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A robust test for quantitative trait analysis
with model uncertainty in genetic association
studies
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Statistical tests that assume an additive model are com-
monly employed in genetic association studies. However, the
true models for genetic variants are rarely known. A mis-
specified genetic model may lead to loss of power in iden-
tifying the potential markers associated with a disease. In
this paper, we develop a robust test based on modified F -
test statistics for quantitative trait genetic association stud-
ies and a simple method to compute its statistical signif-
icance and power. We also study sample size calculations
for designing such an association study. Numerical results,
including simulation studies and a real data example, show
that the proposed robust test has satisfactory performance
when the model is unknown and is more robust than some
existing procedures when the model is mis-specified.
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1. INTRODUCTION

Recent advances in biomedical technology have made
genome-wide association studies (GWASs) a popular tool
to identify disease susceptibility markers using single nu-
cleotide polymorphisms (SNPs). In a typical GWAS, single-
marker analysis under the additive model of genetic inheri-
tance for 500,000 to 1 million SNPs is commonly employed.
Although the assumption that risks are additive is correct
for some conditions [17, 18], the true models for these SNPs
are unknown for most. It is simple to apply an association
test based on the additive model, but it may fail to detect
the associated SNPs when the true models are not addi-
tive (e.g., recessive and dominant) due to the loss of power
under the model mis-specification. SNPs associated with bi-
nary traits (diseases) with non-additive genetic models have
been identified in GWASs (e.g., [9, 11]), which would not
have been identified if the tests derived under the additive
model were used.

When the true genetic model is unknown but most likely
one of the three common genetic models: recessive, additive
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and dominant, robust tests are preferred, which take into
account the uncertainty of the genetic models. Some robust
tests have been developed and applied in GWASs for binary
traits, including MAX3 (the maximum of three trend tests
derived respectively under the three genetic models) ([2, 4,
9, 14]), CHI2 (the two-degree-of-freedom chi-squared test)
([15]), MIN2 (the minimum of the p-values of CHI2 and
the trend test under the additive model) ([3, 11]), CLRT
(the constrained likelihood ratio test) ([12]), and MAX (the
maximum of trend tests over all the genetic models between
recessive and dominant) ([1, 6]). Numerical results showed
that MAX3, MIN2, MAX, and CLRT all have comparable
performance across different genetic models and are more
efficient and robust than the test statistics based only on
the additive model. See Zheng et al. ([18]), chapter 6.

To date, the above robust tests have mainly focused on
the genetic association with binary traits. However, it is
common to have quantitative traits in GWASs, let alone that
many binary traits are obtained from quantitative traits us-
ing a threshold model. For example, hypertension (yes/no)
can be obtained from blood pressure measures. To the best
of our knowledge, few robust tests have been studied for
quantitative traits. So and Sham [10] recently employed
MAX3 based on the score test statistics for quantitative
traits. They applied Lin’s Monte-Carlo simulations idea [7]
and employed the efficient score function to construct the
score test for a given genetic model. They then considered
the maximum of the three score test statistics under the the
three genetic models, and used 3-fold integration to derive
the significance and p-value of MAX3.

For quantitative traits, the F-test derived from a linear
model with additive model is commonly used. We study
how to obtain MAX3 based on the three F-tests derived
under the three genetic models and derive its asymptotic
distributions under either a null or alternative hypotheses.
The asymptotic distribution of MAX3 under the alterna-
tive hypothesis was not studied in [10]. With our results,
one can design an association study for quantitative traits
with MAX3. In order to apply MAX3 more computationally
efficiently, we modify the usual F-tests and actually study
MAX3 based on the modified F-tests. The main results are
presented in Section 2, including the statistical significance,
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sample size and power calculations of MAX3. Section 3
presents simulation results to investigate the performance
of various test statistics, and a real data example. Finally
the implications of the methods are discussed.

2. METHODS

2.1 Notations

When testing the association between a SNP, with al-
leles A and B, and a quantitative trait of interest, we as-
sume that B is the risk allele, which corresponds to the
high trait value, if the SNP is associated with the trait.
Assume that the genotypes, traits and other covariates
of n subjects are obtained. Denote the ith observation,
i = 1, . . . , n, by {yi, zi, gi}, where yi is the trait value,
and zi = (1, zi1, zi2, . . . , zik)

τ is the vector of covariates
with 1 for the intercept and τ for the transpose, and gi
is the genotype value, which takes 0, 1, or 2 correspond-
ing to the number of B allele. Without loss of general-
ity, assume the first n0 subjects have genotype AA with
gi = 0 (i = 1, . . . , n0), the next n1 subjects have genotype
AB with gi = 1 (i = n0 + 1, . . . , n0 + n1), and the last
n2 = n − n0 − n1 subjects have genotype BB with gi = 2
(i = n0 + n1 + 1, . . . , n). Denote Y = (y1, y2, . . . , yn)

τ ,
Z = (z1, z2, . . . , zn)

τ , and G = (g1, g2, . . . , gn)
τ . Denote

the vector of observed trait values with genotype value i
as Yi (i = 0, 1, 2). Then Y = (Yτ

0 ,Y
τ
1 ,Y

τ
2 )

τ . Also denote
0n = (0, 0, . . . , 0)τn×1, 1n = (1, 1, . . . , 1)τn×1, and the n × n
identity matrix by In.

Genotypes are coded based on the three common ge-
netic models. A genetic mode is recessive (dominant), if
genotypes AA and AB (AB and BB) have the same ef-
fect on the trait. So genotypes under the recessive model
are coded as G0 = (0τ

n0+n1
,1τ

n2
)τ , while under the dom-

inant model, they are coded as G2 = (0τ
n0
,1τ

n1+n2
)τ . For

the additive model, the genetic effect on the trait increases
with the number of B allele, so genotypes are coded as
G1 = G, where G is given before. The three genetic models
are indexed by δ = 0, 1, 2. Also denote Xδ = (Z,Gδ) (δ =
0, 1, 2), x1 = (x11, x21, . . . , xn1) = (0τ

n0
,1τ

n1
,0τ

n2
)τ , x2 =

(x12, x22, . . . , xn2) = (0τ
n0
,0τ

n1
,1τ

n2
)τ , and X = (Z,x1,x2).

2.2 A modified F -test statistic with a
genetic model

To derive our proposed robust test, we need to first in-
troduce a modified F -test statistic given a genetic model δ.
Assume yi and (zi, gi(δ)) follow the linear model,

(1) yi = ziγγγ + gi(δ)β + εi, εi ∼ N(0, σ2), i = 1, 2, . . . , n,

where γγγ is the nuisance parameter, β is the parameter of
interest, σ2 is the unknown variance of random error, and
gi(δ) is the genotype under a given genetic model δ. The
null hypothesis of no association is H0 : β = 0 and the
alternative hypothesis is given by H1 : β �= 0.

Like the analysis of case-control genetic association stud-
ies ([13]), an F-test for quantitative trait association varies
among different genetic models because genotypes are coded
differently. In practice, the potential genetic model is of-
ten unknown. Different δ (∈ [0,1]) indicates a different ge-
netic model. There are three commonly used genetic models:
recessive, additive and dominant models, which are corre-
sponding to δ = 0, δ = 0.5 and δ = 1, respectively ([10]). For
the above three genetic models, we propose three modified
F-tests. Under the recessive, additive and dominant models,
corresponding to δ = 0, 1, 2, the proposed F -test statistics
can be written as

(2) Fδ =
Yτ

{
Xδ(X

τ
δXδ)

−1Xτ
δ − Z(ZτZ)−1Zτ

}
Y

Yτ {In −X(XX)−1Xτ}Y/(n− k − 2)
.

It is worth pointing out that the F -test in (2) is different
from the one that is usually used. The difference lies be-
tween the choice of the denominators. Here we adopt a ro-
bust estimator of the residual sums of squares because we
estimate the variance without assuming any genetic mod-
els by taking three genotypes as a categorical variable in
the linear model. One important advantage is that, for any
given genetic model, the numerator of the modified F -test
is independent of its denominator, which helps reduce the
computation burden from 5-fold integration to 3-fold inte-
gration for the robust test that we propose later without
loss of power; see simulation results. The following result,
whose proof is given in the Appendix A, gives the asymp-
totic distribution for the modified F -test under H0.

Theorem 1. Let Fa,b be the F distribution with degrees
of freedom a and b. Then, under H0, Fδ ∼ F1,n−k−2 for
δ = 0, 1, 2.

We consider a special case with no covariates (k = 0).

Denote the mean trait value of Y0 as ȳn0 =
n0∑
i=1

yi/n0. Simi-

lar definitions of other mean trait values are denoted as ȳn1 ,
ȳn2 , ȳn0+n1 , ȳn1+n2 . Let

U =

⎛⎝ 1
n0

Jn0×n0 On0×n1 On0×n2

On1×n0

1
n1

Jn1×n1 On1×n2

On2×n0 On2×n1

1
n2

Jn0×n2

⎞⎠ ,

where Jm1×m2 is a m1×m2 matrix with all 1’s and Om1×m2

is a m1 × m2 matrix with all 0’s. Then the F -tests under
the three genetic models can be written as

F0 =
n2(n0 + n1)(n− 3)(ȳn0+n1 − ȳn2)

2

nYτ (In −U)Y
,

F1 =
(n− 3) {n∗

0ȳn0 − n∗
1ȳn1 − n∗

2ȳn2}
2

n {n0(n1 + 4n2) + n1n2}Yτ (In −U)Y
,

F2 =
n0(n1 + n2)(n− 3) (ȳn0 − ȳn1+n2)

2

nYτ (In −U)Y
,

where n∗
0 = n0(n1+2n2), n

∗
1 = n1(n0−n2), n

∗
2 = n2(2n0+

n1).

62 Q. Li et al.



2.3 A robust test, MAX3, for linear models

The F -test given in (2) depends on the underlying genetic
model δ, which is often unknown. We propose a robust test
for the linear model (1) given by

MAX3 = max
δ=0,1,2

Fδ,

whose p-value can be obtained using Theorem 2 (see the
Appendix A for a proof).

Theorem 2. Let fd(·) be the probability density function
(pdf) of a χ2 distribution with d degrees of freedom. Write

(XτX)−1=̂(
∗ ∗
∗ B

), where B = (
b11 b12
b12 b22

). Then, under

H0, for a given c > 0,

Pr (MAX3 ≥ c)

= 1−
∫ ∞

0

{∫ c

−c

∫ c

−c

−
∫ c

{(1−w2)c}/w1

∫ c

{c−w1z0}/w2

}
f(z0, z2;0,Σ02)× fn−k−2

(
(n− k − 2)z1

)
(n− k − 2)dz2dz0dz1,

where f(z0, z2;0,Σ02) is the pdf of the bivariate normal
distribution with zero mean vector and the covariance ma-

trix Σ02 = (
1 v02
v02 1

), v02 = (b11 − b12)/{b11(b11 −

2b12 + b22)}1/2, w1 = [b11/{4b11 − 4b12 + b22}]1/2, and
w2 = [{b11 − 2b12 + b22}/{4b11 − 4b12 + b22}]1/2.

Under the special case without covariates, w1 =
{{(n0 + n1)n2}/{n0(n1 + 4n2) + n1n2}}1/2, w2 =
[{n0(n1 + n2)}/{n0(n1 + 4n2) + n1n2}]1/2, and v02 =
[n0n2/{(n0 + n1)(n1 + n2)}]1/2. Calculating p-values of
MAX3 requires evaluation of three-fold integrals, which can
be done using the R-package “mvtnorm”.

2.4 Power and sample size calculation for
MAX3

For a given genetic model δ, assume the genetic effect is
β, the significance level is α, and c1 satisfies PrH0(MAX3 ≥
c1) = α. Denote

μδj = {(b11b22 − b212)b̃·jσ
2}−1/2b̃δjβ, δ = 0, 1, 2; j = 1, 2, 3,

where b̃·1 = b11, b̃·2 = 4b11−4b12+b22, b̃·3 = b11−2b12+b22,
b̃01 = −b11, b̃02 = b12−2b11, b̃03 = b12−b11, b̃11 = b12β−2b11,
b̃12 = 4b12−4b11−b22, b̃13 = 3b12−2b11−b22, b̃21 = b21−b11,
b̃22 = 3b12 − 2b11 − b22, and b̃23 = 2b12 − b11 − b22, where
b11, b12, b21 and b22 are the entries of B. Further denote
μ0 = (μ01, μ03), μ1 = (μ11, μ13), and μ2 = (μ21, μ13). Then,
under H1, for a given genetic model δ, we have

Pr (MAX3 ≥ c1)(3)

= 1−
∫ ∞

0

{∫ c1

−c1

∫ c1

−c1

−
∫ c1

(1−w2)c1
w1

∫ c1

c1−w1z0
w2

−

∫ −(1−w2)c1
w1

−c1

∫ −c1−w1z0
w2

−c1

}
f(z0, z2;μδ,Σ02)fn−k−2

(
(n− k − 2)z1

)
(n− k − 2)

dz2dz0dz1.

The above formula can be used for power and sample
size calculations when designing an association study for a
quantitative trait. For example, in order to determine the
sample size n, one can assume the Hardy-Weinberg equilib-
rium (HWE) holds in the population and let n0 = n(1−p)2,
n1 = 2np(1 − p), and n2 = np2, where p is the minor allele
frequency (MAF) of a SNP. Given β under a genetic model,
n can be calculated numerically using (3) for a specified
power.

3. NUMERICAL RESULTS

To illustrate the performances of the proposed method,
simulation studies and a real data analysis of the Trinity
Student Study GWAS were conducted. Three procedures
were compared: the proposed MAX3, F (the commonly used
F test derived under the additive model) and SCORE (the
method proposed by [10] based on score tests).

3.1 Simulation studies

We first compare the performances between the proposed
modified F-tests (F0, F1, F2) and the commonly used F-tests
(Fr, Fa, Fd) derived under the recessive, additive, and dom-
inant models. The data were generated respectively from the
recessive model with yi = 0.5 + zi + 0.5gi + εi, the additive
model with yi = 0.5 + zi + 0.15gi + εi, and the dominant
model with yi = 0.5 + zi + 0.25gi + εi, for i = 1, 2, . . . , n,
where εi ∼ N(0, 0.64). 2,000 replicates were generated. Fig-
ure 1 shows the results, which indicate that the modified
F-test and the commonly used one almost have the same
power. For example, when MAF is chosen to be 0.15, power
of F3 and the commonly used F-test are both equal to 0.884
under the dominant model.

To test whether the proposed procedure maintains the
type I error rates, we generated the data set from the null
model

yi = γ0 + ziγ1 + εi, i = 1, 2, . . . , n,

with γ0 = 0.5, γ1 = 1.0, zi ∼ N(0, 1), and εi ∼ N(0, 0.64).
The sample size n was chosen from {250, 500, 750, 1, 000}.
The significance level was 0.05 and again 2,000 replicates
were generated. We assumed HWE holds in the population
and the MAF was 0.15, 0.30 and 0.45, respectively.

For comparison, we denote the MAX3 test based on the
three score statistics of [15] as SCORE. Table 1 presents the
empirical type I error rates. It shows that both the proposed
MAX3 and SCORE preserve the type I error rate at the
desired level, although SCORE is slightly more conservative
with a small sample size and small MAF.
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Figure 1. Empirical Power (2,000 replicates) for the modified F test (+) and the commonly used ones (diamond). The data
for the first, second, and last rows are generated from the recessive model with yi = 0.5 + zi + 0.5gi + εi, the additive model
with yi = 0.5 + zi + 0.15gi + εi, and the dominant model with yi = 0.5 + zi + 0.25gi + εi, i = 1, 2, . . . , n, where n is the

sample size.

Table 1. Empirical type I error rates (2,000 replicates)

MAF n=250 n=500 n=750 n=1000
MAX3 SCORE MAX3 SCORE MAX3 SCORE MAX3 SCORE

0.15 0.049 0.030 0.056 0.052 0.049 0.048 0.054 0.046
0.30 0.042 0.042 0.053 0.047 0.050 0.047 0.049 0.044
0.40 0.054 0.052 0.051 0.050 0.051 0.051 0.046 0.047

We next compare the power between the proposed MAX3
with SCORE. The data were generated respectively from the
recessive model with yi = 0.5 + zi + 0.5gi + εi, the additive
model with yi = 0.5 + zi + 0.2gi + εi, and the dominant
model with yi = 0.5 + zi + 0.3gi + εi, for i = 1, 2, . . . , n,
where εi ∼ N(0, 0.64).

Figure 2 shows the power results. It indicates that MAX3
has similar power to SCORE when the genetic model is ad-
ditive or dominant. However, MAX3 has a noticeable power
gain, as compared to SCORE, under the recessive model.
The power of MAX3 can increase by up to 15%. For exam-
ple, when n = 250 and p = 0.15, the power of MAX3 and
SCORE are 0.252 and 0.085, respectively.

The above results show that the proposed MAX3 is rela-
tively more powerful than SCORE for small MAF or sample
size when the trait measurements are normally distributed.
One might wonder if this continues to be true for other dis-
tributions. We generated the data as above with the random
error ε following a Laplace distribution with location param-

eter 0 and scale parameter 0.8. Figure 3 gives the results,
which reveal similar patterns. MAX3 has similar power to
SCORE when the genetic model is additive or dominant.
However, MAX3 has noticeable power gain, as compared to
SCORE, under the recessive model. The power of MAX3
can increase by up to 10%. For example, when n = 250 and
p = 0.15, the power of MAX3, SCORE and F are 0.143,
0.045, and 0.082, respectively.

3.2 Sample size calculation

To apply the results to address the question of power in a
genetic association study with a quantitative trait, we calcu-
late the sample size to achieve 80% power. Assume σ2 = 0.64
and HWE holds so that n(1− p)2, n2p(1− p) and np2 sub-
jects with genotypes AA, AB, and BB, respectively, are
obtained for a given MAF p. The results are presented in
Table 2 for three commonly used genetic models. They in-
dicate that the sample sizes vary among different genetic
models, and the sample size using MAX3 is far smaller than
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Figure 2. Empirical Power for MAX3 (+), SCORE (diamond), and Fa (square) under the recessive (first row), additive (second
row) and dominant (third row) models and with MAF = 0.15 (left), 0.30 (middle), and 0.45 (right). The sample size is n.

Figure 3. Empirical Power for MAX3 (+), SCORE (diamond), and Fa (square) under the recessive (first row), additive
(second row) and dominant (third row) models and with MAF = 0.15 (left), 0.30 (middle), and 0.45 (right). The random
error follows the Laplace distribution with location and scale parameters 0 and 0.8, respectively. The sample size is n.
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Table 2. Sample sizes required to achieve 80% power (α = 0.0001) under recessive (REC), additive (ADD), and dominant
(DOM) models

REC ADD DOM
MAF MAX3 F2 MAX3 F2 MAX3 F2

0.15 7823 27733 666 623 856 874
0.30 2099 4211 411 385 687 781
0.45 1066 1595 350 327 819 1071

that based on Fa. For example, when MAF is 0.15, 7,823
subjects are needed for MAX3, which is much smaller than
277,33 subjects needed for using the modified F -test under
the recessive model.

3.3 An application

The Trinity Student Study GWAS was conducted in
2003–2004 by investigators at the Epidemiology Branch, Eu-
nice Kennedy Shriver National Institute of Child Health and
Human Development (NICHD), Trinity College, Dublin,
National Human Genome Research Institute (NHGRI), and
the Health Research Board of Ireland. The study enrolled
2,507 students from the University of Dublin, Trinity Col-
lege, who had Irish grandparents, who had no major med-
ical problems, and who completed the study questionnaire
and provided the necessary blood samples. Written informed
consent and IRB approval were obtained. DNA was collected
for the GWAS and over 750,000 SNPs were assayed via the
Illumina system. The analysis of GWAS is ongoing. Serum
samples were collected, processed and stored until they were
shipped to laboratories that measured over 40 target pheno-
type measures including hematologic factors, liver function
tests, B vitamins and related metabolites.

In this application, a vitamin related biochemical ana-
lyte as the phenotypic variable and a specific SNP as the
genotypic variable, along with 6 baseline measurements as
covariates, were used. Since the main GWAS analysis is still
ongoing, detailed information on the selected variables is
omitted here.

The genotypic-phenotypic association adjusted for the co-
variates was tested using MAX3, the modified F -test under
the additive model, and SCORE. The p-values of the three
tests are 8.59 × 10−6, 0.01, and 0.33, respectively. Under
Bonferroni, MAX3 shows moderate genotype-phenotype as-
sociation, while the other two tests fail to detect such an
association.

4. DISCUSSION

A linear model is often employed to explore the asso-
ciation between genetic susceptibilities and human diseases
with quantitative traits. MAX3, the maximum of trend tests
or score tests under recessive, additive, and dominant mod-
els is commonly used for qualitative trait analysis because
of its simplicity and ease of interpretation. As is well known,
the F -test is commonly employed in a linear model, and is

more powerful than the Wald test and Score test for rel-
atively small sample sizes. In the present paper, we con-
structed MAX3 based on F -test statistics, and provided a
3-fold integration formula to calculate its statistical signif-
icance. Our F-test statistic is different from the commonly
used one, in the sense that we adopted a robust estimator to
estimate the random variance without assuming any genetic
models. Numerical results show that the modified F-test has
the same performances as the commonly used one and the
proposed MAX3 is more robust than other methods.

An important issue in a GWAS is the computation speed.
In a GWAS, 500,000–1,000,000 SNPs are genotyped and
tested, the significance level per SNP is less than 10−7 to
control the false positive rate. If resampling procedures such
as permutation or bootstrap are used to evaluate the sta-
tistical significance, at least 1013 runs are needed. This is
prohibitive with the capacity of most computers. However,
our procedure is based on three-fold integration and could
be readily applied to GWAS.

We conducted simulation studies under the assumption
that there was perfect linkage disequilibrium (LD) between
the observed SNP and the functional SNP as many inves-
tigators did for single-marker analysis ([4][8]). As stated by
Zheng et al. (2009) ([19]) and Kuo and Feingold (2010)([4]),
the observed SNP might not be the functional SNP, and
there is a LD between them. At this point, the genetic model
of the observed SNP is not recessive or dominant although
the true disease model is recessive or dominant. However
Zaykin and Zhivotovsky (2005)([16]) showed that the real-
istic LD structures don’t influence the rank of the positive
SNPs much in a GWAS.

Another issue in a GWAS is the population stratifica-
tion (PS), which might lead to false-positive findings in
population-based GWAS. Given a large panel of markers,
several principal components ([5, 8, 13]) (PCs) that cap-
ture the ancestry backgrounds are recommended to be as
covariates in the model. As shown in the method section,
our procedure could easily handle these as [10] did.
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APPENDIX A. PROOF OF THEOREM 1
AND 2

Consider the linear model

yi = ziγγγ + xi1ζ1 + xi2ζ2 + εi, i = 1, 2, . . . , n,

where εi ∼ N(0, σ2). Define θθθ = (γγγτ , ζ1, ζ2)
τ , Cr =

(0τ
k, 1, 0)

τ , Ca = (0τ
k, 2,−1)τ , Cd = (0τ

k, 1,−1)τ , and
C0 = (02×k, I2)

τ , where 02×k is a 2 × k matrix with all
the element being 0. The ordinary least square estima-
tor is θ̂ = (γ̂γγτ , ζ̂1, ζ̂2)

τ and the residual sum of squares is
S = Y[In − X(XτX)−1Xτ ]Y. Denote the residual sum of
squares under the constraints, Cτ

rθ = 0, Cτ
aθ = 0, Cτ

dθ = 0,
and Cτ

0θ = 02, by Sr, Sa, Sd, and S0, respectively.
1) Based on the notations above, we have

Fr =
S0 − Sr

S/(n− k − 2)
=

S0 − S − (Sr − S)

S/(n− k − 2)

Since S0 − S and Sr − S are both independent of S,
(S0 − Sr)/σ

2 ∼ χ2
1, and S/σ2 ∼ χ2

n−k−2. So Fr ∼ F1,n−k−2.
Simlarly, we have Fa ∼ F1,n−k−2 and Fd ∼ F1,n−k−2.

2) After some algebras, we have

S0 − S = (Cτ
0 θ̂)

τ [Cτ
0(X

τX)−1C0]
−1(Cτ

0 θ̂) =

(b22ζ̂
2
1 − 2b12ζ̂1ζ̂2 + b11ζ̂

2
2 )/(b11b22 − b212),

Sr − S = (Cτ
r θ̂)

τ [Cτ
r (X

τX)−1Cr]
−1(Cτ

r θ̂) = b−1
11 ζ̂

2
1 ,

Sa − S = (Cτ
aθ̂)

τ [Cτ
a(X

τX)−1Ca]
−1(Cτ

aθ̂) = (2ζ̂1 −
ζ̂2)

2/(4b11 − 4b12 + b22),

Sd − S = (Cτ
d θ̂)

τ [Cτ
d(X

τX)−1Cd]
−1(Cτ

d θ̂) = (ζ̂1 −
ζ̂2)

2/(b11 − 2b12 + b22).
So,

S0 − Sr = S0 − S − (Sr − S) =
1

(b11b22 − b212)b11
(b12ζ̂1 −

b11ζ̂2)
2,

S0 − Sa = S0 − S − (Sa − S) =
1

(b11b22 − b212)(4b11 − 4b12 + b22)
[(2b12 − b22)ζ̂1 − (2b11 −

b12)ζ̂2]
2,

S0 − Sd = S0 − S − (Sd − S) =
1

(b11b22 − b212)(b11 − 2b12 + b22)
[(b12−b22)ζ̂1−(b11−b12)ζ̂2]

2.

Denote

Tr = [(b11b22 − b212)b11σ
2]−1/2(b12ζ̂1 − b11ζ̂2),

Ta = [(b11b22 − b212)(4b11 − 4b12 + b22)σ
2]−1/2[(2b12 −

b22)ζ̂1 − (2b11 − b12)ζ̂2],

Td = [(b11b22−b212)(b11−2b12+b22)σ
2]−1/2[(b12−b22)ζ̂1−

(b11 − b12)ζ̂2].

Then Tr|H0 ∼ N(0, 1), Ta|H0 ∼ N(0, 1), Td|H0 ∼ N(0, 1),
and

Ta =
[b11]

1/2Tr + [b11 − 2b12 + b22]
1/2Td

[(4b11 − 4b12 + b22)]1/2
.

For any given c (c > 0),

PrH0(MAX3 ≥ c) = 1− PrH0(MAX3 < c)

= 1−
∫ ∞

0

PrH0(|Tr| <
√
cz, |Ta| <

√
cz, | < Td| <

√
cz)

fn−k−2((n− k − 2)z)(n− k − 2)dz

= 1−
∫ ∞

0

[

∫ √
cz

−√
cz

∫ √
cz

−√
cz

−
∫ √

cz

(1−w2)
√

cz
w1

∫ √
cz

√
cz−w1zr

w2

]f(zr, zd; Σrd)

fn−k−2((n− k − 2)z)(n− k − 2)dzddzrdz

Received 29 January 2013

REFERENCES

[1] Davies, R. B. (1977). Hypothesis testing when a nuisance param-
eter is present only under the alternative. Biometrika 64 247–
254.

[2] Freidlin, B., Zheng, G., Li, Z. and Gastwirth, J. L. (2002).
Trend tests for case-control studies of genetic markers: Power,
sample size and robustness. Hum. Hered. 53 146–152.

[3] Joo, J., Kwak, M., Ahn, K. and Zheng, G. (2009). A robust
genome-wide scan statistic of the Wellcome Trust Case-Control
Consortium. Biometrics 65 1115–1122.

[4] Kuo, C. L. and Feingold, E. (2010). What’s the best statistic
for a simple test of genetic association in a case-control study?
Genet. Epidemiol. 34 246–253.

[5] Li, Q. and Yu, K. (2008). Improved correction for popula-
tion stratification in genome-wide association studies by identi-
fying hidden population structures. Genet. Epidemiol. 32 215–
226.

[6] Li, Q., Zheng, G., Liu, A., Xiong, S., Li, Z. and Yu, K. (2010).
The limiting bound of Efron’s W-formula for hypothesis testing
when a nuisance parameter is present only under the alternative.
J. Stat. Plan. Infer. 140 1610–1617.

[7] Lin, D. Y. (2005). An efficient Monte Carlo approach to assessing
statistical significance in genomic studies. Bioinformatics 21 781–
787.

[8] Price, A. L., Patterson, N. J., Plenge, R. M., Wein-

blatt, M. E., Shadick, N. A. and Reich, D. (2006). Principal
components analysis corrects for stratification in genome-wide as-
sociation studies. Nat. Genet. 38 904–909.

[9] Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L.,
Serre, D., Boutin, P., Vincent, D., Belisle, A., Hadjadj, S.,
Balkau, B., Heude, B., Charpentier, G., Hudson, T. J.,
Montpetit, A., Pshezhetsky, A. V., Prentki, M., Pos-

ner, B. I., Balding, D. J., Meyre, D., Polychronakos, C. and
Froguel, P. (2007). A genome-wide association study identifies
novel risk loci for type 2 diabetes. Nature 445 881–885.

[10] So, H. C. and Sham, P. C. (2011). Robust association tests under
different genetic models, allowing for binary or quantiative traits
and covariates. Behav. Genet. 41 768–775.

Robust test for quantitative trait 67



[11] The Wellcome Trust Case Control Consortium (WTCCC)

(2007). Genomewide association study of 14,000 cases of seven
common diseases and 3,000 shared controls. Nature 447 661–
678.

[12] Wang, K. and Sheffied, V. C. (2005). A constrained-likelihood
approach to marker-trait association studies. Am. J. Hum. Genet.
77 768–780.

[13] Wu, C. Q., DeWan, A., Hoh, J. and Wang, Z. H. (2011).
A comparison of association methods correcting for population
stratification in case-control studies. Ann. Hum. Genet. 75 418–
427.

[14] Yamada, R. and Okada, Y. (2009). An optimal dose-effect mode
trend test for SNP genotype tables. Genet. Epidemiol. 33 114–
127.

[15] Yeager, M., Orr, N., Hayes, R. B., Jacobs, K. B., Kraft, P.,
Wacholder, S., Minichiello, M. J., Fearnhead, P., Yu, K.,
Chatterjee, N., Wang, Z., Welch, R., Staats, B. J., II,
Calle, E. E., Feigelson, H. S., Thun, M. J., Rodriguez, C.,
Albanes, D., Virtamo, J., Weinstein, S., Schumacher, F.

R., Giovannucci, E., Willett, W. C., Cancel-Tassin, G.,
Cussenot, O., Valeri, A., Andriole, G. L., Gelmann, E. P.,
Tucker, M., Gerhard, D. S., Fraumeni, J. F., Hoover, R.,
Hunter, D. J., Chanock, S. J. and Thomas, G. (2007).
Genomewide association study of prostate cancer identifies a sec-
ond risk locus at 8q24. Nat. Genet. 39 645–649.

[16] Zaykin, D. V. and Zhivotovsky, L. A. (2005). Ranks of gen-
uine associations in whole-genome scans. Genetics 171 813–
823.

[17] Zheng, G., Joo, J., Tian, X., Wu, C. O., Lin, J. P.,
Stylianou, M., Waclawiw, M. A. and Geller, N. L. (2009).
Robust genome-wide scans with genetic model selection using
case-control design. Statistics and Its Interface 2 145–151.

[18] Zheng, G., Yang, Y., Zhu, X. and Elston, R. C. (2012). Anal-
ysis of Genetic Association Studies. Springer, New York.

[19] Zheng, G., Joo, J., Zaykin, D., Wu, C. O. and Geller, N.

(2009). Robust tests in genome-wide scans under incomplete link-
age disequilibrium. Statistical Science 24 503–516.

Qizhai Li
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Beijing 100190
China

Wenjun Xiong
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Beijing 100190
China

Jinbo Chen
Department of Biostatistics and Epidemiology
University of Pennsylvania
Philadelphia, PA 19104
USA

Gang Zheng
Office of Biostatistics Research
National Heart
Lung and Blood Institute
Bethesda, MD 20892
USA

Zhaohai Li
Department of Statistics
George Washington University
Washington, DC 20052
USA

James L. Mills
Eunice Kennedy Shriver National Institute of Child Health
and Human Development
Bethesda, MD 20892
USA

Aiyi Liu
Eunice Kennedy Shriver National Institute of Child Health
and Human Development
Bethesda, MD 20892
USA
E-mail address: liua@mail.nih.gov

68 Q. Li et al.

mailto:liua@mail.nih.gov

	Introduction
	Methods
	Notations
	A modified F-test statistic with a genetic model
	A robust test, MAX3, for linear models
	Power and sample size calculation for MAX3

	Numerical results
	Simulation studies
	Sample size calculation
	An application

	Discussion
	Acknowledgements
	Proof of Theorem 1 and 2
	References
	Authors' addresses

