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Semiparametric mixture survival model with
application to MRFIT study
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, Jing Qin, and Dean A. Follmann

We study the mixture survival model where subject i
has a probability pi following one survival distribution and
1 − pi following the other. The two survival distributions
are unspecified except for an exponential tilting between
the failure densities. Semiparametric likelihood estimation
is proposed to handle censoring through conditional likeli-
hood and inverse-censoring-probability weighted likelihood.
Though full likelihood estimation is introduced, it is not al-
ways preferred over the other estimations due to its compu-
tational complexity and that its improvement in efficiency
depends on the pattern of censoring. In the motivating ex-
ample – MRFIT study, we apply mixture survival modeling
to uncover the underlying survival patterns in the control
arm: one for the would-be compliers and one for the would-
be non-compliers, where compliance of each subject is not
observable but associated with a probability.
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1. INTRODUCTION

This paper investigates a mixture of two survival dis-
tributions with subject specific mixing probabilities. The
motivating example comes from the Multiple Risk Fac-
tor Intervention Trial (MRFIT), see Multiple-Risk-Factor-
Intervention-Trial-Group (1982; 1996). One objective of
MRFIT was to study the effect of a special intervention,
which involved counseling to quit smoking, on coronary
heart disease mortality (Follmann, 2000). In that substudy,
around 6, 800 male participants who smoked were random-
ized to the special intervention (SI) arm and the usual
care (UC) arm, and had a mean follow up of 7 years. An
intention-to-treat (ITT) analysis, where patients were ana-
lyzed according to their original randomization arm regard-
less of their compliance, indicated no significant benefit from
SI. Since only 23% participants under SI actually complied
to the special intervention, it was suspected that the lack
of benefit might be due to poor compliance. It is of interest
whether compliance plays a role in the survival pattern of
the participants. In the following, we define the “would-be”
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compliers, or “compliers” for simplicity, as the patients who
would follow the intervention should they receive it. The
goal of this work is to evaluate the difference in the survival
pattern between the compliers and the non-compliers as well
as the estimation of the survival patterns.

As in all clinical trials, compliers are identifiable in the
treatment (SI) arm but not in the control (UC) arm. Nev-
ertheless, each participant i in the UC arm has a tendency
to comply should he receive SI; that is, he has a proba-
bility pi to be a complier. This compliance probability is
not directly observable. However, each person’s compliance
can be viewed as an inherent characteristics regardless of
randomization to treatment or control (Efron & Feldman,
1991). Therefore, pi is determined by the population com-
pliance pattern and the participant’s baseline characteris-
tics. In Follmann (2000), the population compliance pattern
was observed from the SI arm, and the baseline characteris-
tics included the age, education, marital status, history and
pattern of smoking, etc. Denote w as the vector of baseline
characteristics, the compliance pattern p(w) is fitted by a lo-
gistic regression of the compliance status versus w over the
participants under SI. For subject i under UC, the proba-
bility of being a complier is pi = p(wi) which we will treat
as known thereafter.

There exist two underlying survival patterns in the UC
arm: one for the complier and the other for the non-complier.
Each subject follows a mixture survival pattern with failure
density

(1) fi(t) = (1− pi)f.0(t) + pif.1(t),

with f.0 standing for the failure density of the non-complier
and f.1 of the complier. Here, pi ∈ (0, 1) is known, f.0 and
f.1 are unknown.

Our objective is to estimate survival function S.0(t) =∫ ∞
t

f.0(u)du and S.1(t) =
∫ ∞
t

f.1(u)du, and to evaluate the
compliance effect on survival. Following the approach of
Anderson (1979), we postulate exponential tilting between
f.1(t) and f.0(t); that is,

(2) f.1(t) = exp(β0 + β1t)f.0(t).

Model (1) together with (2) is a semiparametric mixture
survival model. With exponential tilting (2), the compliance
effect is reflected by β1: β1 = 0 corresponds to S.1(t) = S.0(t)
and β1 > 0 corresponds to S.1(t) > S.0(t). The advantage
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of the semiparametric model is its flexibility in data mod-
eling. The exponential tilting (2) is true for f.0 and f.1 of
exponential distributions or normal distributions with equal
variances. If higher order terms of t are included, then (2)
is true for f.0 and f.1 from exponential distribution fami-
lies and approximately true for other distribution families.
Without the exponential tilting, (1) is totally nonparametric
and unidentifiable.

Mixture distribution models of form (1) have been stud-
ied by other researchers. Some work focuses on estimation of
the mixing probabilities pi, see Hall & Titterington (1984),
McLachlan & Basford (1988), Qin (1999), and Qin & Leung
(2005). Other works effectively assume pi’s known and es-
timate the component distributions, see Follmann (2000)
and Ma et al. (2011). In this work, we apply mixture mod-
eling to survival data. A complication with survival data
is the incomplete observation from censoring. We propose
semiparametric likelihood estimations via empirical likeli-
hood (Owen, 1988; Qin & Lawless, 1994) and take care
of censoring through conditional likelihood and inverse-
censoring-probability weighted likelihood. We also intro-
duce the full likelihood estimation through the Expectation-
Maximization algorithm (Dempster et al., 1977), which is
not always preferred due to its computational complexity
and its limited improvement in efficiency under some cen-
soring patterns.

The outline of the paper follows. In section 2, we propose
semiparametric likelihood estimation for model (1) with (2).
We explore their asymptotic properties in section 3 and in-
vestigate the numerical properties in section 4. In section 5,
we apply the proposed model to the MRFIT study. In sec-
tion 6 are the concluding remarks.

2. SEMIPARAMETRIC LIKELIHOOD
ESTIMATION

We use {(Ti, Ci,Δi), i = 1, . . . , N} for the full data, where
Ti is the time of event, Ci the time of censoring, and Δi =
I(Ti ≤ Ci) the indicator of non-censoring. The observed
data is {(Xi,Δi), i = 1, . . . , N} with Xi = min(Ti, Ci). Let
β = (β0, β1)

′ and t = (1, t)′, we express the exponential
tilting (2) as exp(β′t). The estimation and the properties
stay the same for exponential tilting with higher order terms
of t.

2.1 Conditional empirical likelihood

Let f∗
.0(t) = f.0(t | δ = 1) and f∗

.1(t) = f.1(t | δ = 1)
stand for the conditional failure densities over the uncen-
sored. Thus

(3) f∗
.0(t) =

f.0(t)G(t)∫
f.0(t)G(t)dt

and f∗
.1(t) =

f.1(t)G(t)∫
f.1(t)G(t)dt

,

where G(t) = pr(δ = 1 | t) is the survival func-
tion of censoring. Following (1) and (3) and with θ =∫
f.0(t)G(t)dt/

∫
f.1(t)G(t)dt, we have

fi(t | δ = 1) =
(1− pi)θf

∗
.0(t) + pif

∗
.1(t)

(1− pi)θ + pi
.

The conditional density fi(t | δ = 1) is thus a mixing of
f∗
.0(t) and f∗

.1(t). Here we make the implicit assumption that
all subjects follow the same censoring distribution G(t). It
follows from (2) and (3) that

f∗
.1(t) = θ exp(β′t)f∗

.0(t).

The conditional likelihood is Lc =
∏

δi=1 fi(ti | δi = 1).
We maximize Lc using empirical likelihood (Owen, 1988;
Qin & Lawless, 1994). Without loss of generality, sup-
pose the first n subjects are the uncensored. Let q∗

0 =
(q∗01, . . . , q

∗
0n) with q∗0i = f∗

.0(ti) and ti the event time ob-
served from the i-th uncensored subject, then f∗

.1(ti) =
θ exp(β′ti)q

∗
0i. The estimate of (θ,β,q∗

0) is the maximizer
of the log-likelihood

lc(θ,β,q
∗
0) =

n∑
i=1

(
log

{
(1− pi) + pi exp(β

′ti)

(1− pi)θ + pi

}
+ log(q0i)

)

+ n log(θ),

subject to the constraints

n∑
i=1

q∗0i = 1,

n∑
i=1

θ exp(β′ti)q
∗
0i = 1.

These constraints ensure that f∗
.0(t) and f∗

.1(t) are density
functions; that is

∫
f∗
.0(t)dt = 1 and

∫
f∗
.1(t)dt = 1. With

(θ,β) fixed, maximization of lc over q
∗
0 under the constraints

gives

q∗0i = n−1 1

1 + ρ{θ exp(β′ti)− 1}

where ρ is the Lagrange multiplier

ρ = ρ(θ) = n−1
n∑

i=1

pi
(1− pi)θ + pi

.

The profile log-likelihood of (θ,β) is then

lpc(θ,β) =

n∑
i=1

(
log

(1− pi) + pi exp(β
′ti)

(1− pi)θ + pi

− log[1 + ρ{θ exp(β′ti)− 1}]
)

+ n log(θ).

The estimate (θ,β) is the maximizer of lpc. If we denote

the estimates as θ̂, β̂ and let ρ̂ = ρ(θ̂), the estimates of the
conditional failure densities are
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q̂∗0i = f̂∗
.0(ti) = n−1 1

1 + ρ̂{θ̂ exp(β̂
′
ti)− 1}

,

q̂∗1i = f̂∗
.1(ti) = n−1 exp(β̂

′
ti)

1 + ρ̂{θ̂ exp(β̂
′
ti)− 1}

.

From (3), the unconditional failure densities can be esti-
mated by

f̂.0(ti) = γ0f̂∗
.0(ti)/Ĝ(ti), f̂.1(ti) = γ1f̂∗

.1(ti)/Ĝ(ti)

where Ĝ(t) is the Kaplan-Meier estimate of G(t) treat-
ing event as censoring and censoring as event, γ0 =
{
∑n

i=1 q̂
∗
0i/Ĝ(ti)}−1 and γ1 = {

∑n
i=1 q̂

∗
1i/Ĝ(ti)}−1. The

semiparametric estimates of the survival functions are

Ŝ.0(t) =

{ n∑
i=1

q̂∗0i/Ĝ(ti)

}−1 n∑
i=1

q̂∗0i

Ĝ(ti)
I(ti > t),

Ŝ.1(t) =

{ n∑
i=1

q̂∗1i/Ĝ(ti)

}−1 n∑
i=1

q̂∗1i

Ĝ(ti)
I(ti > t).

2.2 Inverse-censoring-probability weighted
empirical likelihood

For an observation (xi, δi) with δi = 0, the event time
ti is missing due to censoring. Therefore, the probability of
observing the event time is G(ti), the survival function of
censoring. We can adopt the approach of inverse probability
weighting for missing data (Horvitz & Thompson, 1952) to
the estimation of mixture survival. The inverse-censoring-
probability weighted likelihood is

lw =

N∑
i=1

δi log{fi(ti)}
G(ti)

.

If there is no censoring, δi = G(ti) = 1 for all subjects and
lw is the full likelihood function. Again, we apply empirical
likelihood estimation. Let q0 = (q01, . . . , q0N ) with q0i =
f.0(ti), then f.1(ti) = exp(β′ti)q0i. Denote gi = G(ti), the
weighted log-likelihood has the form

lw(β,q0) =
N∑
i=1

δi/gi
[
log{(1−pi)+pi exp(β

′ti)}+log(q0i)
]
.

The estimate of (β,q0) is the maximizer of lw subject to

N∑
i=1

q0i = 1,

N∑
i=1

q0i exp(β
′ti) = 1,

where the first constraint corresponds to
∫
f.0(t)dt = 1 and

the second to
∫
f.1(t)dt = 1. With β fixed, maximization of

lw over q0 under the constraints gives

q0i = N−1
w

δi
gi

1

1 + ρ{exp(β′ti)− 1} ,

where Nw =
∑N

i=1 δi/gi, and ρ is the Lagrange multiplier

ρ = ρ(β) = N−1
w

N∑
i=1

δi
gi

pi exp(β
′ti)

(1− pi) + pi exp(β
′ti)

.

The profile log-likelihood of β is then

lpw(β) =

N∑
i=1

δi
gi

(
log{(1− pi) + pi exp(β

′ti)}

− log[1 + ρ{exp(β′ti)− 1}]
)
.

We estimate β as the maximizer of lpw. Denote the es-

timate as β̂ and let ρ̂ = ρ(β̂). The estimates of the failure
densities are

q̂0i = f̂.0(ti) = N−1
w

δi
gi
[1 + ρ̂{exp(β̂

′
ti)− 1}]−1,

q̂1i = f̂.1(ti) = N−1
w

δi
gi
[1 + ρ̂{exp(β̂

′
ti)− 1}]−1 exp(β̂

′
ti)

for i = 1, . . . , N . It is obvious that q̂0i = q̂1i = 0 if δi = 0.
The semiparametric estimates of the survival functions are
Ŝ.0(t) =

∑N
i=1 q̂0iI(ti > t) and Ŝ.2(t) =

∑N
i=1 q̂1iI(ti > t).

In the implementation of the weighted likelihood estima-
tion, gi = G(ti) is replaced by its Kaplan-Meier estimate ĝi.
According to the properties of inverse probability weighting
for missing data, using ĝi instead of gi does not affect con-
sistency of the weighted estimator (Horvitz & Thompson,
1952; Wang et al., 1998).

2.3 Full empirical likelihood

We can construct a full likelihood involving both the
censored and the uncensored observations. We use O =
{(xi, δi), i = 1, . . . , N} for the observed data and t1, . . . , tn
for the observed event times. Let Ti stand for the event time
of subject i, then Ti = xi if δi = 1 and Ti > xi is not ob-
served if δi = 0. The full log-likelihood can be written as

lf =

n∑
j=1

N∑
i=1

I(Ti = tj) log{fi(tj)},

which is not evaluable due to censoring. We adopt the
Expectation-Maximization (EM) algorithm to evaluate le =
E(lf | O). We see that

E{I(Ti = tj) | O}
= δiI(xi = tj) + (1− δi)pr(Ti = tj | Ti ≥ xi, O),

where the conditional probability is pr(Ti = tj , xi ≤ tj |
O)/pr(Ti ≥ xi | O) and equals fi(tj)I(xi ≤ tj)/

∫ ∞
xi

fi(t)dt.
The expected log-likelihood thus takes the form

le =

n∑
j=1

N∑
i=1

wij log{fi(tj)},

with
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wij = δiI(xi = tj) + (1− δi)
fi(tj)I(xi ≤ tj)∑n
l=1 fi(tl)I(xi ≤ tl)

.

For a subject with δi = 1, wij = 1 and fi(t) has a
point mass at tj for some j ∈ {1, . . . , n}. For a subject
with δi = 0, wij > 0 if and only if tj ≥ xi; that is, fi(t)
has point masses over those tj ’s to the right of xi. This
coincides with the “redistribution to the right” algorithm
in Kaplan-Meier estimation (Efron, 1967). Instead of uni-
form redistribution adopted in Kaplan-Meier, the expected
full likelihood le redistributes the weights differentially over
{tl : tl ≥ xi, l = 1, . . . , n} as fi(t) changes with t.

Letting q0 = (q01, . . . , q0n) with q0j = f.0(tj), le can be
written as

le(β,q0)

(4)

=

n∑
j=1

N∑
i=1

wij

[
log{(1− pi) + pi exp(β

′tj)}+ log(q0j)
]
.

The estimate of (β,q0) is the maximizer of (4) subject to
constraints

∑n
j=1 q0j = 1 and

∑n
j=1 q0j exp(β

′tj) = 1. We
can use a two-step iterative EM algorithm for the estima-
tion, see the Appendix.

3. PROPERTIES OF SEMIPARAMETRIC
ESTIMATORS

The semiparametric likelihood estimates of β̂, Ŝ.0(t), and

Ŝ.1(t) are consistent under regularity conditions, see the
Appendix. Due to profiling in the semiparametric likeli-
hood estimations, the asymptotic variances are hard to de-
rive and we recommend bootstrapping for variance estima-
tion.

Both the conditional likelihood and the weighted likeli-
hood estimators are constructed over the uncensored ob-
servations. Since lc in section 2.1 is a likelihood function,
the conditional likelihood estimator is expected to be at
least as efficient as the weighted estimator. The weighted
estimator can be quite variable when there are very low
estimates of G(t) at some uncensored observations, which
is a common reservation for inverse weighting estimation.
Except for that, the weighted estimator has better finite
sample efficiency than the conditional likelihood estimator
for two reasons. First, the weighted estimator additionally
utilizes the censoring information as estimation of G(t) in-
cludes both the uncensored and the censored observations.
Second, the conditional likelihood has one more parameter
θ than the weighted likelihood. We will see that, as sample
size gets larger, impact from the two aspects becomes negli-
gible and the conditional likelihood estimator shows better
efficiency.

The full likelihood estimator may improve efficiency over
the conditional likelihood estimator and the weighted like-
lihood estimator, with the gain of efficiency through redis-
tributing the point mass at a censoring time over the event

times to the right. Improvement in efficiency depends on the
amount as well as the pattern of censoring. Suppose subject
i is censored. If there is no event observed after xi, then
wij = 0 for all j = 1, . . . , n in the likelihood function le,
and this censored subject does not contribute to the esti-
mation. Therefore, when censoring occurs late in followup,
gain of efficiency is limited. This scenario can happen in
clinical trials where most subjects are censored due to the
close of study. Furthermore, the iterative EM algorithm is
computationally intensive with slower convergence than the
other two, and it can be sensitive to initial value selection.
Thus, full likelihood estimation is not always the preferred
one.

In the following, we evaluate the numerical performance
of the three estimators by simulations.

4. SIMULATION STUDIES

Let the survival density fi(t) be a mixture of two com-
ponents as in (1), where we take f.0(t) = exp(−t/λ)/λ with
λ = 10 and f.1(t) = f.0(t) exp(β

′t) with β1 = −0.1. It fol-
lows that β0 = 0.69 and f.1(t) is exponential with mean
1/(λ−1 − β1). Finally, let the censoring time follow expo-
nential distribution with mean λc. Let the mixture proba-
bility, pi for i = 1, . . . , N , follow identical and independent
Beta(1, 1).

We explore the numerical performances of the semipara-
metric likelihood estimations. In addition, we compute the
parametric likelihood estimates, where f.0 is correctly spec-
ified as exponential but with λ, β0, β1 estimated. For all es-
timations, we report the estimates of β1 and the survival
functions S.0(t).

Table 1 presents the estimates at λc = 30 which corre-
sponds to around 20% censoring. We see root-n consistency
in the estimates of β1 and S.0(t). With 20% censoring, the
full likelihood estimator shows only slight improvement in
efficiency over the other estimators. At small and moder-
ate sample sizes of 400 and 1,600, the weighted likelihood
estimator has better performance than the conditional likeli-
hood estimator. At sample size of 6,400, all three estimators
are quite close.

Table 2 presents the estimates at λc = 8 which corre-
sponds to around 50% censoring. Again, we observe root-
n consistency in all the estimates. At large sample sizes
of 3,200 and 12,800, the conditional likelihood estimation
shows a better efficiency than the weighted likelihood esti-
mator. At a high censoring rate of 50%, the full likelihood
estimator shows more gain in efficiency than in Table 1.

As discussed in section 3, the pattern of censoring affects
the relative efficiency of the full likelihood estimator over
the others. In Table 3, we present the estimates of β1 un-
der the same setup for Table 2 except that all subjects have
the same censoring time at Ci = 5. Though it corresponds
roughly to a 50% censoring, the full likelihood estimation
shows no improvement in efficiency. In this extreme sce-
nario, the censored has no contribution in the full likelihood
estimation.
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Table 1. Estimates at sample size N = 400, 1,600, and 6,400 with 20% censoring: t1, t2, and t3 are the 10%, 50%, and
90%-th percentiles of f.0(t). Bias* is 100× the Monte-Carlo bias, SD* is 100× the Monte-Carlo standard deviation, and RE is

the relative efficiency as the ratio of the SD of the full likelihood estimator versus the SD of the other two estimators

N Conditional Weighted Full
Bias* SD* RE Bias* SD* RE Bias* SD*

400 β1 −2.9 5.2 0.8 −0.7 4.9 0.8 −0.6 4.1
S.0(t1) 0.8 3.1 −0.1 2.2 0 2
S.0(t2) 2.6 8.7 −0.7 5.8 −0.1 4.8
S.0(t3) 1.3 4.6 −1.4 2.9 −0.5 2.9

1,600 β1 −0.2 2.5 0.8 −0.1 2.2 0.9 −0.1 1.9
S.0(t1) −0.3 1.5 0 1 0 0.9
S.0(t2) −0.9 3.8 −0.1 2.6 0 2.4
S.0(t3) −0.5 2.3 −0.4 1.5 −0.1 1.0

6,400 β1 −0.1 1.1 1.3 0 1.2 1.2 0 1.4
S.0(t1) 0 0.7 0 0.6 0 0.7
S.0(t2) −0.1 1.8 −0.2 1.5 −0.1 1.7
S.0(t3) −0.1 0.9 −0.1 0.8 −0.1 1

Table 2. Estimates at sample size N = 800, 3,200, and 12,800 with 50% censoring: t1, t2, and t3 are the 10%, 50%, and
90%-th percentiles of f.0(t). Bias* is 100× the Monte-Carlo bias, SD* is 100× the Monte-Carlo standard deviation, and RE is

the relative efficiency as the ratio of the SD of the full likelihood estimator versus the SD of the other two estimators

N Conditional Weighted Full
Bias* SD* RE Bias* SD* RE Bias* SD*

800 β1 −4.6 7.8 0.4 −0.5 6.9 0.5 −1.1 3.2
S.0(t1) −0.1 3.2 −0.9 2.9 0 1.5
S.0(t2) −1.6 8.4 −4 7.8 −0.8 4
S.0(t3) −5.1 6.1 −6.3 5.4 −5.6 5.4

3,200 β1 −0.5 2.9 0.6 0.4 4.1 0.4 −0.3 1.8
S.0(t1) −0.3 1.6 −0.6 1.6 0 0.8
S.0(t2) −1.6 3.9 −2.5 4.4 −0.3 2.1
S.0(t3) −2.9 2.5 −3.4 2.5 −2.3 2.3

12,800 β1 −0.2 1.3 0.6 −0.3 2.3 0.4 −0.3 0.8
S.0(t1) −0.1 0.9 −0.1 1 0.1 0.4
S.0(t2) −0.7 2.2 −0.5 2.6 0.2 1
S.0(t3) −1.5 1.4 −1.2 1.5 −0.7 1.2

Table 3. Estimates of β1 with 50% censoring at a common
censoring time. Bias* is 100× the Monte-Carlo bias and SD*

is 100× the Monte-Carlo standard deviation

N Conditional Weighted Full
Bias* SD* Bias* SD* Bias* SD*

1600 −1.5 10.0 1.4 9.1 0.9 9.5
3200 −1.4 6.9 −0.9 6.0 −1.5 6.6
6400 −1.4 4.4 −0.8 4.2 −1.4 4.6
12800 −0.8 2.7 0.3 2.7 −0.3 2.9

5. MRFIT STUDY

5.1 Description

We now apply our method to the MRFIT study to esti-

mate the survival patterns for the compliers and the non-

compliers, both under the SI arm and under the UC arm.

Under the SI arm, the compliance groups are identifiable
with the passage of time. We let Ci = 1 indicate subject i
a complier and Ci = 0 a non-complier. Denote fs

.0(f) and
fs
.1(t) as the failure densities for the non-compliers and the
compliers under SI, then each subject has the failure density

fs
i (t) = (1− Ci)fs

.0(t) + Cifs
.1(t), with

fs
.1(t) = fs

.0(t) exp(β
′
st)(5)

where βs = (βs0, βs1)
′, i = 1, . . . , Ns, and Ns is the number

of participants under SI. Though Kaplan-Meier can esti-
mate the survival functions for the compliers and the non-
compliers separately, the estimate for the compliers can be
inefficient due to the low compliance rate of 23%.

Under the UC arm, the compliance groups are not iden-
tifiable. However, each subject i has a probability pi to be a
complier. Denote fu

.0(t) and fu
.1(t) as the failure densities for

the non-compliers and the compliers under UC, then each
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Table 4. Estimates from MRFIT: slope parameter in the exponential tilting with the standard deviation (SD) and the 95%
confidence interval (CI) from 200 bootstraps holding the compliance probability as known

Weighted likelihood Full likelihood
Estimate SD CI Estimate SD CI

βs1 0.28 0.45 (−0.44, 1.19) 0.31 0.5 (−0.51, 1.43)
βu1 1.54 0.93 (−0.19, 3.23) 1.66 1.01 (−0.22, 3.64)

Figure 1. Estimated survival curves from MRFIT: the solid lines for the compliers and the broken lines for the non-compliers.

subject has the failure density

fu
i (t) = (1− pi)f

u
.0(t) + pif

u
.1(t), with

fu
.1(t) = fu

.0(t) exp(β
′
ut)(6)

where βu = (βu0, βu1)
′, i = 1, . . . , Nu, and Nu is the num-

ber of subjects under UC. For model (5) and (6) to better
fit the data, we take t as the logarithm of the days post
randomization.

5.2 Estimation

The UC arm follows (6), which is the semiparametric mix-
ture survival model studied in section 2. The SI arm follows
(5), a special case of the mixture model with pi = Ci as 0
or 1. Here, we allow SI and UC to have different exponen-
tial tilting parameters for possibly varying compliance effect
under the two arms.

Parameter estimates are presented in Table 4. The sur-
vival function estimates are presented in Figure 1. In Ta-
ble 4, we report the slope parameters βs1 and βu1 from
the weighted and the full likelihood estimations. The con-
ditional likelihood estimates are quite close to the weighted
likelihood estimates. With the linear exponential tilting, the
slope parameters βs1 and βu1 reflect the differences between
the compliance groups: a positive value means the compliers
have higher survival than the non-compliers. We see posi-
tive slope estimates for both SI and UC. However, the con-
fidence intervals indicate no significant impact of compli-
ance on survival. This lack of significance could be due to
the insufficient sample size in the study, whose original goal
was not to evaluate the compliance effect. In this example,

the full likelihood estimates do not have better efficiency
than the weighted likelihood estimates, which may be be-
cause all censoring occurred in the last two years of follow
up.

To check on the goodness-of-fit of (6), we can add in
higher order terms of t in the exponential tilting, and judge
by the closeness of the survival curve estimates from a higher
order exponential tilting to those from the linear exponential
tilting. For the goodness-of-fit of (5), we can compare the
semiparametric survival function estimates with the Kaplan-
Meier estimates. Our results indicate that (5) and (6) fit the
data well.

5.3 Treatment effect

In Table 4, the estimate of βu1 is higher than that of βs1.
However, it does not mean that the compliers under UC
have higher survival than the compliers under SI. In fact, βs1

and βu1 are not directly comparable as they are tilting from
different baseline densities fs

.0(t) and fu
.0(t), respectively.

To evaluate the treatment effect for the compliers, we
can directly compare Ŝs

.1(t) with Ŝu
.1(t). Alternatively, we

can compare the summary statistics of the survival func-
tions, for example, the restricted mean lifetime

∫ τ

0
Ŝs
.1(t)dt

versus
∫ τ

0
Ŝu
.1(t)dt due to the high percentage of censoring

(Irwin, 1949; Zucker, 1998). We take τ = 3782, the day
of the first censoring. Table 5 presents the estimates, in-
dicating no significant benefit from SI over the compliers.
Since compliance has no significant impact on survival, the
estimates over compliers are not very different from the es-
timates over all participants based on ITT Kaplan-Meier
analysis.
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Table 5. Estimates from MRFIT: estimates of the restricted mean lifetime (days) with the 95% confidence intervals (CI) from
200 bootstraps holding the compliance probability as known

SI UC
Estimate CI Estimate CI

Over compliers 3,691 [3,660, 3,716] 3,673 [3,636, 3,714]
Over all participants 3,635 [3,615, 3,652] 3,616 [3,578, 3,638]

6. CONCLUSION

We introduce a semiparametric mixture survival model.
It applies when there exist two underlying survival patterns
in the population, with membership of each subject to the
survival patterns not observable but represented by a proba-
bility. The primary interest is the estimation of the survival
patterns and whether they are the same.

Three semiparametric likelihood estimations are devel-
oped for model estimation. Based on numerical studies, the
weighted likelihood estimator can have better efficiency than
the conditional likelihood estimator when the sample size is
moderate and the estimated censoring probability is not low
at the uncensored observations, but the latter can be more
efficient otherwise. The full likelihood estimator resembles
the “re-distribution to the right” algorithm but with differ-
ential re-distribution weights. The improvement in efficiency
from full likelihood estimation depends on the pattern of
censoring.

The efficiency of the semiparametric mixture model
is fundamentally affected by the membership probability
{pi, i = 1, . . . , N}. The semiparametric estimators have bet-
ter efficiency if pi’s are more symmetrically distributed, for
example, pi ∼ Beta(1, 1) versus pi ∼ Beta(2, 1/2). The
semiparametric estimators also have better efficiency if pi’s
are more densely distributed around 0 and 1. Two extreme
cases for the last point are: (1) if the membership is totally
known, pi = 0 or 1, the semiparametric estimates have bet-
ter efficiency than with pi in (0, 1); (2) if pi’s all around 1/2,
the semi parametric estimators are unstable. These extreme
scenarios are observable in Table 4 for the MRFIT study,
where the estimates are less variable with pi = 0 or 1 in SI
arm than pi around 0.5 in UC arm.

Though this work treats the membership as known, it
applies when the membership is unknown but consistently
estimated.

APPENDIX A. TWO-STEP ITERATIVE EM
ALGORITHM FOR FULL

LIKELIHOOD ESTIMATION

We use a two-step iterative EM algorithm for the estima-

tion of (β,q0) from (4). We first pick initial values q
(0)
0j for

f.0(tj) and q
(0)
1j for f.1(tj). In step 1, we compute w

(0)
ij by

w
(0)
ij = δiI(xi = tj)

+ (1− δi)
{(1− pi)q

(0)
0j + piq

(0)
1j }I(tj ≥ xi)∑n

l=1{(1− pi)q
(0)
0l + piq

(0)
1l }I(tl ≥ xi)

for i = 1, . . . , N , j = 1, . . . , n. In step two, we let wij =

w
(0)
ij be fixed and estimate (β,q0) as the maximizer of (4).

Following similar derivations as in the previous two sections,
the estimate of q0j at fixed β has the form

q0j =
1

N

( N∑
i=1

wij

)
1

1 + ρ{exp(β′tj)− 1}

with

ρ = ρ(β) = N−1
n∑

j=1

N∑
i=1

wij
pi exp(β

′tj)

(1− pi) + pi exp(β
′tj)

.

The profile log-likelihood of β is then

le(β) =

n∑
j=1

N∑
i=1

wij

(
log{(1− pi) + pi exp(β

′tj)}

− log[1 + ρ{exp(β′tj)− 1}]
)
.

Let β(1) be the maximizer of le(β). We then update q0j
and q1j at β(1) and go back to step 1. The two steps are
repeated until convergence.

APPENDIX B. CONSISTENCY OF
SEMIPARAMETRIC

LIKELIHOOD ESTIMATOR

Consistency is developed under the regularity conditions:
(1) the underlying survival functions S.0 and S.1 are non-
degenerate; (2) pi’s are identical and independently dis-
tributed over [0, 1]; (3) Let tn be the last observed event
time, tn → ∞ as N → ∞.

Under the regularity conditions, β is root-n consistent
with

√
n(β̂ − β) → N(0, U), and the survival function esti-

mate Ŝ.0(t) satisfies
√
n{Ŝ.0(t)−S.0(t)} → B.0(t) with B.0(t)

a mean zero Gaussian process.

We give a sketch of the proof taking the weighted likeli-
hood estimator as an example. Denote the true value of β as
βT . The estimate β̂ is maximizer of lpw(β) with ρ satisfying
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(B.1)

n∑
i=1

1/gi
w(ti;β)

1 + ρw(ti;β)
= 0

where w(t;β) = exp(β′t)− 1. The profile likelihood lpw can
be written as lpw(θ,β) = l1 − l2 with

l1 =

n∑
i=1

1/gi log{(1− pi) + pi exp(β
′ti)},

l2 =
n∑

i=1

1/gi log{1 + ρw(ti;β)}.

The estimate β̂ is solution to

∂lpw(β)

∂β
=

∂l1
∂β

− ∂l2
∂β

= 0,

where due to (B.1), we have

∂l2/∂β = ρ

n∑
i=1

1/gi
∂w(ti;β)/∂β

1 + ρw(ti;β)
.

Expand ∂lpw(β̂)/∂β at βT , we see that

β̂ − βT = A−1
n bn + op(n

−1/2),

where

An = − 1

n

∂2lpw(βT )

∂2β
, bn =

1

n

∂lpw(βT )

∂β
.

We can show that An → A in probability for some
symmetric matrix A and

√
nbn → N(0, V ) for some semi-

positive definite matrix V . The asymptotic normality of β̂
follows with U = A−1V A−1.

Consistency of Ŝ.0 can be similarly proved as in Qin
(1999).
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