspecified according to the generation
model (Simulation 4). Table 3 shows that the strat/MLE
method and the DOD/CMLE method are biased so they will
not be discussed further when discussing this table. When
the marginal probability of a positive response (P (Y ∗)) is
largest (.247) the parameter estimates for the NOD/MLE
and strat/WMLE both give unbiased estimates. The vari-
ability in the estimates is similar for both methods with
the exception of β2 where the variability is smaller for
NOD/MLE. When the marginal probability is small (.024)
the estimates for β0 and β1 are unbiased with the variabil-
ity larger for β1 with the strat/WLME. β2 is biased for
the NOD/MLE method but unbiased for the strat/WMLE
method and β3 is biased for both methods. The MAD
monte-Carlo standard error is very close to the median of
the asymptotic estimates of the standard errors for all pa-
rameters and scenarios.

This suggests that asymptotic standard errors perform
well even when the model is misspecified. We compute
asymptotic relative efficiencies over a large range of values
of β0 and β1 to make general design statements. The results
are based on the correct model specification.

Figure 1 gives the contour plots of the ratio of the
approximate asymptotic variances for the different sam-
pling/estimation methods (obtained with the generation of
a very large data set as described in section 3). The first
column shows the ratio of the variance estimates for β0 for
the three unbiased methods. The last two columns show the
ratio of the variance estimates for β1 for all the methods.
The figure shows that the strat/WMLE method is more ef-
ficient than the NOD/MLE method and the DOD/CMLE
method for all combinations of β0 and β1 studied. The effi-
ciency comparisons depend on the prevalence (β0) and little
on β1. For β1 the strat/WMLE method is the most effi-
cient.

5. EXAMPLE

We analyzed data from the Longitudinal Study of Vagi-
nal Flora. The original intent was to compare stored vaginal
wash samples of vaginal microflora with the Nugent Gram
stain method of diagnosing BV. The vaginal wash molecular

amplification data has not been collected. Therefore, in this
paper we compare the clinical diagnosis of BV to the Gram
stain method. In particular, we examine the following ques-
tions: Does a positive Gram stain increase the probability of
a positive clinical diagnosis of BV? Does a positive clinical
diagnosis of BV increase the odds of a subsequent positive
clinical diagnosis of BV?

In total 1,710 women had both measurements at all 5
time points. Although for simplicity we only include obser-
vations with measurements at all time points, the methods
could be applied with missing data if the data were missing
at random. For an analysis with missing covariate informa-
tion the data would be stratified on the outcome measure-
ments. Missing covariate data would be imputed and the
strat/WMLE method could be used.

This example is helpful to understand the proposed meth-
ods since clinical diagnosis of BV and a Gram stain were
obtained on all subjects. The full data set can be used to
obtain the best estimates of the parameters and then the
sampling/estimation method results can be compared to the
full data set estimates. For the sampling methods, we as-
sume the clinical BV measurements were obtained on all
women and we will sample (either randomly or based on
outcome) to determine which women’s Gram stain measure-
ments will be included. Rather than performing the sam-
pling a single time, bootstrap parameter estimates will be
provided (details of the bootstrap method are provided be-
low).

The full data set is analyzed to choose the terms in the
Markov model that will be used in the sampling analysis.
Only Markov models with two or fewer lag terms will be
considered since there are only five longitudinal time points.
The estimation routine was highly dependent on starting
values and converged to local maxima when two-way in-
teractions were considered, so only the first-degree interac-
tions between the Gram stain variable and the lag terms
were considered. The most flexible model we considered
was

logit(P (Yij = 1|Yij−2, Yij−1, Xij)) = β0 + β1Xij+

β2Yi,j−1 + β3Yi,j−2 + β4Xi,j−1Yi,j−1 +

β5Xi,j−2Yi,j−2 + β6Yi,j−1Yi,j−2

where the Yij are the clinical BV response data at the jth

time point and theXij are the Gram stain BV response data
at the jth time point for women i. In this model each of the
interaction terms were not individually significant and a si-
multaneous test of all interaction terms was also not signifi-
cant (all testing was performed using a likelihood ratio test).
A reduced model with the first four terms (β0, β1, β2, β3)
was then examined. In this model each of the lag terms was
significant so they were included in the final model for the
bootstrap analysis.

In order to evaluate the performance of the sampling
methods on this BV data set, the following bootstrap proce-
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Figure 1. Contour plots of the ratio of the asymptotic variance estimates for the different sampling/estimation methods. The
first column shows the ratio of the variance estimates for β0 for the three unbiased methods. The last two columns show the

ratio of the variance estimates for β1 for the all methods.

dure was used. Weights were calculated based on the original
sample. Repeated random sampling was performed using the
three sampling methods. The samples were then analyzed
using the previously discussed estimation methods with the
model being a Markov regression model with two lag terms
and no interactions.

If less than 10 observations were available in a stratum,
all the observations were sampled and the total sample size

was reduced (as in the simulation). Therefore, 129 subjects
were sampled for all methods.

Table 4 gives the median of the parameter estimates and
the median of the estimates of the asymptotic standard er-
rors of the bootstrap parameter estimates along with the
parameter estimates with all of the data in the full data set
used. For the bootstrap estimates for each replication we
perform a Wald test for testing βi = 0. We then report the
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Table 4. Parameter estimates from example when the full data set is analyzed and each of the 4 different sampling analysis
methods are used. The full data set is resampled 10,000 times. The mean number of observations sampled was 129. Medians,

median of estimated asymptotic standard errors and the proportion of times each bootstrap Wald test would reject the
hypothesis of βi = 0 testing at the 2-sided .05 level. The analysis model is

logitP (Yij = 1|Yij−1, Xij) = β0 + β1Xij + β2Yij−1 + β3Yij−2

Full NOD strat strat DOD
MLE MLE WMLE MLE CMLE

β0 −3.94 −3.995 −3.945 −0.700 −3.916
median asy SE .129a 0.480 0.351 0.189 0.220

proportion rejections –b 1.00 1.00 1.00 1.00

β1 -.059 −0.077 −0.054 −0.204 0.005
median asy SE .183a 0.705 0.402 0.238 0.284

proportion rejections –b 0.015 0.0373 0.020 0.007

β2 1.54 1.438 1.537 −0.493 1.616
median asy SE .251a 0.958 0.312 0.256 0.384

proportion rejections –b 0.372 1.000 0.185 0.989

β3 1.92 1.878 1.921 −0.007 1.929
median asy SE .205a 0.792 0.357 0.234 0.315

proportion rejections –b 0.623 1.000 0.000 1.000
aEstimated asymptotic standard error using all data.
bThe p-values for the test of β0 = 0, β2 = 0, and β3 = 0 for the full data set are all < .001. The p-value for β1 = 0 is .374.

proportion of times the p-value is less than 0.025 (2-sided
0.05 significance level).

It can be seen from the table that the strat/WMLE
provides less biased estimates than the NOD/MLE and
DOD/CMLE method and gives smaller standard errors. It
is not expected that the strat/MLE method would give an
unbiased estimate of β0, but the estimate of β1 should be
unbiased. In this data set, the strat/MLE estimates of β1

are more biased than the other methods. The reason the
NOD/MLE method performs so poorly is that P (Y ∗) for
the data set is .044, which is very low, and results in the
NOD/MLE having a very high proportion of subjects who
have no positive observations. The strat/WMLE performs
well since the overall sample size is quite large (1,710 sub-
jects), giving good estimates of the weights that are used in
the estimation method for the stratified sample.

The full data set analysis shows that a positive Gram
stain diagnosis of BV does not increase the probability of
observing a positive clinical diagnosis of BV(p-value for test
of β1 = 0 is 0.374). The other terms are all highly signif-
icantly different from zero (all p-values <.001) indicating
that a positive BV clinical diagnosis in either of the two
previous visits increases the probability of subsequent pos-
itive clinical diagnosis. The proportion of rejections for the
strat/WMLE and DOD/CMLE methods agree with the full
data set results in that when the p-value for the test of a
parameter being equal to zero is very small, the proportion
of rejections is close to one. For the test of β1 the proportion
of rejections at the two-sided .05 level is small and this is
consistent with the full data set results.

6. DISCUSSION

We explored bias and efficiency of approaches to sampling
for a longitudinal transition regression model. In practice,
randomly sampling observations and using maximum like-
lihood estimation works well unless the overall probability
of a positive response is very small. When this happens, the
probability of sampling all zero measurements is high; thus,
the parameter estimates have large variability and can be
very biased.

Stratifying observations based on the patterns of response
and sampling a specified number of observations can give un-
biased estimates if a weighted MLE approach is used. In this
paper we examine longitudinal data with five times points
so the number of possible strata is not too large. In cases
where there are many time points it would be difficult to
sample over all possible strata. In this case, other types of
stratification and sampling would need to be implemented.
For example, stratification by types of transitions or num-
ber of responses could be performed. The weights associated
with each strata could be calculated and the strat/WMLE’s
could be calculated. Further simulations to examine prop-
erties of the sampling schemes could be performed.

When the marginal probability of a response is not too
small, the standard errors of the strat/WLME parame-
ter estimates are larger than that of the NOD/MLE esti-
mates. However, for small marginal response probabilities,
the strat/WMLE estimates have smaller standard errors
than NOD/MLE. This is illustrated in the example data,
where the strat/WMLE method provided the most efficient
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estimation of the relationship between gram staining and
clinical assessments of BV.

The DOD/CMLE method performs similarly to the
NOD/MLE method when the overall probability of a posi-
tive response is not too small. For the small prevalence sce-
narios studied here the DOD/CMLE method gave biased
results.

In addition to conducting simulations and data analysis
we compared the asymptotic variances across methods and
found that the strat/WMLE had higher efficiency than other
methods over a wide range of prevalences and effect sizes
(i.e., values of β0 and β1). These results show the advantages
of the proposed weighted approach when the study is large
enough to estimate the weights precisely.

Even though the weights may have large variance in prac-
tical situations, we showed that the strat/WMLE approach
does close to or better than the other approaches in many
situations, and most dramatically when the prevalence is
low. There are other advantages of this approach as well. In
the situations we studied it was more robust to misspecifi-
cation of the order of dependence in the transition model,
specifically when the covariates were correlated across time
or with lag terms.

In the simulations where the prevalence was small, even
though all of the model fits converged, some estimates were
very biased. This was due to the fact that the particular
sample had very few events and so the log-likelihood func-
tion was very flat thus not allowing for good estimation of
the parameters. This demonstrates the issue with random
sampling when the prevalence is low. Once a random sam-
ple is taken, if no events are sampled, the data set will be
uninformative.

Functions of transition probabilities such as first passage
time use all estimates of parameters in the estimate. There-
fore, it is important to estimate all parameters well. This
is in contrast to studies where it is only of interest to test
one covariate (say a treatment effect). As we have shown
here when transition probabilities and functions of transi-
tion probabilities are of interest the strat/WMLE approach
should be used.

APPENDIX A

A.1 Variance estimate for weighted
maximum likelihood estimators

Let the weighted pseudo-likelihood estimating equations
for the px1 vector of parameters, β be

U(β̂) =

H∑
h=1

Ih∑
i=1

m∑
j=1

whijxhij(yhij − ˆphij)

where xhij is a px1 vector. Then

∂U(β̂)

∂whij
= xhijyhij − xhij p̂hij−(3)

H∑
h=1

Ih∑
i=1

m∑
j=1

whijxhij
∂p̂hij
∂β

′ ∂β

∂whij

∂p̂hij
∂β

= xhij(1− p̂hij)p̂hij(4)

note the chain rule is used since β̂ is a function of whij . Now

since
∂U(

ˆβ)
∂whij

= 0, and substituting 4 into 3 gives

∂β̂

∂whij
=⎡⎣ H∑

h=1

Ih∑
i=1

m∑
j=1

whijxhijx
′
hij(1− p̂hij)p̂hij

⎤⎦−1

xhij(yhij−p̂hij)
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