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Estimation of genetic effects incorporating prior
information
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We study estimations of the genetic effect of a marker
by adjusting out covariates and incorporating the results of
previous potentially heterogenous studies of the same ge-
netic marker. Without prior information on the covariates,
the procedures are based on both frequentist and Bayesian
methods by simultaneously maximizing the likelihood func-
tion for the coefficients of the covariates and minimizing the
loss function for the genetic effect, and hence are regarded as
hybrid estimations. Although we focus on an application to
case-control genetic association studies, we describe a gen-
eral method for various types of traits. For the application,
we show that the proposed hybrid inference based on the
prospective sampling can be applied to retrospectively col-
lected case-control data. Simulations and applications using
hybrid inference are presented.
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1. INTRODUCTION

In case-control genetic association studies, the main goal
is to identify genetic markers, single nucleotide polymor-
phisms (SNPs), that are associated with a common disease.
In this paper, we are interested in estimating the genetic
effect of a SNP, often in terms of the odds ratio (OR), that
is associated with a disease after adjusting out confounding
covariates.

In the era of genome-wide association studies (GWASs),
millions of SNPs have been genotyped and studied for
many common diseases. Information of these genetic stud-
ies and GWAS data are often publicly available. For ex-
ample, GWASs funded by National Institutes of Health
(NIH) and the Wellcome Trust Case-Control Consortium
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(WTCCC) [15] are available through the database of Geno-
types and Phenotypes (dbGaP) and the WTCCC websites,
respectively. Incorporating past results into the analysis of
a new genetic association study is expected to improve the
power to detect true associated SNPs. Estimations of the
ORs of the associated SNPs incorporating the past results
would provide more accurate sample size calculations in de-
signing genetic association studies in future.

The results from past studies can be used to elicit an
informative prior for the analysis of a new study, which is
referred to as the “current study” in the following. However,
it is highly possible that the data from the past studies and
the data of the current study are drawn from different popu-
lations due to different definitions of covariates and popula-
tion characteristics. Hence, heterogeneity between the past
and current studies often exists.

To our best knowledge, information from past genetic as-
sociation studies has been incorporated into the analysis of
the current study in two ways. The first method is to elicit
a mixture distribution with positive probabilities for <1, 0,
and >1 log-OR [4], where most mass of the prior probabil-
ity is placed on log-OR = 0. Then a full Bayesian analysis
is conducted using the samples drawn from the posterior
distribution. The second one is for a multi-marker associ-
ation study to incorporate the probabilities of the markers
being associated with the disease [3]. The first approach is
a full Bayesian analysis for the genetic effect, while the sec-
ond one is a frequentist approach, but does not consider the
same problem as we do here.

We consider a hybrid inference which involves both
Bayesian and frequentist procedures. Our hybrid estimation
is an extension of Yuan (2009) [16], who considered a hy-
brid estimate for the parameters (α, β) based on the like-
lihood f(Y |α, β), where Y is the response variable and β
is the parameter of interest and α is a nuisance parameter.
We consider a hybrid estimate for the conditional likelihood
f(Y |X,G, α, β), where X is the vector of covariates with co-
efficients α, G is the genotype of the SNP (or the risk factor
for a general regression model) with a coefficient β. Like [16],
we assume information from a past study for β is available,
but, information for the covariates is often not available due
to different studies designs and samples. One can put a non-
informative prior on α, so that a full Bayesian analysis can
be performed, but we use the frequentist analysis on α. This
makes the modeling and computation simpler. Also, an in-
correct prior can cause misleading results when sample size
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is not large. Our setting is general as Y can be either binary
or quantitative. We also consider the 0–1 loss function that
was not considered in [16]. We prove that the hybrid infer-
ence is asymptotically first-order equivalent to the classical
frequentist inference. Hence we examine the small sample
benefits through simulations. For applications, we consider
a case-control association study. Hence, we study whether or
not the hybrid inference based on prospective sampling can
be applied to the retrospectively sampled case-control data.
How to use a power prior [6, 2] in the hybrid inference to ad-
just heterogeneity between the past and current studies or to
weight more on the current study is discussed. Application
to real GWAS data illustrates the use of hybrid inference.

2. MODELS AND DATA

Let G = (g0, g1, g2) = (AA,AB,BB) be the genotypes
of a SNP, Y = 0 (1) stand for a control (case), and X
denote covariates. The retrospective and prospective likeli-
hoods are given by P (X,G|Y ) and P (Y |X,G), respectively,
whose relationship can be described as a two-sample semi-
parametric model with a biased sampling [12] or as a mix-
ture model [11]. We study hybrid inference based on the
prospective model, which is equivalent to using the retro-
spective model (Sect. 4).

Suppose r cases and s controls are obtained whose geno-
type counts for G are (r0, r1, r2) in cases and (s0, s1, s2) in
controls with n = r + s samples. Let c(g0) = 0, c(g1) = c,
and c(g2) = 1, where c is determined by the genetic model.
For the recessive (REC), additive (ADD), and dominant
(DOM) diseases [17], we use c = 0, 1/2, and 1, respectively.
Let Yj be the outcome of the jth individual (j = 1, . . . , n)
with covariates Xj = (Xj1, . . . , Xjk)

T , where Xj1 = 1
and k ≥ 1, and genotype Gj . Denote Xn = (X1, . . . , Xn),
Gn = (G1, . . . , Gn) and Y n = (Y1, . . . , Yn). Then the likeli-
hood function L(αT , β) = f(Y n|Xn, Gn, αT , β) can be writ-
ten as

(1) L(αT , β) =
exp

{∑r
j=1 α

TXj + β
∑2

i=0 rici
}

∏n
j=1

[
1 + exp {αTXj + βc(Gj)}

] ,
where Gj = g0, g1 or g2, β is the log-OR associated with
the SNP, and α contains the rest of the parameters. Under
the null hypothesis of no association H0, β = 0. Denote
θ = (αT , β) and the dimension of θ is dim(θ) = k + 1 ≥ 2.

3. HYBRID ESTIMATES

The discussion is this section is based on a more general
likelihood than the one in Sect. 2.

3.1 Definition

Let π(·) be the prior density for β, w(·, ·) be the loss func-
tion for inferring β, and d = d(Y n|Xn, Gn) be the decision
for β based on Y n given Xn and Gn. Denote the parameter

spaces for α and β as Λ and Γ, respectively. For a fixed α,
the Bayes estimate β∗ for β is given by

β∗ = β∗(Y n|Xn, Gn, αT )

= arg inf
d∈Γ

∫
Γ

w(d, β)f(Y n|Xn, Gn, θ)π(β)dβ,

and for a fixed β, the maximum likelihood estimate (MLE)
α∗ for α is given by

α∗ = α∗(Y n|Xn, Gn, β) = arg sup
α∈Λ

f(Y n|Xn, Gn, θ).

Following Yuan (2009) [16], the hybrid estimate of θ =

(αT , β), denoted by θ̃ = (α̂T , β̌), satisfies

(α̂T , β̌) = arg sup infα∈Λ,d∈Γ(2) ∫
Γ

w(d, β)f(Y n|Xn, Gn, θ)π(β)dβ.

Denote H(α, d) = w(d, β)f(Y n|Xn, Gn, θ)π(β). Then
H(α̂, β̌) ≤ H(α̂, d) for ∀d ∈ Γ and H(α̂, β̌) ≥ H(α, β̌) for
∀α ∈ Λ. The hybrid estimate θ̃ generally exists and is locally
unique because it can be formulated as a Bayesian estima-
tor under the 0–1 loss with a constant prior for α. Note that
the operations inf and sup in (2) are applied jointly and si-
multaneously. Generally, sup infα∈Λ,d∈Γ is not equivalent to

supα∈Λ(infd∈Γ) or infd∈Γ(supα∈Λ) [16].

3.2 Finding hybrid estimate given a loss
function

In general, there is no closed form for (α̂T , β̌) satisfy-
ing (2). Some details of computations under three com-
mon loss functions are discussed here. Denote the condi-
tional posterior density for β as π(β|Y n, αT , Xn, Gn) =
f(Y n|Xn, Gn, θ)π(β)/m(Y n|Xn, Gn, αT ), where the condi-
tional marginal density is given by m(Y n|Xn, Gn, αT ).

Given the quadratic loss w(d, β) = (d − β)2, for a fixed
α̂, β̌ is the posterior mean. Thus,

α̂ = arg sup
α∈Λ

l(αT , β̌),

(3)
β̌ = E(β|Y n, α̂T , Xn, Gn),

where l(αT , β) = logL(αT , β) is the conditional log-
likelihood function. Generally, (α̂T , β̌) can not be evaluated
in a closed form, and a numerical method is required for
their computation.

Given the absolute error loss w(d, β) = |d−β|, for a fixed
α̂, β̌ is the posterior median. Thus, α̂ satisfies (3) and β̌ is
given by β̌ = Med(β|Y n, α̂T , Xn, Gn). There is no closed
form for the hybrid estimate and a numerical method is
required to find (α̂T , β̌).

For the 0–1 loss, w(d, β) = 0 if d = β, and w(d, β) = 1
otherwise. Then, for a fixed α̂, β̌ is the posterior mode.
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Hence α̂ still satisfies (3) but β̌ is given by

β̌ = arg sup
β∈Γ

π(β|Y n, α̂T , Xn, Gn)(4)

= arg sup
β∈Γ

{
f(Y n|Xn, Gn, α̂T , β)π(β)

}
.

Consequently,

(α̂T , β̌) = arg sup supα∈Λ,β∈Γ

(
l(αT , β) + log π(β)

)
.

Hence, θ̃ is simpler to compute than using the previous two
loss functions because θ̃ can be regarded as the MLE from
l∗(αT , β) = l(αT , β) + log π(β).

3.3 Asymptotic properties

Let (α0, β0) be the true parameters in the model. The
proofs of the following results are given in the appendix.

Proposition 1. Under the regularity conditions A1–A9
of [16], when the squared error loss function is used, we
have (i) (α̂T , β̌) → (αT

0 , β0) (a.s.), and (ii)
√
n(α̂T − αT

0 ,

β̌ − β0)
D→ N(0, I−1(θ0)), where I(θ) is the Fisher informa-

tion matrix for a single sample.

Proposition 2. Assume that 1) there is a convex set
A such that infθ∈A |I(θ)| > 0, (αT

0 , β0) ∈ A and
(α̂T , β̌) ∈ A for all large n, 2) on A, 0 < π(·) <
∞, 3) the first and second derivatives, π(k)(·) (k =
1, 2), are bounded and away from zero on A, 4) I(·) is
continuous at θ0, and 5) ∂

∑
G

∫
f(y, x,G|θ)dydx/∂θ =∑

G

∫
∂f(y, x,G|θ)/∂θdydx. Then under the 0–1 loss, we

have (i) (α̂T , β̌) → (αT
0 , β0) (a.s.), and (ii)

√
n(α̂T −αT

0 , β̌−
β0)

D→ N(0, I−1(θ0)).

From both results and the Bernstein-von Mises theo-
rem [8, 9], the Bayes estimator, the MLE and the hybrid
estimate of θ for the conditional model f(Y n|Xn, Gn, θ)
are asymptotically first-order equivalent and efficient. The
prior π(·) for β is elicited based on a past study (or
past studies). Without loss of generality, we assume that
π(·) is based on a single past study with sample size m.
The above asymptotic results require m/n → 0 as n →
∞. Hence, the contribution of the past study asymptoti-
cally vanishes. However, finite-sample properties of the hy-
brid and frequentist inferences are generally different. In
practice, when we calculate the asymptotic variance or
construct a confidence interval for β using hybrid infer-
ence, θ0 = (αT

0 , β0) is replaced by the hybrid estimate
(α̂T , β̌).

4. EQUIVALENCE TO USING THE
RETROSPECTIVE LIKELIHOOD

Seaman and Richardson (2004) [13] proved the equiva-
lence of using the prospective and retrospective likelihoods
for a full Bayesian inference with some mild conditions on

the prior distributions. Here we show an equivalence for the
hybrid inference.

The results presented before are based on a prospective
likelihood. Denote αT = (α1, α̃

T ) where α̃T = (α2, . . . , αk)
(α̃T vanishes if k = 1), Xj = (1, X̃j), zj = c(Gj), δ = 0 for
controls and 1 for cases, and Yδj = Yj where Y0j = 0 and
Y1j = 1. Then fP (α1, α̃

T , β) = f(Y n|Xn, Gn, θ) is given
by

fP (α1, α̃
T , β)(5)

=
n∏

j=1

1∏
δ=0

⎧⎨
⎩

exp
(
δα1 + δα̃T X̃j + δβzj

)
∑1

l=0 exp
(
lα1 + lα̃T X̃j + lβzj

)
⎫⎬
⎭

Yδj

.

The retrospective likelihood is fR(θ
∗) = f(Xn, Gn|Y n, θ∗),

where θ∗ = (α̃1, α̃
T , β) and α̃1 	= α1. However, based on the

parameterization of Prentice and Pyke (1979) [10], subject
to a normalization constant, the retrospective likelihood can
be written as

(6) fR(α̃1, α̃
T , β) = fP (α̃1, α̃

T , β)q(Xn, Gn),

where q(Xn, Gn) is a non-specified density (mass) function
and does not involve the parameter θ̃. It follows that the pos-
terior density of β based on (6), πR(β|·), has the same form
as that based on (5), π(β|·), that is, πR(β|Y n, α̃1, α̃

T , Gn) =
π(β|Y n, α̃1, α̃

T , Gn). The nonparametric MLE of q(Xn, Gn),
denoted as q̂(Xn, Gn), is the empirical distribution, which
assigns mass m/n to any observed value of (X,G) with mul-
tiplicity m and 0 otherwise [10].

The following approach to show the equivalence of the
hybrid inference using fR and fP is based on the profile
retrospective likelihood function. One advantage of this ap-
proach is that there is no condition specified for the priors.
Let Λ1 and Λ2 be subspaces for α̃1 and α̃, respectively. The
profile retrospective likelihood of (6) after maximization of

q is given by f̂R(α̃1, α̃
T , β) = fP (α̃1, α̃

T , β)q̂(Xn, Gn). Then
the hybrid estimate is given by

(ˆ̃α1, ˆ̃α
T , β̌) = arg sup sup inf α̃1∈Λ1,α̃T∈Λ2,d∈Γ∫

w(d, β)f̂R(α̃1, α̃
T , β)π(β)dβ

= arg sup sup infα̃1∈Λ1,α̃T∈Λ2,d∈Γ∫
w(d, β)fP (α̃1, α̃

T , β)q̂(Xn, Gn)π(β)dβ.

Given either of the three loss functions (quadratic, absolute
error, and 0–1) and β̌, ( ˆ̃α1, ˆ̃α

T ) satisfies ( ˆ̃α1, ˆ̃α
T ) =

arg sup supα̃1∈Λ1,α̃T∈Λ2
fP (α̃1, α̃

T , β̌)q̂(Xn, Gn) =

arg sup supα̃1∈Λ1,α̃T∈Λ2
fP (α̃1, α̃

T , β̌), as if they were

obtained from a prospective likelihood fP (α̃1, α̃
T , β̌). Given

(ˆ̃α1, ˆ̃α
T , q̂), β̌ is the posterior mean, median and mode with

the posterior density πR(β|Y n, ˆ̃α1, ˆ̃α
T , Gn), which is the

same as the posterior density of β based on the prospective
likelihood. Thus, the hybrid estimate can be obtained from
the prospective model.
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5. CHOOSING PRIORS

For our application to case-control genetic association
studies, β is the log-OR. If the data of the past study
are available, let zm and τ2m be the MLE of β and the
consistent estimate of its asymptotic variance, respectively,
where m is the sample size of the past study. Suppose the
genotype counts in cases and controls of the past study
are reported as (r00, r01, r02) and (s00, s01, s02). Then the
MLE for the log-OR and its asymptotic variance have
closed forms for a given genetic model. Under the REC
model, exp(zm) = r02(s00 + s01)/{s02(r00 + r01)} and τ2m =
1/(r00 + r01) + 1/r02 + 1/s02 + 1/(s00 + s01), under the
DOM model, exp(zm) = (r01 + r02)s00/{(s01 + s02)r00} and
τ2m = 1/r00+1/(r01+r02)+1/s00+1/(s01+s02), and under
the ADD model, exp(zm) = [(2r02+r01)(2s00+s01)/{(2s02+
s01)(2r00 + r01)}]2 and τ2m = 4{1/(2r02 + r01) + 1/(2s00 +
s01) + 1/(2s02 + s01) + 1/(2r00 + r01)}. We do not need in-
dividual genetic data when calculating (zm, τ2m).

If the data of the past study are not available, zm is of-
ten reported but τ2m may not be reported although it can
be obtained from the p-value. However, in the following ex-
ample, τ2m cannot be even converted from the p-value and
zm. Swaroop et al. (2007) [14] reported meta-analysis re-
sults for five candidate-genes for age-related macular degen-
eration (AMD). In their Table 1, they reported the num-
ber of studies (H), the total sample size (M) of H stud-
ies, allele frequencies in cases (p1) and controls (p0), the
estimates of OR (exp(zm)), and p-values. For example, one
SNP rs1061170 located in CFH gene had exp(zm) = 2.00
with H = 14, M = 10,930, p1 = 0.435, p0 = 0.639, and the
p-value of the meta-analysis was reported as <10−100. The
asymptotic variance was not given and the genetic model
was not specified either. Since no explicit p-value was re-
ported, τ2m cannot be estimated. Even if an explicit p-value
were reported, one would be doubtful about the accuracy of
such a small p-value. In this case, we can approximate τ2m
with Hardy-Weinberg equilibrium (HWE). The derivation
for the ADD model is given in the appendix. Let m̃ = M/H.
For the ADD, REC, and DOM models, τ2m can be approx-
imated by τ2m = 4m̃−1[{p1(1 − p1)}−1 + {p0(1 − p0)}−1],
τ2m = (m̃/2)−1[{p20(1− p20)}−1 + {p21(1− p21)}−1], and τ2m =
(m̃/2)−1[{(1− p0)

2p0(2− p0)}−1+ {(1− p1)
2p1(2− p1)}−1].

If only population allele frequency is given, p1 and p0 can be
both replaced by the known or estimated population allele
frequency.

Let f(β|zm, τ2m) be the normal density with mean zm and
variance τ2m. Let π0(β) be the prior without using the past
data. Then the posterior prior is proportional to π(β) =
f(β|zm, τ2m)π0(β). We choose π0(β) = 1 here. If both the
past study and the current study are based on the same
study population and there is no concern of the quality of
the data of either study, when m → ∞, zm converges to the
true value of β but τ2m → 0. The latter causes the problem
applying the two asymptotic results. In practice, m may
not be small relative to the sample size of the current study,

especially many genetic studies with large sample sizes (e.g.,
m ≥ 5,000) have been reported. Besides, it is likely that the
data of the past study are not comparable to the data of the
current study. To handle this situation, the power prior of
Ibrahim and Chen (2000) [6] can be considered.

The power prior introduces a power parameter γ ∈ [0, 1]
in the prior as [6]

π(β|γ) = πγ(β)π0(β) = πγ(β),

with π0(β) = 1, where π(β) is given before. The parameter
γ controls the contribution of the past study or adjusts the
heterogeneity of the past and current studies.

When π(β) is N(zm, τ2m),

πγ(β) ∼ exp

{
− (β − zm)2

2τ2m/γ

}

indicates that the power prior has a normal density with the
same mean but an inflated variance.

To illustrate the effect of γ, we consider τ2m under the
ADD model. Let φ ∈ (0, 1) be a constant ratio of the number
of cases over that of controls in the past study for any sample
sizem and denote, in the past study, the genotype probabili-
ties in cases as (p00, p01, p02) and in controls as (q00, q01, q02).
Then

(7)
τ2m
γ

≈ 4h(p,q)

mγ
=

4h(p,q)

m′ ≈ τ2m′ ,

where τ2m′ = τ2m/γ, m′ = mγ ≤ m, and

h(p,q) =
1 + φ−1

2p02 + p01
+

1 + φ

2q00 + q01

+
1 + φ

2q02 + q01
+

1 + φ−1

2p00 + p01

does not involve m or m′. Therefore, the power parameter
γ controls the input of the past study by reducing its sam-
ple size m to m′. Optimal choice of γ has been studied by
Bhattachrya (2009) [2] using the criteria based on Kullback-
Leibler divergence. The optimal γ described below belongs
to [2] (remark 3), which can be written as γ = λ/(1 + λ),
where λ solves

inf
λ∈R+

[
λ(δ − e) + (1 + λ) log

∫
L(Y n|θ){f(β|zm, τ2m)} λ

1+λ dθ

]
,

where L(Y n|θ) = f(Y n|Xn, G, θ) is the likelihood of the
current study, θ = (α, β), e = log

∫
L(Y n|θ)f(β|zm, τ2m)dθ,

and δ is user-specified. If the data of the past study are
judged to have poor quality, one may choose δ = 0.01 ×∫
L(Y n|θ) log{L(Y n|θ)/f(β|zm, τ2m)}dθ [2]. We can apply

this rule because we want to place more weight on the cur-
rent study than the past one.

Both δ and γ depend on sample sizes m and n as well as
G. Thus, different δ and γ have to be found and used for
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different SNPs. In our simulation and application presented
later, however, we choose a single power prior given by
m′ = min(200,m, n/3) ifm ≤ 1,000 andm′ = min(300, n/3)
otherwise. Thus, our choice of m′ is about no more than
1/3 of n. With this fixed rule, the power prior that we ap-
ply to case-control genetic association studies is π(β|γ) =
N(zm, τ2m′).

6. NUMERICAL RESULTS

6.1 Simulations

The data were simulated using the procedures given in
Zheng et al. (2012) [17]. HWE was assumed to hold in
the population. Three minor allele frequencies (MAFs) were
0.15, 0.30 and 0.45, which were also the frequencies for the
risk allele under the alternative hypothesis H1. For the past
study, genotype counts (r00, r01, r02) and (s00, s01, s02) with
sample size m = 300 were first simulated under H0 (no ge-
netic model) or H1 for a given genetic model. The statistics
(zm, τ2m′) were calculated for the same genetic model under
H0 and under H1 with m′ = 200 based on our rule for the
power prior. Then, for the current study, genotype counts
(r0, r1, r2) and (s0, s1, s2) were simulated under the same ge-
netic model with sample size n = 2,000. Equal numbers of
cases and controls were used in the simulations. The results
were estimated based on 10,000 replicates, in each of which
a past study was simulated and (zm, τ2m′) was calculated.
The nominal level was 5% in the simulations. The log-ORs
were 0, log(1.5) = 0.4055, log(1.25) = 0.2231 and log(1.5)
under H0, REC, ADD and DOM models, respectively. For
each setting, we assumed a covariate taking 0 or 1 with true
α1 = log(1.1). We calculate α0 with the disease prevalence
Pr(case) = 0.1 by the standard logistic regression model. We
considered the classical MLE and the hybrid estimate (HE)
for β. The mean, mean squared error (MSE) and coverage
probability (CP) are reported in Table 1. The results show
that the means and CPs of both estimates are very close
to the true values. However, the MSE of the HE is smaller
than that of the MLE. In Table 2, we report the results of
the HE for the covariate, which show that the HE for the
covariate also has very good coverage and very small biases
as expected.

6.2 Real applications

First, we used real GWAS data of the WTCCC
(2007) [15] to calculate (zm, τ2m′) for a specific phenotype.
Then we applied the hybrid inference to estimate the genetic
effect for a candidate marker for AMD.

The WTCCC studied seven common diseases (bipolar
disorder, coronary disease, Crohn’s disease, hypertension,
rheumatoid arthritic, type I diabetes, and type II diabetes)
using Affymetrix 500K SNP platform. About 2,000 cases
for each disease were collected with 3,000 shared controls.
Genotype counts can be obtained from the WTCCC web-
site, from which (zm, τ2m′) and useful power prior can be

Table 1. Means, MSEs and CPs of the MLE and hybrid
estimate (HE) for the log-OR of the genetic effect. The true

values for the log-OR are 0, log(1.5) = 0.4055,
log(1.25) = 0.2231 and log(1.5) = 0.4055 under the null,

REC, ADD and DOM models, respectively

MLE HE
MAF Mean MSE CP Mean MSE CP

NULL
0.15 0.0003 0.0079 0.951 −0.0001 0.0062 0.958
0.30 0.0012 0.0048 0.950 0.0008 0.0038 0.955
0.45 −0.0007 0.0040 0.952 −0.0009 0.0031 0.959

REC
0.15 0.4116 0.0844 0.954 0.4056 0.0644 0.961
0.30 0.4069 0.0222 0.951 0.4059 0.0174 0.958
0.45 0.4063 0.0116 0.949 0.4058 0.0091 0.958

ADD
0.15 0.2241 0.0076 0.949 0.2235 0.0059 0.956
0.30 0.2234 0.0046 0.950 0.2234 0.0036 0.960
0.45 0.2226 0.0042 0.952 0.2225 0.0032 0.959

DOM
0.15 0.4070 0.0095 0.951 0.4065 0.0074 0.956
0.30 0.4050 0.0082 0.951 0.4053 0.0064 0.958
0.45 0.4025 0.0104 0.951 0.4030 0.0082 0.956

Table 2. Means, MSEs and CPs of the HE for the log-OR of
the covariate. The true value is log(1.1) = 0.0953 under the

null, REC, ADD and DOM models, respectively

MAF Mean MSE CP

NULL
0.15 0.0954 0.0080 0.950
0.30 0.0958 0.0081 0.945
0.45 0.0960 0.0082 0.945

REC
0.15 0.0951 0.0080 0.948
0.30 0.0950 0.0080 0.949
0.45 0.0952 0.0080 0.949

ADD
0.15 0.0951 0.0081 0.950
0.30 0.0940 0.0081 0.949
0.45 0.0956 0.0082 0.948

DOM
0.15 0.0952 0.0080 0.951
0.30 0.0953 0.0082 0.947
0.45 0.0958 0.0083 0.947

used for future genetic studies with n > 3m′. In this appli-
cation, we focused on bipolar disorder. After standard qual-
ity control steps [15], we obtained 391,573 SNPs. Because
the sample size m = 5,000 is quite large, we chose m′ = 300
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Figure 1. Plots of the upper zm + 2τm′ (+) and lower
zm − 2τ̂m′ (*) bounds for 391,573 SNPs for bipolar

disorder [15]. Among all the intervals, there is only one on
chromosome 8 that does not contain 0.

based on our rule for the power prior. Allele frequencies
were also estimated using the original samples. Only the
ADD model was considered. Then we calculated zm + 2τm′

(indicated by +) and zm − 2τm′ (indicated by *) and plot-
ted the dots and *’s in Figure 1 along the physical locations
and chromosomes of these SNPs. Among 391,573 intervals
(zm − 2τm′ , zm +2τm′), there was only one interval that did
not cover 0 (see Figure 1).

Our next application is AMD. Among the five candidate
SNPs reported in [14], only one SNP rs10490924 was in a
GWAS of AMD of Klein et al. (2005) [7]. This SNP is lo-
cated in LOC387715 gene. We focused on this SNP for illus-
tration. Its genotype counts are (r0, r1, r2) = (2, 17, 31) and
(s0, s1, s2) = (12, 44, 40) with the total sample size n = 146.
Without using any prior information, the MLEs of the OR
and their 95% confidence intervals (CIs) under the REC,
ADD and DOM models are 2.28 and (1.13, 4.60), 4.30 and
(1.36, 13.67), and 3.43 and (0.74, 15.96), respectively (Ta-
ble 3).

Based on the meta-analysis of 8 studies of this SNP, we
have H = 8, M = 8,473, p0 = 0.207, p1 = 0.420, the esti-
mate of the OR is 2.62, and the p-value in the meta-analysis
<10−100 [14]. There was no genetic model reported. So we
took zm = log(2.62) = 0.963 for all the three genetic mod-
els. We calculated τ2m′ using the formulas given before with
m′ = 50 ≈ n/3 based on our rule for the power prior. The
results are summarized in Table 3, which show (zm − 2τm′ ,
zm + 2τm′) contains 0 for each genetic model at the 0.05
significance level. We also obtained the hybrid estimates of
the OR under each genetic model and the corresponding
95% confidence intervals (CIs). Comparing the MLEs and

Table 3. Estimates of genetic effect of SNP rs10490924
with AMD

Model τ2
m′ (zm − 2τm′ , z + 2τm′)

REC 1.2506 (−1.27, 3.20)
ADD 0.8158 (−0.84, 2.77)
DOM 0.3506 (−0.22, 2.15)

Estimate MLE HE
Model OR 95% CI OR 95% CI

REC 2.28 (1.13, 4.60) 2.37 (1.30, 4.32)
ADD 4.30 (1.36, 13.67) 3.72 (1.43, 9.69)
DOM 3.43 (0.74, 15.96) 3.14 (0.91, 10.81)

the HEs and their confidence intervals (Table 3), the HEs of
the OR yield similar but smaller point estimates, but have
smaller variances so that the hybrid CIs are all smaller.

7. DISCUSSION

Incorporating the results from past genetic association
studies into the analysis of a current genetic association
study in a hybrid fashion has not been seen before, although
general inference with both frequentist and Bayesian com-
ponents has been discussed in the literature [1, 5]. Yuan
(2009) [16] considered hybrid estimates with both frequen-
tist and Bayesian components, but we extended his concept
to also adjust out covariates and proposed to use the hy-
brid likelihood with the 0–1 loss function. In this paper, we
focused on applications to genetic association studies, but
analytic results and properties can be used for more general
applications.

One key part of applying the hybrid inference in genetic
association studies is the elicitation of an informative prior
based on the results of past studies. For genetic studies,
the past and current studies are likely heterogenous. More-
over, more weight should be placed on the current study
than the past one. An existing approach of using the power
prior [6, 2] was applied here, which is equivalent to inflate
the variance or reduce the actual sample size of the past
study to a smaller one. The optimal reduction rate was ob-
tained [2] given a user-specified number reflecting the quality
of the past data or the heterogeneity between the past and
current studies. This rate needs to be determined by solving
a non-linear optimality problem for each SNP. Hence, for
the simplicity, we used a fixed rule to reduce the sample size
of the past study by taking into account the sample size of
the current study. Our rule, though simple, is not necessar-
ily optimal, and its comparison to the optimal rule is not
studied yet. But it worked well in our simulations reported
here and in extra simulation studies for hybrid hypothesis
testing (results are not reported here). It is worthwhile to
further study how to obtain the optimal reduction rate for
case-control genetic association studies. Even with the opti-
mal reduction rate, sensitivity analysis with different rates
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is helpful to understand the robustness of using the power
prior.

One may think of an alternative approach of meta-
analysis to incorporate prior data into the current analysis.
Meta-analysis is commonly used in genetic association stud-
ies. Our approach, however, has advantages over the meta-
analysis. One major concern of the meta-analysis is hetero-
geneity of the studies it combines. This includes the stud-
ies with substantially different sample sizes and populations
which are not comparable across the studies. As in the real
application that we have shown, if the actual small p-value of
the previous study were reported, it would dominate the out-
come of a meta-analysis combining the previous and current
studies. Unlike meta-analysis, by treating the prior study as
historical data, our approach can adjust the heterogeneity of
the two studies [2, 6]. Since our analysis is based on the log-
OR, whose HE asymptotically follows a normal distribution,
and we use a normal prior for the log-OR, it is not surpris-
ing that our results are very close to those from the meta-
analysis when there is no heterogeneity across the studies.

APPENDIX

Proof of Proposition 1

Let q(X,G) be the density-mass function for (X,G).
The full likelihood for (Y,X,G) is f(Y,X,G|θ) = f(Y |X,
G, θ)q(X,G), and the Fisher information I(θ) under
f(Y,X,G|θ) is the same as that under f(Y |X,G, θ). De-
note l(Y n|Xn, Gn, θ) = log f(Y n|Xn, Gn, θ) and l(Y n, Xn,
Gn|θ) = log f(Y n, Xn, Gn|θ). Let l(k)(Y n|Xn, Gn, θ) and
l(k)(Y n, Xn, Gn|θ) be the corresponding partial derivatives
with respect to θ (k = 1, 2). Then l(k)(Y n|Xn, Gn, θ) ≡
l(k)(Y n, Xn, Gn|θ), and

θ̃ = arg sup infα∈Λ,d∈Γ∫
Γ

w(d, β)f(Y n|Xn, Gn, α, β)π(β)dβ

= arg sup infα∈Λ,d∈Γ∫
Γ

w(d, β)f(Y n, Xn, Gn|α, β)π(β)dβ,

i.e., the estimator θ̃ obtained under the conditional likeli-
hood is the same as that obtained under the full model. Thus
conclusion (i) follows from Theorem 2.1 in [16]. Also, by
Theorem 2.4 in [16],

√
n(α̂T −αT

0 , β̌−β0) = Δ1(θ0)+oP (1),
where Δ1(θ0) = n−1/2l(1)(Y n, Xn, Gn|θ0) is the scaled score
function for the full model, thus (ii) follows.

Proof of Proposition 2

Let l∗(k)(θ) and l(k)(θ) (k = 1, 2), and f (1)(Y n|Xn, Gn, θ)
be partial derivatives with respect to θ. Denote h(β) =
log π(β) and define h(k)(β) (k = 1, 2) similarly.

(i) By the definition of θ̃, l∗(1)(θ̃) = 0, so we have
−l∗(1)(θ0) = l∗(1)(θ̃) − l∗(1)(θ0) = l∗(2)(θ̇)(θ̃ − θ0), where

θ̇ = (α̇T , β̇) is between θ̃ and θ0. By the given condi-
tion, θ̇ ∈ A, and so for large n, − 1

n l
(2)(θ̇) ≈ I(θ̇) (a.s.),

which is non-singular by the assumption. The conditions
0 < π(·) < ∞ and π(2)(·) being bounded and away from 0
on A imply h(2)(·) is bounded on A. Thus

− 1

n
l∗(2)(θ̇) = − 1

n
l(2)(θ̇)− 1

n
h(2)(β̇)

= − 1

n
l(2)(θ̇)−O(n−1)

= I(θ̇) + o(1), a.s.

i.e., − 1
n l

∗(2)(θ̇) ≈ I(θ̇) is non-singular (a.s.) for all large n.
Thus, for large n, a.s.

θ̃ − θ0 =

{
− 1

n
l∗(2)(θ̇)

}−1 {
1

n
l∗(1)(θ0)

}
.

Similarly, the given conditions imply that h(1)(β0) is finite,
so

1

n
l∗(1)(θ0) =

1

n
l(1)(θ0)+

1

n
h(1)(β0) =

1

n
l(1)(θ0)+O(n−1) a.s.

Since f (1)(Y n|Xn, Gn, θ) = f (1)(Y n, Xn, Gn|θ) and

1

n
l(1)(θ0)

a.s.→ E

(
f (1)(Y n, Xn, Gn|θ0)
f(Y n, Xn, Gn|θ0)

)

=
∂

∂θ0

∑
G

∫
f(y, x,G|θ0)dydx = 0,

we have

θ̃ − θ0 =

{
− 1

n
l∗(2)(θ̃)

}−1 {
1

n
l(1)(θ0) +O(n−1)

}
→ 0, a.s.

or θ̃ → θ0 (a.s.).
(ii) From (i), we have θ̇ → θ0 (a.s.). Since I(·) is continu-

ous at θ0, − 1
n l

∗(2)(θ̇) = − 1
n l

(2)(θ̇)− 1
nh

(2)(β̇) → I(θ0) (a.s.).

Since n−1/2l(1)(θ0)
D→ N(0, I(θ0)), we have

√
n(α̂T − αT

0 , β̌ − β0)

=
{
−n−1l∗(2)(θ̇)

}−1 {
n−1/2l∗(1)(θ0)

}
=

{
−n−1l∗(2)(θ̇)

}−1 {
n−1/2l(1)(θ0) +OP (n

−1/2)
}

D→ N(0, I−1(θ0))

by Slutzky’s theorem.

Estimation of τ 2
m without genotype counts

Let m1 = r00 + r01 + r02 and m0 = s00 +
s01 + s02 be the numbers of cases and controls in the
past study, respectively. So m = m0 + m1. Note that
(r00, r01, r02) ∼ Mul(m1; p00, p01, p02) and (s00, s01, s02) ∼
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Mul(m0; q00, q01, q02). Let p1 and p0 be the frequency of the
minor (or risk) allele in the cases and controls, respectively.
Assume HWE holds in the data.

Under the ADD model, we approximate the log-OR and
its asymptotic variance by an allelic inference. Then an es-
timate of the variance for the log-OR is

τ2m ≈ 4{(2r02 + r01)
−1 + (2r00 + r01)

−1

+ (2s02 + s01)
−1 + (2s00 + s01)

−1}

≈ 4

m0

{
(2p02 + p01)

−1 + (2p00 + p01)
−1

}
+

4

m1

{
(2q02 + q01)

−1 + (2q00 + q01)
−1

}
≈ 8

m
[(2p1)

−1 + {2(1− p1)}−1

+ (2p0)
−1 + {2(1− p0)}−1]

=
4

m

[
{p1(1− p1)}−1 + {p0(1− p0)}−1

]
,

where m0 and m1 are replaced by m/2, where m = M/H
in the meta-analysis example.

The REC and DOMmodels are symmetric. We only show
for the REC model, under which

τ2m ≈ (r00 + r01)
−1 + r−1

02 + (s00 + s01)
−1 + s−1

02

≈ 1

m1

{
(p00 + p01)

−1 + p−1
02

}
+

1

m0

{
(q00 + q01)

−1 + q−1
02

}
≈ 2

m

[
{p20(1− p20)}−1 + {p21(1− p21)}−1

]
.
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