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Inherent difficulties in nonparametric estimation
of the cumulative distribution function using
observations measured with error: Application to

high-dimensional microarray data
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Distribution function estimation is important in many
biological applications. A very simple example is given to
show that with the addition of normal errors, data from
very different underlying distributions can generate nearly
identical distributions of observations. Therefore, in some
situations it can be essentially impossible to accurately es-
timate an underlying cumulative distribution function from
a reasonable number of observations measured with error.
An application is given involving estimating the distribution
function of differential gene expression based on more than
fifty thousand genes.
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1. INTRODUCTION

A common biometrical problem is to estimate the distri-
bution of a random quantity based on an independent and
identically distributed random sample X, X5,..., X,,. The
empirical distribution function Fx(z) = S>I(X; < z)/n,
where I() is the 0-1 indicator function, is an excellent es-
timator in that it unbiasedly estimates the underlying cu-
mulative distribution function Fx(z) and, by the Glivenko-
Cantelli theorem, is consistent for it in the sense that

P ( lim sup |Fx(z) — Fx(z)| = 0) =1
n—oo

[1]. The empirical distribution function can also be thought
of as the nonparametric maximum likelihood estimator of
Fx [19]. Suppose instead of observing X1, Xa,...,X,, we
observe Y; = X; + Z;, i = 1,...,n, where the Z; are inde-
pendent measurement error terms assumed to have known
distributions. We may still be interested in estimating F'x
in this situation.

*Corresponding author.

One potential application is estimation of the true distri-
bution of a dietary component based on a large sample of
individuals with self-reported dietary data [9]. A second is
in estimation of the underlying distribution of gene expres-
sion difference, which we will focus on here. For example,
the solid gray line in Fig. 1 displays the empirical distribu-
tion function of 54,675 two-sample t-statistics, representing
tests of differential gene expression between two classes of
lymphoma (ny = 74, ny = 77). This application will be
discussed in detail in Section 3, but here we note that the
observed t-statistic for gene i(Y;) can be thought of as mea-
surement error Z; plus a true standardized differential gene
expression X; = (ui1 — piz)/y/02(ny ' + nyt). Knowing the
distribution of true standardized differential gene expres-
sions across the genes would be useful in many applications,
such as estimating sample size requirements for developing
classifiers based on thousands of genes [5].

If one assumes the distribution of the X’s belongs to some
parametric family of distributions, then the estimation of
Fx from Y7,Ys,...,Y, is straightforward, e.g., using max-
imum likelihood estimation. A nonparametric approach is
more challenging. Assume that Z; has a normal distribu-

6 3 0 3 6

Figure 1. Cumulative distribution graphs of 54,675 observed
t-statistics (solid gray), and estimated distribution functions
of Y from a two-component normal mixture model (dashed
black) and a three-point distribution (solid black). The graphs
have been truncated at +8, omitting 0.33% of the observed
t-statistics. The three curves overlap and are virtually
indistinguishable.
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tion with mean zero and known variance o2, i = 1,
One can estimate the non-parametric maximum likelihood

estimator of F'x by maximizing

L(yl,yg, e

_H</\/ﬁep< 1(yi—a)2)dF(a)>

over all possible distribution functions F'. This estimator is
discrete with at most d mass points, Fx (z) = 2?21 I(z <
&;)/d, where d is the number of distinct Y7,Y2,...,Y,
[11, 14]. Smoothed nonparametric estimators similar to Fx
are also possible, e.g. [12], as well as other nonparametric
estimators of Fx, e.g. [7, 16, 20].

The type of deconvolution problem being considered here
is known to be hard, in the sense of getting accurate esti-
mates, unless the sample sizes are large [3]. Fortunately, in
our application, the sample size is over fifty thousand. We
give a simple hypothetical example in the next section to
show that unfortunately even in these settings none of these
nonparametric approaches is likely to work for estimating
Fx. We return to our application in Section 3 to demon-
strate that the problems identified in Section 2 occur in a
real application. We end with a brief discussion.

7yn

2. A SOBERING EXAMPLE

Assume that the sample size was so large that we essen-
tially know the distribution function Fyof Y exactly. We
first can ask in this situation if it is possible to calculate
F'x; this is an identifiability question. To be specific, sup-
pose the distribution of X+ Z is the same as the distribution
of X'+ Z. Does it follow that the distribution of X and X’
must be the same? In general, the answer is no. But if Z
has a normal distribution, the answer is yes (due to the fact
that the characteristic function for the normal distribution
is never zero).

More to the point here, suppose Z has a normal distribu-
tion and the distribution function of X + Z, Fx,z, is not
equal to but very close to the distribution function of X'+ 7,
Fxiiz7; that is, FX/+Z(t) = Fx+Z(t), for all ¢. Then does it
follow that Fx:(t) & Fx(t)? Unfortunately not, as the fol-
lowing example demonstrates. Let Z and X have standard
normal distributions, so that Fx ;7 (y) = ®(y/v/2), where ®
is the cumulative distribution function of a standard normal
distribution. Let X’ have a three-point distribution: +v3
each with probability 1/6, and 0 with probability 2/3. Note
that the variance and kurtosis of X’ are 1 and 0, respectively,
so that first four moments of X + Z and X'+ Z match. The
distribution function of X’ + Z is

1

Fxrizly) = 8y —V8) + 2(y) + 2y +V3),

3 6

and is plotted in Fig. 2 with the distribution function of
X + Z. The distribution functions are indistinguishable on
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Figure 2. Cumulative distribution graphs of X + Z (solid
gray) and X' + Z (dashed black). The two curves overlap and
are virtually indistinguishable.
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Figure 3. Difference between the cumulative distribution of
X+Zand X + 7'

the plot; they differ by at most 0.0063 (Fig. 3). On the other
hand, the distribution functions of Fx and Fx. differ sub-
stantially; by as much as 1/3 at x = 0 (Fig. 4).

The implications of this example are that, since even with
extremely large sample sizes we are unlikely to be able to dis-
tinguish distribution functions that look like those in Fig. 1,
nonparametric estimation of a distribution function in the
presence of known normally distributed measurement error
may be infeasible. This is true even though the nonparamet-
ric maximum likelihood estimator F'x is consistent for Fx
in this situation [8].

As an aside, we note that this example also has impli-
cations for the stability of Cramer’s theorem, which states
that if Y = V + W has a normal distribution, and V' and
W are independent, then V' and W must also be normally
distributed [4]. Sapogov [18] showed that if Y has approxi-
mately a normal distribution in the sense that there exists
ap and o2 such that

Fy<y>—¢>(y‘“)]<e,

(o

sup
y

then the difference between the distribution function for V'
and a normal distribution function could be bounded by
Co,%(log(1/¢))~1/2 where 0% is a truncated variance of V,
and C' is a universal constant. (See Kagan et al. [10] for
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Figure 4. Cumulative distribution of X (solid gray), and X’
(dashed black).
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Figure 5. Cumulative distribution graphs of X + Z /2(solid
gray) and X' + Z/2 (dashed black).

details). Maloshevskii [15] showed that asymptotically the
Sapogov bound could not be improved. The example in
Fig. 2, for which ¢ = 0.0063, suggests that for small but
non-infinitesimal € the Sapogov bound is unlikely to be use-
ful.

In the example given the measurement error Z was of
similar magnitude to the variability of X. If the measure-
ment error is significantly smaller, then one may be able to
distinguish different X’s from observed X + Z. For exam-
ple, Fig. 5 displays the cumulative distribution functions of
X + Z/2 and X' + Z/2 where Z is a standard normal dis-
tribution. Unlike Fig. 2, one can now distinguish the curves.
However, note (1) that if the X and X'were not as different
as in Fig. 4, or (2) the sample size was not essentially infi-
nite (as implied here by observing the distribution functions
of X + Z/2 and X' + Z/2 exactly), then there may be lim-
ited ability to distinguish X and X’ based on the empirical
distribution function the observations measured with error.

Although a nonparametric estimator of Fx(z) may be
substantially off at specific 2’s (as in Fig. 4), it may still
be useful as an input to other procedures. However, these
applications will have to be considered on a case by case ba-
sis. For example, consider estimation of X; using nonpara-
metric empirical Bayes estimation via the posterior mean,
X, = E(X;|X; + Z; = ys;; FX). The simple three-point dis-
tribution (X’) versus normal example (X) shows that this
will unlikely be successful for extreme values of y;, which

will typically be the ones of greatest biological interest. In
particular, E(X;|X; + Z; = y;) = y;/(1 + o?) but, for large
vi, BE(X!| X!+ Z; = y;) = V/3. Note that this example sug-
gests possible difficulties for nonparametric empirical Bayes
estimation whether F'x is first estimated and then used to
estimate the posterior mean, or the posterior mean is es-
timated directly without first completely estimating F'x as
was done originally by Robbins [17]; see Brown [2] and Efron
[6] for recent examples of the latter approach.

The example presented also indicates a potential danger
even in parametric empirical Bayes settings. If an investi-
gator observes that the data distribution matches well to
a given parametric mixture model, he may naively assume
that the parametric assumptions used to generate the model
were valid. But as we demonstrated, it is possible that even
if the distribution data appears to match well to his model,
it is possible that the underlying distribution is very differ-
ent from the modelled one.

3. APPLICATION

Lenz et al. [13] provided a data set of 181 diffuse large
B-cell lymphoma samples whose gene expression had been
analyzed with a Affymetrix U133 plus 2.0 array containing
54,675 probesets. Of these, 74 were previously identified as
being of the Activated B-cell (ABC) subtype, 77 had been
classified as of the Germinal center B-cell subtype while 31
were unclassifiable [21]. Although one might be interested
in the estimate of the distribution across the 54,675 probe-
sets of the fold change for differential expression between
the ABC and GCB lymphoma subtypes, we focus here on
the distribution of the t-statistics (and standardized differ-
ential gene expression), which might be more relevant for
some types of inferences and provides a direct analogy with
the hypothetical example of Section 2: With the moderately
large (for this type of experiment) number of sample spec-
imens, each t-statistic can be considered as Y; = X; + Z;
where X; = (i1 — pi2)/ 02(nf1 + n;l) and Z; has an ap-
proximate standard normal distribution. The solid gray line
in Fig. 1 is the empirical cumulative distribution function of
the 54,675 observed t-statistics.

We will now construct two very different distributions
(X and X’) such that both X + Z and X’ + Z have dis-
tributions that look very similar to the distribution of the
observed t-statistics, where Z has a standard normal dis-
tribution. One distribution (X) is a mixture of two normal
distribution (a normal with mean —0.02 and variance 7.89
with probability 0.32, and a normal with mean = —0.28
and variance = 0.71 with probability 0.68) and the other
(X') is a three-point distribution (—2.64 with probability
0.19, —0.06 with probability 0.69, and 2.82 with probability
0.12). The cumulative distribution functions for these two
distributions are displayed in Fig. 6. The distributions of
X + Z and X' + Z are displayed in Fig. 1, and are very
close to the empirical distribution function of the observed
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Figure 6. Cumulative distribution of two-component normal
mixture X (solid gray), and three-point distribution X'

(dashed black) for standardized differential gene expression
for 54,675 genes.
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Figure 7. Empirical Bayes shrinkage estimator as a function
of the observed t-statistic using a two-component normal
mixture for X (solid gray), and three-point distribution for X

(dashed black) for standardized differential gene expression
for 54,675 genes.

t-statistics, the largest difference between the modelled and
observed empirical distribution functions being 0.006 and
0.014 respectively. So either X or X’ would be a reason-
able estimate of the true underlying distribution. However
in terms of the Bayes shrinkage we discussed in Section 2,
these two models show markedly different results (Fig. 7).
Thus it is difficult to say what the correct empirical Bayes
shrinkage estimate should be in this case. Note that we are
not claiming that the models X and X’ reflect the true
underlying biology but rather we present them as extreme
examples to highlight the potential variability of empirical
Bayes estimation.

4. DISCUSSION

The example and application presented in this paper are
meant to provide a caution for nonparametric estimation
of an underlying distribution function when the observa-
tions are measured with error. Depending on the relative
size of the measurement error (“noise”) to the variability
of the underlying distribution of interest (“signal”), it may
be impossible to distinguish between very different under-
lying distributions based on the observed data. Therefore,
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a nonparametric estimator will not be reliable in the sense
that very different looking estimators will be as consistent
with the observed data. Surprisingly, the situation is not im-
proved when the sample size is very large (for a given signal-
to-noise ratio); the example in Section 2 has an essentially
infinite sample size and the application in Section 3 has a
sample size of over fifty thousand. We recommend that when
using nonparametric methods to estimate the distribution of
data measured with error, practitioners perform a sensitiv-
ity analysis via simulation to assess how well the nonpara-
metric estimator is able to distinguish different underlying
distribution functions, and the extent to which errors in this
estimation will affect their conclusions.
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