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A central problem in genetic epidemiology is to identify
and rank genetic markers involved in a disease. Complex
diseases, such as cancer, hypertension, diabetes, are thought
to be caused by an interaction of a panel of genetic factors,
that can be identified by markers, which modulate environ-
mental factors. Moreover, the effect of each genetic marker
may be small. Hence, the association signal may be missed
unless a large sample is considered, or a priori biomedical
data are used. Recent advances generated a vast variety of a
priori information, including linkage maps and information
about gene regulatory dependence assembled into curated
pathway databases. We propose a genotype-based approach
that takes into account linkage disequilibrium (LD) informa-
tion between genetic markers that are in moderate LD while
modeling gene-gene and gene-environment interactions. A
major advantage of our method is that the observed genetic
information enters a model directly thus eliminating the
need to estimate haplotype-phase. Our approach results in
an algorithm that is inexpensive computationally and does
not suffer from bias induced by haplotype-phase ambiguity.
We investigated our model in a series of simulation experi-
ments and demonstrated that the proposed approach results
in estimates that are nearly unbiased and have small vari-
ability. We applied our method to the analysis of data from
a melanoma case-control study and investigated interaction
between a set of pigmentation genes and environmental fac-
tors defined by age and gender. Furthermore, an application
of our method is demonstrated using a study of Alcohol De-
pendence.

AMS 2000 subject classifications: 60K35.

1. INTRODUCTION

Case-control studies are widely used to investigate genetic
markers involved in complex disease susceptibility. Complex
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diseases, such as cancer, hypertension, diabetes, are likely to
be caused by multiple genetic markers working in concert.
The effect of each individual marker on risk of developing
a complex disease is likely to be small. Some markers may
be missed with the standard main effect tests unless a large
sample size is used to balance individual genetic variability
and experimental noise. A suitably large sample size is not
feasible in many studies. Hence, an alternative approach,
i.e., to use a priori biomedical information, might be prefer-
able. Recent developments in high-throughput technologies
generated rich sources of data that can be used for detect-
ing disease-gene associations in the presence of gene-gene
and gene-environment interactions.

Our work is motivated by a melanoma case-control study.
Melanoma is a highly morbid disease for which incidence has
continued to rise sharply over the past few decades in the
United States. Melanoma is one of the more frequent can-
cers in young adults and the second most common cancer
among women with ages 20–29. Identification of individuals
at increased risk of melanoma is the key to reducing the inci-
dence of metastatic disease. Treatment of early melanomas is
readily achievable through surgical excisions, while progno-
sis of patients with metastatic melanoma is extremely poor.
Analysis of gene-environment interactions has the potential
to improve the understanding of the genetic predisposition
of melanoma and to yield insight into mechanism of action
of the exposures under various settings of particular genetic
backgrounds thus improving disease prevention strategies.
We have conducted a case-control study consisting of 343
melanoma patients and 434 controls. The available genetic
information consists of multiple genetic markers spanning
well characterized pigmentation genes (PG). The goal of this
work is to examine the role of PG-gender and PG-age inter-
actions in melanoma susceptibility, as well as the effect of
interaction between PG genes.

Functionally related genes work concordantly while be-
ing involved in disease susceptibility thus leading to gene-
gene interactions. A number of bioinformatics databases
have been developed and curated to provide information on
functions and relatedness of genes and to classify genes into
gene sets with common underlying features. These databases
include the gene ontology (GO: http://geneontology.
org/) database, the Kyoto Encyclopedia of Genes and
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Genomes (KEGG: www.genome.jp/kegg), the Molecular
Signatures Database (MSigDB: http://www.broadinstitute.
org/gsea/msigdb), Meta Core Ingenuity Pathway Analysis
(http://www.ingenuity.com/), and Ariadne Genomics Path-
way Studio (http://www.ariadnegenomics.com/products/
pathway-studio/) among many others.

Recent developments in genotyping technology have gen-
erated dense single nucleotide polymorphism (SNP) panels
providing an unprecedented opportunity to take advantage
of the dependence among these markers and hence to com-
bine an association signal provided by a group of genetic
markers that are located closely to each other. The depen-
dence among test statistics representing genetic markers is
moderate, unless genetic markers are designed to be sampled
locally to form haplotype blocks. Furthermore, information
available in pathway databases allows to focus the analysis
on small groups of genetic markers that are known to serve a
particular biological function that may be important for an
outcome in the study. Hence, population-based linkage dise-
quilibrium (LD) mapping or case-control association studies
have become the major tools for identifying human disease
genes and for the fine gene mapping of complex disease traits
[1, 2, 3, 4]. LD information in a small set of genetic markers
reflects structure of the genome and hence provides a valu-
able opportunity for mapping genetic variants responsible
for complex diseases.

We are interested in building statistical methods that re-
late genetic variation to complex phenotypes and permit
detection of interaction between genetic variants and envi-
ronmental factors. Our strategy consists of the following two
steps. First, we bring attention to groups of genetic markers
defined by LD structure in which many weaker signals, con-
sidered together, present strong evidence of association for
the unit, without losing the ability to detect strong single-
marker signals. Second, using a priori biomedical informa-
tion about the interaction structure we form a multivariate
regression model involving main effects and interaction of
the genetic markers grouped using LD information.

The current state of the genotyping technology allows
generating unphased genotypes. Because we are focusing
on LD blocks or candidate gene regions, it is of interest
to investigate an association signal produced by a group
of SNPs. Moreover, we consider situations commonly en-
countered in practice when genetic markers are in moder-
ate LD. The haplotype-based method offers an advantage of
modeling LD through the construction of haplotype blocks.
However, in our setting the LD is moderate and hence the
uncertainty associated with haplotype phase and haplotype
blocks may be large. And this uncertainty associated with
the haplotype-based method can lead to loss of accuracy in
parameter estimates [5, 6, 7, 8, 9, 10, 11].

A special feature of the proposed method is that the ob-
served genetic information enters the model directly and
the LD structure is captured in the regression coefficients.
Hence, the haplotype phase need not to be estimated thus

reducing computational burden and consequently reducing
risk caused by potential bias due to haplotype-phase estima-
tion. As the basis for estimation and inference, we will use
the pseudo-likelihood function developed by [8]. The form
of this pseudo-likelihood function offers several advantages.
One is that it allows incorporating information about the
probability of disease. In epidemiologic studies if the dis-
ease probability is unknown, a good bound can be specified.
Further, the formulation of the pseudo-likelihood function
does not require specification of the distribution of environ-
mental variables measured exactly. These variables include
age, ethnicity, body mass index (bmi), and other demo-
graphic and clinical measurements. Thus, gains in efficiency
can be achieved by not having to model a distribution of
a multivariate vector of these measurements. The pseudo-
likelihood function exploits the gene-environment indepen-
dence assumption, which is a reasonable assumption in many
practical applications. For example, in situations when an
individual cannot control exposure this assumption is valid.
Alternatively, one can define strata and assume indepen-
dence within a stratum. If the gene-environment indepen-
dence is not valid in a setting, a distribution of genotype
can be specified within strata defined by the environmental
covariate.

2. PSEUDO-LIKELIHOOD ANALYSIS
OF CASE-CONTROL STUDIES

Notation Let D be the categorical indicator of disease sta-
tus. We allow D to have K + 1 levels with the possibility
of K ≥ 1 to accommodate different subtypes and stages of
a disease. Let D = 0 denote the disease-free (control) sub-
jects and D = k, k ≥ 1 denote the diseased (case) subjects
of the kth subtype. Suppose the genetic region of interest
is spanned by I loci. Let X denote all of the environmen-
tal (non-genetic) covariates of interest, such as age, gender,
and exposure. The distribution of the environmental vari-
able X is denoted as fX(x|η), where η is a column vector of
unknown parameters of X.

Given the environmental covariates X and genotype data
G = (G1, G2, . . . , GI), the risk of the disease in the underly-
ing population is given by the polytomous logistic regression
model

P(D = k ≥ 1|G, X) =
exp {βk0 +mk(G, X;β)}

1 +
∑K

j=1 exp {βj0 +mj(G, X;β)}
.

Here, mk(·) is a function parameterizing the joint risk of
the disease from genetic information G and environmental
factors X in terms of the odds-ratio parameters β. Assume
that all markers are di-allelic, e.g., SNPs. Let Mi and mi

be the major and minor alleles of a genetic marker i with
frequencies PMi and Pmi , respectively. Let ΔMiMj be the
measure of LD between markers i and j, i.e., ΔMiMj =
P (MiMj)−P (Mi)P (Mj). Let θi be frequency of the major
allele at a genetic marker i, that is, θi = P (Mi). Denote

52 I. Lobach, R. Fan, and P. Manga

www.genome.jp/kegg
http://www.broadinstitute.org/gsea/msigdb
http://www.broadinstitute.org/gsea/msigdb
http://www.ingenuity.com/
http://www.ariadnegenomics.com/products/pathway-studio/
http://www.ariadnegenomics.com/products/pathway-studio/


Θ = (θ1, . . . , θI)
T and Δ the collection of all ΔMiMi , 1 ≤

i < j ≤ I as a column vector. Further, define P(G|θ,Δ)
to be the distribution of genotype according to population
genetic models, such as Hardy-Weinberg equilibrium.

Function mk(G, X;β) parameterizes risk of developing
disease explained by genetic information (G) and environ-
mental factors (X). We model additive and dominance ef-
fects of a genetic marker i defined by the following variables

Ai =

⎧⎪⎨
⎪⎩
1 if Gi = MiMi

0 if Gi = Mimi

−1 if Gi = mimi

,(1)

Bi =

⎧⎪⎨
⎪⎩
−P 2

mi
if Gi = MiMi

PMiPmi if Gi = Mimi

−P 2
Mi

if Gi = mimi

.(2)

The dummy variables Ai can be used to model additive
effect and the dummy variables Bi can model the dominance
effect of the phenotypic trait [8, 9, 10, 11]. In our previous
work in Lobach et al. (2010), Fan and Xiong (2002), and
Fan et al. (2006) [8, 9, 10, 11], we show that the genetic
effect can be orthogonally decomposed into a summation of
the additive effect of Ai and the dominance effect of Bi.
This nice orthogonal decomposition is used in this paper
without a repetition of justification. One may replace Bi by

other definition such as Bi =

⎧⎪⎨
⎪⎩
0 if Gi = MiMi

1 if Gi = Mimi

0 if Gi = mimi

, but the

orthogonal decomposition will not be valid anymore.

Additive Effects Model (AEM) In the case when genetic
markers are known to have additive effect, the risk function
mk(G, X;β) can be written in the following form

(3)

mk(A, X;β)=XβkX +

I∑
i=1

AiβkAi

+
∑
i �=j

AiAjβkAiAj +
I∑

i=1

XAiβkAXi.

In AEM (3), βkAi is the additive effect of the dummy vari-
able Ai, βkAiAj is the interaction between Ai and Aj , and
βkAXi is the interaction between X and Ai. Note that inter-
action terms define nonadditivity of effects. Specifically, the
interaction term

∑
i �=j AiAjβkAiAj defines epistasis, that is

the nonadditivity of effects among the genetic marker loci.
Further, dominance effect at a locus is defined to be the
deviation of the observed genotypic value from the expec-
tation based on the additive effects. Hence, dominance is a
measure of nonadditivity of allelic effects within loci.

Genotype Effects Model (GEM) The following specification
of the risk function mk(G, X;β) incorporates both additive

and dominance effects of genotype [8, 9], and gene-gene and
gene-environment interactions

(4)

mk(A,B, X;β)=XβkX +
I∑

i=1

AiβkAi +
I∑

i=1

BiβkDi

+
∑
i �=j

AiAjβkAiAj +

I∑
i=1

XAiβkAXi

+
∑
i �=j

BiBjβkDiDj +

I∑
i=1

XBiβkDXi.

In the GEM (4), βkAi, βkAiAj , and βkAXi are the same as
those of AEM (3). In addition, βkDi is the dominance effect
of the dummy variable Bi, βkDiDj is the interaction between
Bi and Bj , and βkDXi is the interaction between X and Bi.

In practice, the additive effect model (3) can be advan-
tageous over the genotype effect model (4) because of the
smaller number of parameters in (3). This situation may oc-
cur when the dominance effect is not significantly present or
the dominance effect can not compensate for the increase of
number of parameters in (4).

Pseudo-likelihood The following pseudo-sampling is along
the lines of our previous work [8, 9]. Let n0 be the num-
ber of control subjects; and for k ≥ 1, denote by nk the
number of subjects in the sample with disease at stage k.
Let n = n0 + n1 + · · · + nK be the total number of sub-
jects in the sample. In addition, let us denote πk = P(D =
k), k = 0, 1, 2, . . . ,K. Consider a sampling scenario where
each subject from the underlying population is selected into
the case-control study using a Bernoulli sampling scheme,
where the selection probability for a subject given his/her
disease status D = k is proportional to μk = nk/πk. In addi-
tion, assume that the sampling only depends on the disease
status, and so the selection of a subject is independent of
the subject’s marker information and environmental covari-
ates. Let R denote the indicator of whether a subject is
selected in the sample. For the i-th subject, let us denote by
(Di,Gi, Xi, Ri) the observed values of variablesD,G, X and
R. Let us denote κk = βk0 + log(nk/n0) − log(πk/π0) and

κ̃ = (κ1, . . . , κK)T. In addition, let β̃0 = (β10, . . . , βK0)
T,

Ω = (β̃T
0 , β

T,ΘT, κ̃T)T, and B = (ΩT, ηT)T.

The development of this method relies on gene-
environment independence assumption. Specifically, we as-
sume that G and X are independently distributed in the
underlying population. In many practical situations this as-
sumption is reasonable, e.g., when an individual cannot con-
trol an environmental exposure. However, in some studies re-
searchers may not be comfortable making this assumption.
For example, in hormone-related diseases, certain genes may
regulate a woman’s age at menarche, menopause, or repro-
ductive history. Another example is related to genes that
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may regulate the degree of addiction, what needs to be ac-
counted for in the analysis of lung cancer and nicotine de-
pendence, alcohol dependence, etc.

To relax gene-environment independence assumption,
genotype and environmental factors should be modeled con-
ditionally on strata (if the independence assumption is rea-
sonable within strata). Specifically, let S be the stratum.
Hence, the environmental covariate consists of two sets of
variables, S defining strata and Z is the set of environ-
mental variables that are independent of G within strata
S: X = (S,Z). If an environmental variable is continuous,
then these strata can be defined based on clinically-relevant
cut-off values defined by the domain experts.

The distribution of the genotype within each strata for a
pair of markers that are in LD can be written as follows

P(G|S, θ,Δ) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P s(M1)P
s(M2) + Δs

M1M2, G = (M1M2)

{1− P s(M1)}P s(M2)−Δs
M1M2, G = (m1M2)

P s(M1){1− P s(M2)} −Δs
M1M2, G = (M1m2)

{1− P s(M1)}{1− P s(M2)}+Δs
M1M2, G = (m1m2),

where P s(Mi) is the allele frequency of allele Mi in the stra-
tum s and Δs

M1M2 is the corresponding linkage disequilib-
rium measure in the stratum. Define

(5)

S(k,g, z, s; Ω,Δ)=
exp

[
1(k≥1)(k) {κk +mk(g, z, s;β)}

]
1 +

∑K
j=1 exp {βj0 +mj(g, z, s;β)}

× P(g|s,Θ,Δ).

Similarly to [8] we propose to estimate parame-
ters (Ω, η,Δ) based on a pseudo-likelihood function
LPseudo(k,g, z, s; Ω,Δ) defined as follows

P(D = k,G = g|Z = z, S = s,R = 1)

=
S(k,g, z, s; Ω,Δ)∑K

k1=0

∑
g∈G S(k1,g, z, s; Ω,Δ)

,

where G is the set of all possible genotypes in the population.
Observe that conditioning on X = (Z, S) in LPseudo allows
it to be free of the nonparametric density function fX(x|η),
thus avoiding the difficulty of estimating potentially high-
dimensional nuisance parameters.

Missing genetic data Missing genetic data arising in cases
when genotype is not observed are handled by summing
the likelihood function over all possible values that may
be observed. Define Go be the set of all possible genotypes
that are consistent with the observed genotype. The pseudo-
likelihood function LPseudo(k,g, z, s; Ω,Δ) becomes

P(D = k,G = g|Z = z, S = s,R = 1)

=

∑
g∗∈Go

S(k, g∗, z, s; Ω,Δ)∑K
k1=0

∑
g∗∈G S(k1, g∗, z, s; Ω,Δ)

.

In the same manner of Appendix in Lobach et al. (2010)
[8], theoretical justification can show that the risk functions
(3) and (4) are valid for analysis of case-control associa-
tion studies in the case when genetic markers are in the LD.
Briefly, we can show that (1) the LD is being modeled in the
regression coefficients, and (2) if there is no association be-
tween observed genotype and trait locus, then all regression
coefficients of Ai and Bi are zeros and hence the regression
does not depend on the markers [8].

Recall that in the case when genetic markers modeled in
the risk function are in LD, the regression coefficients cap-
ture both the association signal and the LD information. In
practice, we suggest to perform univariate analysis or use
a priori knowledge to define a set of genetic markers to be
analyzed for gene-gene interactions. The association infor-
mation can be obtained either based on a priori knowledge
(e.g., previously reported studies, biological interpretation),
or can be inferred using the observed data (e.g., model se-
lection procedure).

Asymptotics Define Ψ(k, g, z, s; Ω,Δ) to be the derivative
of log pseudo-likelihood function LPseudo(k,g, z, s; Ω,Δ)
with respect to (Ω,Δ). Then define

Ln(Ω,Δ) =

n∑
i=1

Ψ(Di, Gi, Zi, Si; Ω,Δ);

I =− n−1E[∂Ln(Ω,Δ)/∂(Ω,Δ)T]

Λ =
∑
k

nk

n
E{Ψ(D,G,Z, S; Ω,Δ)|D = k}

× E{Ψ(D,G,Z, S; Ω,Δ)|D = k}T,

where all expectations are taken with respect to the case-
control sampling design.

Theorem 1. The estimating function Ln(Ω,Δ) is unbiased,
i.e., it has mean zero when evaluated at the true parame-
ter values. In addition, under suitable regularity conditions,
there is a consistent sequence of solutions with the property
that

n−1/2(B̂ − B) ∼ Normal{0, I−1(I − Λ)I−1}.

Remark 1. Matrices I and Λ can be consistently esti-
mated as follows. E{Ψ(D,G,Z, S; Ω,Δ)|D = k} can be es-

timated by n−1
k

∑n
i=1 I(Di = k)Ψ(k,Gi, Zi, Si, Ω̂, Δ̂). Simi-

larly, n−1∂{Ln(Ω̂, Δ̂)}/∂(Ω̂, Δ̂) estimates I.
Remark 2. The intercept parameters β0j are theoretically
identifiable. When a priori estimate of probability of disease
is available, it can be incorporated into an estimation scheme
to potentially improve qualities of the estimate. Specifically,
a probability of disease can be set into a grid spanning plau-
sible values. For each of these values, supposing they are
fixed, all other parameters can be estimated by maximizing
the corresponding pseudo-likelihood function. Then, the es-
timate of probability of disease can be defined as a value that
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maximizes the corresponding profile likelihood. In practical
situations, likelihood function might be flat as a function of
probability of disease and therefore intercept. In such situ-
ations, sensitivity analyses should be performed to examine
differences in estimates of other parameters corresponding
to various settings of probability of disease/intercept. In the
case when a disease is rare, the likelihood function is ex-
pected to contain very little information about the inter-
cept.

3. SIMULATION EXPERIMENTS

We performed a series of simulation experiments to in-
vestigate performance of the proposed procedure in vari-
ous settings. We consider a case when the disease status
D is binary. The genotype G was simulated under HWE
for I = 2, 3 markers, respectively (I = 3 in Experiment 1,
I = 2 in Experiments 2 and 3 below). Given the values of
(G, X), we generated a binary disease outcome D using 2 lo-
gistic models, corresponding to the GEM and AEM. For the
GEM, covariates are related to a disease via link function

logit{P(D = 1|A,B, X)}

= β0 +XβX +

I∑
i=1

AiβAi +

I∑
i=1

XAiβAXi

+

I∑
i=1

BiβDi +

I∑
i=1

XBiβDXi +A1A2βA1A2 ,

where I = 3 in Experiment 1 and I = 2 in Experiment 2 and
3 below. The corresponding AEM was obtained by setting
coefficients βDi, βD12, and βDXi to be 0. Here, we omit the
subscription k in the regression parameters βs since we have
only one level disease cases and normal controls.

Experiment 1 We considered a situation when three SNPs
are involved in a disease. The three SNPs have strong
additive effect (βA1 = log(1.5); βA2 = log(2.2); βA3 =
log(1.5)), two of the SNPs have dominance effect (βD1 =
log(3);βD3 = log(2)). The first two SNPs interact with each
other βA1A2 = log(3) and, further, both additive and domi-
nance effects interact with the environmental variable. Such
a setting mimics complex interaction structure encountered
in practice. The environmental variable (X) is binary with
P(X = 1) = 0.5.

We performed a simulation sub-study when probabil-
ity of disease is not known and it is estimated via grid-
search method. The values of πd are set to be on interval
[0.001, 0.04] with step 0.005 and the resulting estimate is
a value that maximizes the pseudo-likelihood function. To
estimate the parameters, 500 samples are simulated and
each sample contains of 1,000 cases and 1,000 controls.
To illustrate performance and advantages of the proposed
method we presented biases and Root Mean Squared Errors
(RMSE).

Simulation results are shown in Table 1. The results illus-
trate that the proposed methodology produced parameter

Table 1. Biases and Root Mean Squared Errors (RMSEs) of
risk parameters in the case when P(D = 1) is known and

when it is estimated. The results are based on 500 samples of
1,000 cases and 1,000 controls. Genotype is simulated at the

three marker loci with PMi = 0.25, i = 1, 2, 3. The
environmental covariate (X) is binary. The data is simulated

and analyzed under the genotype effect model

P(D = 1) P(D = 1)
is known is unknown

Parameter True value Bias RMSE Bias RMSE

κ 0.484 −0.017 0.037 −0.054 0.020
βX 0.693 0.002 0.011 0.014 0.039
βA1 0.406 −0.004 0.009 −0.012 0.016
βA2 0.789 0.006 0.010 −0.003 0.015
βA3 0.693 −0.001 0.008 −0.005 0.016

βA1A2 1.099 0.007 0.009 0.009 0.012
βAX1 0.916 0.006 0.014 0.039 0.046
βAX2 0.693 −0.002 0.016 0.038 0.041
βAX3 1.099 0.004 0.017 0.039 0.058
βD1 0.262 0.022 0.064 0.026 0.152
βD2 0.095 0.002 0.052 0.005 0.099
βD3 0.693 0.007 0.046 0.018 0.128
βDX1 1.099 −0.018 0.083 0.018 0.302
βDX2 0.916 0.004 0.076 0.006 0.208
βDX3 1.099 0.007 0.087 0.024 0.286
PMi 0.250 <0.001 <0.001 0.001 <0.001

P(D = 1) 0.005 0.003 <0.001

estimates that are nearly unbiased and have small variabil-
ity. Further, the root mean squared errors of coefficients βDi

and βDXi are generally larger than those of βAi and βAXi,
thus suggesting that the dominance effect should only be
used in situations when the data present strong evidence for
the dominance effect. When P(D = 1) is known, parame-
ter estimates have smaller variability compared to those in
the case when the probability of disease is not known. This
result illustrates the ability of the proposed method to in-
corporate information about the probability of disease, what
cannot be done in the standard logistic regression model.

Experiment 2 To evaluate advantage offered by the pro-
posed method in the case when genetic markers are in
the LD, we performed the following simulation experi-
ment. Genetic markers are simulated to have moderate LD
(ΔM1M2 = 0.02). Environmental factors and risk model are
the same as in the first experiment.

Results presented in Table 2 illustrate that the proposed
approach resulted in parameter estimates that are nearly un-
biased and have small variability. The naive approach that
ignores moderate LD resulted in parameter estimates that
are biased and have elevated variability. For example, the
gene-gene interaction parameter estimate had a bias that is
12.47% of the estimate thus masking the risk due to gene-
gene interaction. Further, we simulated a case when the sec-
ond marker is not involved in a disease and the naive anal-
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Table 2. Biases and Root Mean Squared Errors (RMSEs) of
risk parameters for the naive approach that ignores existence
of the LD and the proposed method. The results are based on
500 samples of 1,000 cases and 1,000 controls. Genotype is
simulated at the two marker loci with PMi = 0.25, i = 1, 2.
The environmental covariate (X) is binary. Probability of

disease is 0.0069 and is assumed to be known in the
population. The data is simulated and analyzed under the
additive effect model and the LD measure ΔM1M2 = 0.02

Naive approach Proposed method

Parameter True value Bias RMSE Bias RMSE

κ 0.082 0.098 0.015 0.037 0.001
βX 1.099 −0.007 0.010 −0.005 0.009
βA1 0.693 −0.011 0.011 0.005 0.008
βA2 0.000 −1.170 1.379 0.005 0.009
βAX1 0.693 0.039 0.013 −0.004 0.013
βAX2 0.693 −0.017 0.301 0.001 0.012
βA1A2 1.099 0.137 0.301 0.002 0.007
PMi 0.250 0.004 <0.001 <0.001 <0.001
δ 0.500 −0.005 0.014

ysis results in largely negative bias hence producing a false
positive result by announcing this marker to be protective
(data not shown).

Experiment 3 To examine performance of inferences based
on the proposed estimation procedure, we investigated vari-
ability of estimates obtained as a result of Experiment 2
and compared it to the estimated standard errors. Results
presented in Table 3 illustrate that the proposed estima-
tion procedure produced parameter estimates that have the
expected variability.

4. MELANOMA DATA ANALYSIS

The melanoma case-control cohort consisted of 343 Cau-
casian melanoma patients recruited through the New York
University Interdisciplinary Melanoma Cooperative Group
and 434 obtained from the New York Cancer Project.
Cases and controls are matched based on age and gender.
SNPs spanning candidate melanoma susceptibility genes
and 80 ancestry informative markers were genotyped. Be-
cause melanoma susceptibility is known to vary with an-
cestry, we selected participants of our study who (1) self-
reported their ancestry as Northern European; and (2) prin-
cipal combination of ancestry informative markers indicated
their ancestry to be in the Northern European cluster. 126
cases and 160 controls reside in the Northern European clus-
ter.

Using a priori biomedical knowledge, we selected
two genes: Solute Carrier Family 45, member 2 gene
(SLC45A2) and Oculocutaneous Albinism 2 gene (OCA2).
The SLC45A2 gene is known to be associated with normal
human skin variation [12]. It has been noted in the liter-
ature [12, 13, 14, 15, 16, 17] that the amounts of melanin

Table 3. Standard errors (SE) of risk parameters for the
proposed approach. The results are based on 500 samples of
1,000 cases and 1,000 controls. Genotype is simulated at the
two marker loci with PMi = 0.25, i = 1, 2. The environmental
covariate (X) is binary. Probability of disease is 0.0069 and is

assumed to be known in the population. The data is
simulated and analyzed under the additive effect model

Parameter True value Standard error Mean estimated
of estimates standard error

βX 1.099 0.007 0.008
βA1 0.693 0.006 0.006
βAX1 0.693 0.007 0.007
βA2 0.000 0.013 0.015
βAX2 0.693 0.010 0.013
βA1A2 1.099 0.007 0.007

and cutaneous blood flow differs between men and women,
yet the degree of this difference is not well established. The
OCA2 gene is known to be involved in albinism [18] and
plays a role in determining skin pigmentation [19]. Fur-
ther, a priori knowledge collected in pathway databases
suggests that OCA2 and SLC45A2 genes interact to de-
termine skin pigmentation. Both OCA2 and SLC45A2 en-
code putative transmembrane bound transporters with un-
known function. Mutations at these loci result in oculo-
cutaneous albinism type 2 and 4 respectively, indicating
that they are crucial for melanogenesis [18, 20]. We selected
markers residing in SLC45A2 gene that are in moderate
linkage disequilibrium. Our analysis suggested that haplo-
types inferred based on these three markers are not signifi-
cantly associated with melanoma. To examine gene-gender
and gene-age interactions, we investigated the following risk
model

logit{P(D = 1|G,XGender, XAge)}(6)

= β0 + βGenderXGender + βAgeXAge + βAA

+βA×GenderAXGender + βA×AgeAXAge.

We considered a reduced additive effect model (6). Ta-
ble 4 presents parameter estimates and the corresponding
standard errors. These results suggest that for all three
SNPs gene-gender and gene-age interactions are significant.

We further included pair-wise gene-gene interactions be-
tween these three SNPs, however they are not significant.
We examined interaction between a SNP residing in OCA2
gene (designated OCA2-SNP3) and the three SLC45A2
markers using the following risk model

logit{P(D = 1|G,Xgender, Xage)}(7)

= β0 + βXgenderXgender + βXageXage

+βA1A1 + βA2A2 + βA1A2A1 ∗A2,

where A1 denotes OCA2-SNP3, and A2 corresponds to
SNPs of SLC45A2 gene. Results presented in Table 5 il-
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Table 4. Estimates and standard errors of risk parameter
estimates in the melanoma study based on model (6)

SNP Parameter Estimate Standard
error

SLC45A2-SNP6 βGender 1.11 0.28
βAge 0.04 0.009
βA2.6 0.45 0.13

βA2.6×Gender −1.69 0.59
βA2.6×age −0.02 0.007

SLC45A2-SNP7 βGender 0.60 0.32
βAge 0.04 0.009
βA2.7 0.32 0.09

βA2.7×Gender −1.13 0.48
βA2.7×Age −0.01 0.006

SLC45A2-SNP8 βGender 0.63 0.31
βAge 0.04 0.009
βA2.8 0.57 0.21

βA2.8×Gender −1.19 0.49
βA2.8×Age −0.02 0.005

Table 5. Estimates and standard errors of risk parameters in
the melanoma study based on model (7)

SNP Parameter Estimate Standard
error

OCA23xSLC45A2-SNP6 βA1A2.6 −0.74 0.32
OCA23xSLC45A2-SNP7 βA1A2.7 −0.89 0.38
OCA23xSLC45A2-SNP8 βA1A2.8 −0.74 0.37

lustrate that indeed these gene-gene interactions are signif-
icant. Hence, these genetic markers, both involved in path-
ways responsible for pigmentation, work together while be-
ing involved in melanoma.

Note that an estimate of probability of melanoma in a
population (πk) is well-established in literature (e.g., http://
seer.cancer.gov/statfacts/html/melan.html), and overall it
is a rare disease. We used this estimate to inform our es-
timation procedure, i.e., the disease probability was set
on a conservative interval around this estimate and grid-
search method was used to find a value that maximizes
the likelihood function. Because melanoma is a rare dis-
ease (πd is small), the likelihood function is expected
to contain little information about the πd and inter-
cept.

5. ANALYSIS OF ALCOHOL DEPENDENCE

The goal of this analysis is to examine effect of an associa-
tion between genetic and environmental factors and demon-
strate analysis based on stratification.

The Collaborative Studies on the Genetics of Alcoholism
(COGA) is a nine-center nationwide study that was initiated
in 1989 and has had as its primary aim the identification of
genes that contribute to alcoholism susceptibility and re-
lated characteristics [21, 22, 23]. COGA is funded through

the National Institute on Alcohol Abuse and Alcoholism
(NIAAA). The focus of this study is a case-control design
of unrelated individuals for a genetic association analysis of
addiction. We focus the analysis on the role of gender. In
contrast to alcoholism risk in men, evidence for a major ge-
netic contribution to alcoholism risk in women from system-
atically ascertained adoptee and twin samples appears much
weaker [24, 25, 26, 27]. The absence of strong evidence for a
genetic influence on female alcoholism has been interpreted
as supporting existence of a subtype of alcoholism that is
predominant among women and that is only modestly heri-
table, contrasted with a more highly heritable male-limited
subtype.

The genetic variable of our interest is a SNP rs2043602
residing in NCAM1 gene. This SNP is functionally linked to
dopamine in the brain. Several association studies reported
an association with alcohol dependence and drug depen-
dence. However, the results have been inconsistent [27, 28].
We hypothesize that the effect of gender and an association
between gender and a distribution of allele frequencies in
the population may have contributed to the observed incon-
sistency of results.

The sample consists of 1,962 controls and 1,720 cases;
1,962 men and 1,720 women. Genotype and gender are as-
sociated in controls (the p-value of χ2 test = 0.002). We
note that within strata defined by the age when a person
got drunk for the first time (AFGD), this association is not
statistically significant (the p-values of χ2 tests are 0.24 and
0.18 within a subset of participants whose AFGD is less than
21 and those whose AFGD is greater than 21, respectively).
Note that AFGD represents an environmental exposure and
may be an important factor in the context of the noted ab-
sence of strong evidence for a genetic influence on female
alcoholism.

Hence, we consider two models. The first is based on the
main effects of gender, the additive effect of genetics, and
their interaction. The second model incorporates stratifica-
tion on AFGD. We note that the first model is not tech-
nically correct because of the strong association between
gender and genetics. Analysis of this model is useful for as-
sessing effects of the association between genetic and envi-
ronmental factors. Specifically, Model 1

logit{pr(D = 1|A,XGender)}(8)

= β0 + βAA+ βXGender
∗XGender

+βAXGender
AXGender.

and Model 2 involves stratification on SAFGD that is a
binary variable defined using a cut-off age = 21.

Results presented in Table 6 demonstrate that the in-
teraction term βAXGender

is not statistically significant (p-
value = 0.18). In the second model of Table 7, this inter-
action effect is significant (p-value = 0.045) and the main
contributor to this effect is the effect of a genotype in women
whose AFGD is less than 21 (log(OR) = −0.23, p-value =
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Table 6. Estimates of risk parameter and corresponding
p-values in the alcohol dependence study based on model (8)

Effect Estimate P-value

βXGender −1.06 < 0.001
βA −0.89 0.59

βAXGender −0.74 0.18

Table 7. Estimates of risk parameter and corresponding
p-values in the alcohol dependence study based on model (8)

with stratification on AFGD

Effect Estimate P-value

βXGender −1.06 <0.001
βA −0.14 0.008

βAXGender −0.20 0.045
βSAFGD −1.03 <0.001

0.012). The directionality of the effect suggests that a mi-
nor allele may have a protective effect. Note that similarly
to analysis of melanoma data, probability of alcohol depen-
dence is estimated based on a grid-search algorithm around
a well-established estimate of alcohol dependence in a pop-
ulation.

6. DISCUSSION

We proposed a genotype-based approach for the analysis
of case-control studies of gene-gene and gene-environment
interactions and applied it to the analysis of gene-gene,
gene-gender, and gene-age interactions in the etiology of
melanoma. The formulation of risk functions and estima-
tion procedure are along the lines of previous work on the
co-authors: genotype and additive effect models [10, 11] and
pseudo-likelihood approach [8]. The risk model involves both
the additive and dominance effect while taking into account
possible interactions between genes expressed in terms of
interaction between their additive and dominance compo-
nents.

The proposed method has several unique aspects. First,
the observed genetic information enters the model directly
and pair-wise LD structure is captured in the regression co-
efficients. This aspect offers advantages from the practical
point of view, the computational burden is less demanding
because haplotype-phase need not to be estimated. In the
cases when LD is moderate, which is the focus of our work,
the computational demands can be substantial even with the
current state of technology. Further, the risk due to uncer-
tainty associated with the haplotype-phase estimation can
be avoided. Similarly to the method investigated in [8], the
estimating procedure is based on a pseudo-likelihood model
that allows efficiently estimating parameters, model envi-
ronmental covariates completely non-parametrically, and in-
corporate information about the probability of disease. In
epidemiologic studies, the vector of environmental covari-
ates measured exactly is oftentimes high dimensional and a

good estimate about probability of disease in a population
is known.

We applied the proposed approach to the analysis of an
association between melanoma and pigmentation genes, age,
and gender while accounting for their interaction. The pig-
mentation genes were selected based on a priori information
about their function; genetic markers within the genes were
selected using information obtained from linkage maps. We
found evidence of interaction between genetic markers and
age/gender. The effect of age and gene-age interactions has
been implicated in many complex diseases, including cancer.
Genetic predisposition plays an important role at younger
ages, while the exposure may become more important at
older ages. In the etiology of melanoma, the environmen-
tal exposure is believed to play an important role and a
small proportion (5–10%) of people who develop melanoma
do so because of genetic susceptibility alone [30, 31]. The
vast majority of melanoma is caused by ultraviolet light ex-
posure often due to behavioral factors with some genetic
contribution.

Melanoma rates and melanoma-related death rates differ
between men and women [32]. The difference between be-
havioral factors plays an important role in gender disparity
of melanoma. For example, a study conducted based on a
2005 Health Interview Survey [31] concluded that although
men more often wear protective clothing and are less likely
to use a tanning bed, women tend to avoid sun exposure and
use sunscreen. This result suggested that preventive mea-
sures taken by women may have resulted in smaller incidence
in melanoma compared to that of men. Further, a number
of epidemiologic studies hypothesized that the disparity in
melanoma predisposition is due to hormonal differences. For
example, several studies reported epidemiologic evidence for
a reduced melanoma risk with higher parity and a higher
risk with higher age at first live birth and the use of oral
contraceptives [33, 34, 35]. In summary, the gene-gender in-
teractions that we found may be due to gender disparities
in behavioral and hormonal factors. That is, gender is a sur-
rogate of behavioral and hormonal factors that are different
between men and women and that have an important role
in melanoma etiology.

Based on our simulation experiments and application of
the proposed method to the melanoma study, we found that
the method offers advantages when the amount of LD is
moderate and when genetic markers have moderate effect.
However, when the number of markers is large and the LD
is strong, the haplotype-based approach based on a pseudo-
likelihood that we developed earlier [29] can be more useful.
In the case when a disease is caused by one or two haplo-
types and alleles forming the haplotype have small effects,
the haplotype-based approach is superior to our proposed
genotype-based modeling. Bayesian formulation provides a
conceptually elegant way to incorporate a priori informa-
tion. However, in our context, conventional Bayesian anal-
ysis may not be applied directly because the analysis is
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based on a pseudo-likelihood function. Hence posterior cred-
ible intervals may have poor coverage. We have proposed a
Bayesian model based on our pseudo-likelihood function and
demonstrated advantages of this model in situations when
an environmental variable is subject to measurement error
or misclassification [36, 9]. Validation of pseudo-likelihood
function is highly computationally intensive.
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