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Rank-based tests for comparison of multiple
endpoints among several populations∗

Zhengbang Li, Aiyi Liu
†
, Zhaohai Li, and Qizhai Li

‡,§

We consider comparison of multiple endpoints among
several independent populations. We extend O’Brien’s and
Huang et al.’s methods from comparison of two groups to
two more groups, and propose three max type test statistics,
T1 based on normally distributed data, T2 obtained from
pairwise ranking, and T3 derived from ranking of all popu-
lations. Numerical results show that all three test statistics
maintain the desired type I error rates and achieve satisfac-
tory power. When the normal assumption is justified, T1 is
slightly more powerful than T2 and T3. However, when the
normal assumption is violated, T2 and T3 gain sizable power.
All three tests have higher power than O’Brien’s and Huang
et al.’s methods using Bonferroni correction under the con-
sidered settings. The methods are exemplified using healthy
eating index data from a study examining the conformance
to dietary guideline.

Keywords and phrases: Max, Multidimensional out-
comes, Rank-based statistics.

1. INTRODUCTION

Comparison of multidimensional outcomes among differ-
ent populations is commonly encountered in biomedical re-
search. For example, in Brunner et al.’s (2002a) peptide
procalcitonin (PCT) concentration study, investigators are
interested in the differences in PCT values among three
treatment groups. Another example is a study to investi-
gate compliance with dietary guideline among children with
Type 1 diabetes. One study interest is to look into whether
the income groups (low, medium, and high) differ in dietary
quality that consists of 9 healthy eating indexes.

When the comparison is made between two groups, mul-
tivariate ANOVA in Brunner et al. (2002b) and Hotelling’s
T 2 test can be used under the assumption that the data
from a group is distributed according to a multivariate nor-
mal distribution. O’Brien (1984) and Huang et al. (2005)
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proposed distribution-free approaches based on rank statis-
tics that gain power when the directions of the differences
in the outcomes are in the same direction. If the directions
are different (e.g. some are negative, some are positive), their
rank-sum type tests could lose power substantially as shown
in Liu et al. (2010). Liu et al. (2010) subsequently proposed
a max-rank test, which is robust against directional differ-
ences between groups under comparison.

For comparison of multiple endpoints among two or more
populations, in this paper, we extend O’Brien’s (1984),
Huang et al.’s (2005) and Liu et al.’s (2010) rank-based test
and develop three test statistics, all sharing a common fea-
ture as the maximum of a series of marginal test statistics.
The first test statistic, T1, is based on normally distributed
data. The second statistic, T2, is obtained from pairwise
ranking, and the third test statistic, T3, is derived from
ranking of all populations. We derive the asymptotic joint
distributions of the marginal test statistics and evaluate the
performance of the proposed three tests via simulation stud-
ies and compare them with O’Brien’s (1984) and Huang et
al.’s (2005) methods, which are derived for comparison for
two groups, under Bonferroni-correction. We exemplify the
methods using healthy eating index data from a study ex-
amining the conformance to dietary guideline.

2. METHOD

2.1 Notations

Suppose that there are r (r ≥ 2) populations for com-
parison. Let (Xa1, Xa2, . . . , Xap)

′
be a p-dimensional out-

come for the ath population, a = 1, 2, . . . , r, and let the
marginal distribution function ofXas be F

o
as(x) = Pr(Xas <

x) + 1
2Pr(Xas = x) for a = 1, 2, . . . , r, s = 1, 2, . . . , p, x ∈ R.

Let θ(a, b, s) = Pr(Xas < Xbs) − Pr(Xas > Xbs), a < b ∈
{1, 2, . . . , r}, s = 1, 2, . . . , p. The null hypothesis is

H0 : θ(a, b, s) = 0, a < b ∈ {1, 2, . . . , r}, s = 1, 2, . . . , p.

The alternative hypothesis is that there is a set of (a, b, s)′ ∈
{1, 2, . . . , r} ⊗ {1, 2, . . . , r} ⊗ {1, 2, . . . , p} with a < b such
that θ(a, b, s) �= 0. Denote the na observations from the ath
population by (xa1i, xa2i, . . . , xapi)

′
, i = 1, 2, . . . , na, a =

1, 2, . . . , r.
When investigating the asymptotic distributions of test

statistics, we assume, throughout the paper, that na/
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∑r
b=1 nb −→ ηa, a finite non-negative constant, a = 1, 2, . . . ,

r, such that
∑r

a=1 ηa = 1 when min{n1, n2, . . . , nr} −→
∞.

2.2 A test statistic with normally distributed
data

Assume that the observations are from a multivariate nor-
mal distribution, that is, (Xa1, Xa2, . . . , Xap)

′ ∼ N (μa,Λa),
where μa is a p-dimensional vector and Λa is a p × p non-
negative definite matrix in Genz (1993), a = 1, 2, . . . , r. De-
fine

X̄as· =
1

na

na∑
i=1

xasi, a = 1, 2, . . . , r, s = 1, 2, . . . , p.

Z = (X̄11· − X̄21·, . . . , X̄1p· − X̄2p·, . . . ,

X̄(r−1)1· − X̄r1·, . . . , X̄(r−1)p· − X̄rp·)
′
r(r−1)p

2 ×1
.

We have

Theorem 2.1. Denote Λ = WAW ′, where

A =

⎛⎜⎜⎜⎝
1
n1

Λ1 Op · · · Op

Op
1
n2

Λ2 · · · Op

...
...

. . .
...

Op Op · · · 1
nr

Λr

⎞⎟⎟⎟⎠
rp×rp

,

W =

⎛⎜⎜⎜⎝
W1

W2

...
Wr−1

⎞⎟⎟⎟⎠
r(r−1)p

2 ×rp

,

W1 =

⎛⎜⎜⎜⎜⎜⎝
Ip −Ip Op Op Op · · · Op

Ip Op −Ip Op Op · · · Op

Ip Op Op −Ip Op · · · Op

...
...

...
...

...
. . .

...
Ip Op Op Op Op · · · −Ip

⎞⎟⎟⎟⎟⎟⎠
with orders (r − 1)p× rp,

W2 =

⎛⎜⎜⎜⎜⎜⎝
Op Ip −Ip Op Op · · · Op

Op Ip Op −Ip Op · · · Op

Op Ip Op Op −Ip · · · Op

...
...

...
...

...
. . .

...
Op Ip Op Op Op · · · −Ip

⎞⎟⎟⎟⎟⎟⎠
with orders (r − 2)p× rp, . . . ,Wr−1 = (Op, Op, . . . , Op, Ip,
−Ip)p×rp, Ip is a p-dimension identity matrix, and Op is
a p × p matrix with all the elements 0. Then under H0,
Z ∼ N (0,Λ).

The proof of Theorem 2.1 is given in Appendix A.1. Based
on Theorem 2.1, a statistic for testing H0 is given by

T1 = max
{a<b∈{1,2,...,r};s=1,...,p}

{
|X̄as· − X̄bs·|√

V̂ ar(X̄as· − X̄bs·)

}
,

where V̂ ar(X̄as· − X̄bs·) = 1
na−1

∑na

i=1(xasi − X̄as·)(xati −
X̄at·)+

1
nb−1

∑nb

i=1(xbsi−X̄bs·)(xbti−X̄bt·), for a = 1, 2, . . . , r,

s, t ∈ {1, 2, . . . , p}, a consistent estimate of the variance.

2.3 A test statistic based on pairwise
ranking

When the distributional assumptions (e.g. normality) are
violated, nonparametric test statistics such as those based
on ranks are preferable due to their robustness against
these assumptions O’Brien’s (1984), Huang et al.’s (2005)
and Liu et al. (2010). We construct a test statistic based
on ranks between two populations. For a < b ∈
{1, 2, . . . , r}, s ∈ {1, 2, . . . , p}, we rank the na + nb observa-
tions, xas1, xas2, . . . , xasna and xbs1, xbs2, . . . , xbsnb

and de-

note the midranks of xasi and xbsj by R
(a,b)
asi and R

(a,b)
bsj ,

respectively, i = 1, . . . , na, j = 1, . . . , nb. Then we calculate

R̄
(a,b)
as· = 1

na

∑na

i=1 R
(a,b)
asi , R̄

(a,b)
bs· = 1

nb

∑nb

j=1 R
(a,b)
bsj , a < b ∈

{1, 2, . . . , r}, s ∈ {1, 2, . . . , p}. Define

U (a,b)
s = R̄

(a,b)
bs· − R̄

(a,b)
as·

=
na + nb

2nanb

na∑
i=1

nb∑
j=1

[
I{xasi<xbsj} − I{xasi>xbsj}

]
,

a < b ∈ {1, 2, . . . , r}, s = 1, 2, . . . , p,

and

U =
(
U

(1,2)
1 , . . . , U (1,2)

p , . . . , U
(r−1,r)
1 , . . . , U (r−1,r)

p

)′
r(r−1)p

2 ×1
.

We have

Theorem 2.2. Let

B =

⎛⎜⎜⎜⎜⎝
1√

n1+n2
Ip Op · · · Op

Op
1√

n1+n3
Ip · · · Op

...
...

. . .
...

Op Op · · · 1√
nr−1+nr

Ip

⎞⎟⎟⎟⎟⎠
and Δ be a r(r−1)p

2 × r(r−1)p
2 symmetric matrix, with upper

elements given by⎛⎜⎜⎜⎝
Δ(12,12) Δ(12,12) · · · Δ(12,(r−1)r)

Δ(13,13) · · · Δ(13,(r−1)r)

∗ . . .
...

Δ((r−1)r,(r−1)r)

⎞⎟⎟⎟⎠
where Δ(ab,cd) =

(
δ(ab,cd)(s, t)

)
p×p

, a < b ∈ {1, 2, . . . , r},
c < d ∈ {1, 2, . . . , r}, s, t ∈ {1, 2, . . . , p} is a p×p symmetric
matrix with elements as follows:
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when a = c, b = d,

δ(ab,cd)(s, t) =
ηa + ηb
ηaηb

[
ηbcov

(
F o
bs(Xas), F

o
bt(Xat)

)
+ ηacov

(
F o
as(Xbs), F

o
at(Xbt)

)]
when a = c, b �= d,

δ(ab,cd)(s, t)

=

√
(ηa + ηb)(ηa + ηd)

ηa
cov
(
F o
bs(Xas), F

o
dt(Xat)

)
;

when a �= c, b = d,

δ(ab,cd)(s, t)

=

√
(ηa + ηb)(ηc + ηb)

ηb
cov
(
F o
as(Xbs), F

o
ct(Xbt)

)
;

when a �= c, b �= d, b = c,

δ(ab,cd)(s, t)

= −
√

(ηa + ηb)(ηb + ηd)

ηb
cov
(
F o
as(Xbs), F

o
dt(Xbt)

)
;

when a �= c, b �= d, b �= c, δ(ab,cd)(s, t) = 0.

Then under H0, BU
dist.−→ N(0,Δ).

The proof of Theorem 2.2 is given in Appendix A.2
and the consistent estimates of the element of
cov(F o

as(Xbs), F
o
at(Xbt)), cov(F o

as(Xbs), F
o
ct(Xbt)), . . . , and

cov(F o
as(Xbs), F

o
dt(Xbt)) are given in Appendix A.4. Based

on Theorem 2.2, we obtain a statistic for testing H0:

T2 = max
{a<b∈{1,2,...,r},s=1,...,p}

{
|U (a,b)

s |
/√

V̂ ar
(
U

(a,b)
s

)}
.

2.4 A test statistic based on ranking among
all populations

In this section, we propose an alternative procedure
based on ranks among all populations. We rank the
n (=

∑r
a=1 na) observations, x1s1, x1s2, . . . , x1sn1 , x2s1, x2s2,

. . . , x2sn2 , xrs1, xrs2, . . . , xrsnr , and denote the midranks of
xasi by Rasi, i = 1, . . . , na, a ∈ {1, . . . , r}, s ∈ {1, . . . , p}.

Let

Ras· =
na∑
i=1

Rasi, R̄as· =
1

na
Ras· =

1

na

na∑
i=1

Rasi,

R =

(
R̄11·, . . . , R̄1p·, R̄21·, . . . , R̄2p·, . . . , R̄r1·, . . . , R̄rp·

)′
,

and

G =
(
R̄11· − R̄21·, R̄12· − R̄22·, . . . , R̄1p· − R̄2p·,

R̄11· − R̄31·, R̄12· − R̄32·, . . . , R̄1p· − R̄3p·,

. . . ,

R̄11· − R̄r1·, R̄12· − R̄r2·, . . . , R̄1p· − R̄rp·,

R̄21· − R̄31·, R̄22· − R̄32·, . . . , R̄2p· − R̄3p·,

R̄21· − R̄41·, R̄22· − R̄42·, . . . , R̄2p· − R̄4p·,

. . . ,

R̄21· − R̄r1·, R̄22· − R̄r2·, . . . , R̄2p· − R̄rp·,

. . . ,

R̄(r−1)1· − R̄r1·, R̄(r−1)2· − R̄r2·, . . . ,

R̄(r−1)p· − R̄rp·
)′

r(r−1)p
2 ×1

.

We have

Theorem 2.3. Let H ′ =
(
n+1
2 , n+1

2 , . . . , n+1
2

)
rp×1

and V

be a symmetric matrix whose upper elements are given by

V =

⎛⎜⎜⎜⎝
V (1,1) V (1,2) · · · V (1,r)

V 2,2 · · · V (2,r)

∗ . . .
...

V (r,r)

⎞⎟⎟⎟⎠
rp×rp

,

where V (a,b) = (v(a,b)(s, t))p×p, a ≤ b ∈ {1, 2, . . . , r}, s, t ∈
{1, 2, . . . , p} is a p × p symmetric matrix with elements as
follows:

when a = b,

v(a,b)(s, t)

=
r∑

c=1,c �=a

[η2c
ηa

cov
(
F o
cs(Xas), F

o
ct(Xat)

)
+ ηccov

(
F o
as(Xcs), F

o
at(Xct)

)]
+

r∑
c=1,c �=a

r∑
d=1,d�=c,d�=a

ηcηd
ηa

cov
(
F o
cs(Xas), F

o
dt(Xat)

)
;

when a < b,

v(a,b)(s, t)

= −
[
ηbcov

(
F o
bs(Xas), F

o
bt(Xat)

)
+ ηacov

(
F o
as(Xbs), F

o
at(Xbt)

)]
+

r∑
c=1,c �=a,c �=b

ηc

[
cov
(
F o
as(Xcs), F

o
bt(Xct)

)
− cov

(
F o
as(Xbs), F

o
ct(Xbt)

)]
.

Then under H0, we have

I) E(Ras·) =
na(n+1)

2 and E(R̄as·) =
n+1
2 , a = 1, 2, . . . , r,

s = 1, 2, . . . , p.

II) R−H√
n

dist.−→ N(0, V ).

III) G√
n

dist.−→ N(0,WVW ′), where W is the same as in The-
orem 2.1.
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The proof of Theorem 2.3 is given in Appendix A.3,
and the consistent estimates of cov(F o

as(Xbs), F
o
at(Xbt)),

cov(F o
as(Xbs), F

o
ct(Xbt)), . . . , and cov(F o

as(Xbs), F
o
dt(Xbt))

are given in Appendix A.4. Using Theorem 2.3, we construct
the following test statistic:

T3 = max
{a<b∈{1,2,...,r},s=1,...,p}

{
|R̄as·−R̄bs·|√
̂V ar(R̄as·−R̄bs·)

}
.

2.5 P-value calculation

Without loss of generality, we assume that
(Y1, Y2, . . . , Yk)

′ follows a multivariate normal distri-
bution. Let Y = max{|Y1|, |Y2|, . . . , |Yk|}. After getting the
observation (y) of Y , we can use the following formula to
calculate the p-value,

p-value = Pr (Y ≥ y) = 1− Pr (Y < y) ,

where Pr (Y < y) is a multiple integration; the integrand is
the multivariate normal density function, and the integra-
tion region is a hyper-rectangle. The integral can be easily
calculated using Genz and Bretz’s (2009) algorithm, which
allows for covariance and variance matrix to be singular.

3. SIMULATION STUDIES

We conduct simulation studies to explore the perfor-
mances of T1, T2 and T3 on the basis of type I error rate
and power by comparing with O’Brien’s (1984) and Huang
et al.’s (2005) methods. Since O’Brien (1984) and Huang
et al.’s (2005) methods are derived for comparison of two
groups and our simulation settings have 3 groups, we use
Bonferroni-correction for their methods. For convenience,
we denote two test statistics of O’Brien (1984) by OB1 and
OB2 and Huang et al. (2005) by H1 and H2. We set p = 4
and r = 3. Two scenarios are considered here: 4-variate nor-
mal distributions and 4-variate laplace distributions. For the
simulation we consider n1 = n2 = n3 ∈ {100, 200, 300}.

3.1 Multivariate normal distribution

We first generate data from 4-variate normal distribu-
tions. To be specific, (X11i, X12i, X13i, X14i)

′, i = 1, 2, . . . ,
n1, are from a multivariate normal distribution with
zero mean vector and variance-covariance matrix (vst)4×4,
where vss = 1 for s = 1, 2, 3, 4 and vst = 0.25 for
s �= t ∈ {1, 2, 3, 4}; (X21j , X22j , X23j , X24j)

′, j = 1, 2, . . . ,
n2, are from a multivariate normal distribution with zero
mean vector and variance-covariance matrix (vst)4×4, where
vss = 2 for s = 1, 2, 3, 4 and vst = 1 for s �= t ∈ {1, 2, 3, 4};
and (X31k, X32k, X33k, X34k)

′, k = 1, 2, . . . , n3, are from
a multivariate normal distribution with zero mean vector
and variance-covariance matrix (vst)4×4, where vss = 4
for s = 1, 2, 3, 4 and vst = 2.25 for s �= t ∈ {1, 2, 3, 4}.
The power is obtained similarly under the same settings
with two scenarios being considered. One is that the
mean vectors (0.1, 0.1, 0.1, 0.1), (0, 0, 0, 0)′ and (−0.1,−0.1,
−0.1,−0.1)′ are for (X11i, X12i, X13i, X14i)

′, i = 1, 2, . . . ,
n1, (X21j , X22j , X23j , X24j)

′, j = 1, 2, . . . , n2 and (X31k,

Table 1. Empirical type I error rates (# replicates is 2,000)

n OB1 OB2 H1 H2 T1 T2 T3

Same directions

100 0.055 0.055 0.048 0.048 0.054 0.060 0.058
200 0.052 0.052 0.046 0.046 0.050 0.055 0.054
300 0.050 0.049 0.042 0.042 0.051 0.048 0.049

Different directions

100 0.049 0.049 0.043 0.041 0.049 0.058 0.059
200 0.046 0.046 0.039 0.039 0.037 0.048 0.048
300 0.054 0.054 0.045 0.045 0.049 0.053 0.054

OB1 means O’Brien’s (1984) method 1 under Bonferroni correction.

OB2 means O’Brien’s (1984) method 2 under Bonferroni correction.

H1 means HUANG et al.’s (2005) method 1 under Bonferroni correction.

H2 means HUANG et al.’s (2005) method 2 under Bonferroni correction.

Table 2. Empirical power for 4-variates normal distribution(#
replicates is 2,000)

n OB1 OB2 H1 H2 T1 T2 T3

Same directions

100 0.178 0.177 0.162 0.162 0.156 0.163 0.166
200 0.305 0.304 0.273 0.273 0.256 0.247 0.254
300 0.452 0.452 0.408 0.408 0.373 0.345 0.363

Differenct directions

100 0.050 0.050 0.044 0.044 0.631 0.584 0.607
200 0.049 0.049 0.042 0.042 0.957 0.932 0.950
300 0.042 0.042 0.036 0.036 0.998 0.995 0.998

OB1 means O’Brien’s (1984) method 1 under Bonferroni correction.

OB2 means O’Brien’s (1984) method 2 under Bonferroni correction.

H1 means HUANG et al.’s (2005) method 1 under Bonferroni correction.

H2 means HUANG et al.’s (2005) method 2 under Bonferroni correction.

X32k, X33k, X34k)
′, k = 1, 2, . . . , n3, respectively; and an-

other is that the mean vectors (0.25,−0.25, 0, 0), (0, 0, 0, 0)′

and (−0.25, 0.25, 0, 0)′ are for (X11i, X12i, X13i, X14i)
′, i =

1, 2, . . . , n1, (X21j , X22j , X23j , X24j)
′, j = 1, 2, . . . , n2 and

(X31k, X32k, X33k, X34k)
′, k = 1, 2, . . . , n3, respectively.

2,000 replicates are generated to calculate the empirical
type I error rates and power. The first panel of Table 1
shows the empirical type I error rates and Table 2 shows
the power. Comparing with the nominal significance level,
0.05, all seven tests can control the type I error rates at
the nominal level. For example, when n1 = n2 = n3 = 200,
the empirical type I error rates of OB1, OB2, H1, H2, T1,
T2 and T3 are 0.052, 0.052,0.046, 0.046, 0.050, 0.055, and
0.054, respectively.

For the power, as expected, when the differences of the
features are in the same direction, OB1, OB2, H1, H2 is a
little bit powerful than the proposed three tests. However,as
expected, the proposed three tests are extremely more pow-
erful than OB1, OB2, H1, and H2 when the directions are
different. The powers of T1, T2 and T3 are comparable. For
example, when n1 = n2 = n3 = 300, the power of OB1,
OB2, H1, H2, T1, T2 and T3 are 0.042, 0.042, 0.036, 0.036,
0.998, 0.995, and 0.998 respectively.

12 Z. Li et al.



Table 3. Empirical power for 4-variates laplace distribution
(# replicates is 2,000)

n OB1 OB2 H1 H2 T1 T2 T3

Same directions

100 0.216 0.215 0.190 0.190 0.160 0.201 0.208
200 0.397 0.395 0.357 0.355 0.260 0.320 0.335
300 0.571 0.571 0.524 0.524 0.388 0.458 0.482

Different directions

100 0.047 0.047 0.041 0.040 0.622 0.766 0.793
200 0.054 0.054 0.047 0.047 0.957 0.995 0.997
300 0.046 0.046 0.040 0.040 0.998 1.000 1.000

OB1 means O’Brien’s (1984) method 1 under Bonferroni correction.

OB2 means O’Brien’s (1984) method 2 under Bonferroni correction.

H1 means HUANG et al.’s (2005) method 1 under Bonferroni correction.

H2 means HUANG et al.’s (2005) method 2 under Bonferroni correction.

3.2 Multivariate laplace distribution

In this section, we generate data from multivariate laplace
distributions. The mean vectors and variance-covariance
matrices for evaluation of type I error rates and power are
the same as that for the multivariate normal distributions.

Again, 2,000 replicates are obtained to calculate the em-
pirical type I error rates and power. The second panels of
Table 1 and Table 3 show the results. Comparing with the
nominal significance level, 0.05, all seven tests have ade-
quate control over the type I error rates. For example, when
n1 = n2 = n3 = 300, the empirical type I error rates of
OB1, OB2, H1, H2, T1, T2 and T3 are 0.054, 0.054, 0.045,
0.045, 0.049, 0.053, and 0.054, respectively.

For the power, as expected, when the differences of the
features are in the same direction, OB1, OB2, H1, H2 is a
little bit powerful than the proposed three tests. However,as
expected, the proposed three tests are extremely more pow-
erful than OB1, OB2, H1, and H2 when the directions are
different. The powers of T1, T2 and T3 are comparable. For
example, when n1 = n2 = n3 = 200, the power of OB1,
OB2, H1, H2, T1, T2 and T3 are 0.054, 0.054, 0.047, 0.047,
0.957, 0.995, and 0.997, respectively.

4. DIETARY QUALITY AND NUTRIENTS
INTAKE

Type I diabetes (T1D, diabetes mellitus type I or juvenile
diabetes) is a common disease in children with many poten-
tial health complications such as frequent urination, thirst,
weight loss, weakened vision, and irritability. It has been
speculated that diet may play a role in the development of
type I diabetes, by influencing gut flora, intestinal perme-
ability, and immune function in the gut; wheat in particular
has been shown to have a connection to the development of
type I diabetes, although the relationship has not been well
understood (Nansel, Gellar and Mcgill, 2008; Knip, 2009).
Dietary intervention in children and adolescents with type I

diabetes with the goal of increasing consumption of nutrient-
dense carbohydrate-containing foods (e.g. fruits, vegetables,
whole grains and legumes) and improving metabolic out-
comes is believed to help attain normal control of glycemic
indexes. To examine the conformance to dietary guideline,
3-day diet records were obtained from a total number of
754 children aged 8–18 years with type I diabetes. Dietary
quality and nutrient intake were measured. Higher scores in-
dicate greater conformance to dietary guidelines. Children’s
basic characteristic information, such as age, gender, num-
ber of adults living with the children, and family incomes
were also collected.

Dietary quality is measured by healthy eating index
(HEI). A higher HEI score indicates better eating behavior
and dietary quality, and compliance to the dietary guide-
line. The total HEI score was obtained by summing the HEI
subscales including total fruit (HEI-1), total vegetable (HEI-
2), dark green/orange vegetables and legume (HEI-3), total
grains (HEI-4), whole grains (HEI-5), dairy (HEI-6), meat
(HEI-7), oils (HEI-8) and saturated fat (HEI-9). One ques-
tion of interest of the study is whether family incomes affect
patient’s eating behavior and dietary quality. Here we ex-
amine whether healthy eating index subscales are different
among families with different family incomes (three groups,
low, medium, and high). For each child, the HEI subscales
are obtained by averaging over the three days.

The statistical description of the 9 indexes is given in
Table 4. The table indicates that dietary quality in most
categories appears to be higher among families with higher
income. This could reflect a fact that family incomes play
a role in food selection. The P-values of OB1, OB2, H1,
H2, T1, T2, and T3 are 0.034, 0.033, 0.104, 0.090, 0.0064,
0.0057, and 0.0052 respectively, with T1, T2, and T2 being
more significant than OB1, OB2, H1, and H2.

5. CONCLUSIONS

Comparing the differences among several groups with
multiple endpoints is often encountered in biomedical re-
search. The existing approaches in the literatures mostly
focus on the differences between two populations. In this
work, we extended the results of O’Brien’s (1984), Huang et
al.’s (2005) and Liu et al.’s (2010) rank-based results and
proposed three test statistics T1, T2 and T3 according to
whether the normal assumptions hold, differences between
pairs of interest, or differences between all groups of inter-
est. When r = 2, the proposed tests are reduced to
be Liu et al.’s (2010) tests. Numerical results demon-
strate that the proposed methods are more powerful than
O’Brien’s (1984) and Huang et al.’s (2005) methods under
the Bonferroni corrections when the differences of the out-
comes are in different directions. Part of the loss in power
of their methods might be due to Bonferroni correction.

From Theorem 2.2 and Theorem 2.3, one can also con-
struct two test statistics similar to O’Brien (1984) and
Huang et al. (2005) using the linear combinations of the
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Table 4. Mean, median, standard deviation (sd), minimum value (min) and maximum (max)

HEI1 HEI2 HEI3 HEI4 HEI5 HEI6 HEI7 HEI8 HEI9

mean 1.72 2.13 0.19 4.60 2.30 5.44 7.63 6.42 3.84
median 1.39 1.75 0.00 5.00 1.91 5.27 9.64 6.74 3.12

Low sd 1.82 1.55 0.39 0.84 1.95 2.85 3.12 3.16 3.72
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 5.00 5.00 2.55 5.00 5.00 10.00 10.00 10.00 10.00

mean 2.00 2.20 0.11 4.67 2.37 5.22 7.39 6.83 4.55
median 1.65 1.89 0.00 5.00 2.18 5.15 9.12 7.84 4.92

Med. sd 1.91 1.67 0.22 0.78 1.99 2.95 3.28 3.28 3.55
min 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.13 0.00
max 5.00 5.00 1.51 5.00 5.00 10.00 10.00 10.00 10.00

mean 2.09 2.33 0.20 4.75 2.76 5.61 7.31 6.61 4.40
median 1.76 2.10 0.00 5.00 3.10 5.30 8.60 6.90 4.21

High sd 1.86 1.62 0.33 0.57 2.03 2.78 3.30 3.32 3.58
min 0.00 0.00 0.00 2.31 0.00 0.00 0.00 0.04 0.00
max 5.00 5.00 1.98 5.00 5.00 10.00 10.00 10.00 10.00

test statistic for each outcome. However, as stated in Liu et
al. (2010), the proposed max-type test statistic is a “global”
test and can handle the different directions of the effects for
the endpoints. So the proposed tests tend to be more ro-
bust than “linear”-type tests, which are constructed using
linear combinations of the test statistic for each endpoint.
On the other hand, after the significant results from such
global test, one can use Liu et al.’s method or O’Brien’s and
Huang et al.’s approach to do the pairwise comparison and
then find the differences of two groups.

APPENDIX A. THEORIES AND ESTIMATES

A.1 Proof of Theorem 2.1

Let Y = (X̄11·, X̄12·, . . . , X̄1p·, X̄21·, X̄22· . . . , X̄2p·, . . . ,
X̄r1·, X̄r2· . . . , X̄rp·)

′, μ = (μ′
1, . . . , μ

′
r)

′. Then Y ∼ N(μ,A)
and Z = WY . Then we have the result by applying a well
known result in Tong (1990) to determine the covariance ma-
trix of a linear transformation of multivariate normal vari-
ables.

A.2 Proof of Theorem 2.2

Since

U =

(√
n1 + n2

2n1n2

n1∑
i=1

n2∑
j=1

[
I{x11i<x21j}−I{x11i>x21j}

]
, . . . ,

√
nr−1 + nr

2nr−1nr

nr−1∑
i=1

nr∑
j=1

[
I{x(r−1)pi<xrpj}−I{x(r−1)pi>xrpj}

])′

is a U-statistic, it converges in distribution to a normal dis-
tribution as min{n1, n2, . . . , nr} → ∞.

We now calculate the variance and covariance matrix
of U . For a < b ∈ {1, 2, . . . , r} and c < d ∈ {1, 2, . . . , r},
denote

Ω(ab,cd)

= cov

((
U

(a,b)
1√

na + nb
,

U
(a,b)
2√

na + nb
, . . . ,

U
(a,b)
p√

na + nb

)′
,(

U
(c,d)
1√

nc + nd
,

U
(c,d)
2√

nc + nd
, . . . ,

U
(c,d)
p√

nc + nd

)′)
=̂ (δ(ab,cd)(st))p×p.

We have Ω(ab,ab) = Δ(ab,ab) based on Theorem 1 in Liu et
al. (2010) as min{n1, n2, . . . , nr} → ∞.

When a = c, b �= d,

cov
(
I{xasi<xbsk}−I{xasi>xbsk}, I{xatj<xdtm}−I{xatj>xdtm}

)
=0

for i �= j ∈ {1, . . . , na}, k ∈ {1, . . . , nb},m ∈ {1, . . . , nd},

and

cov
(
I{xasi<xbsk} − I{xasi>xbsk}, I{xati<xdtm} − I{xati>xdtm}

)
= E

{
E
[
(I{xasi<xbsk} − I{xasi>xbsk})(I{xati<xdtm}

− I{xati>xdtm})|(xasi, xati)
]}

= E
[[
1− 2F o

bs(Xas)
][
1− 2F o

dt(Xat)
]]

= 4cov
(
F o
bs(Xas), F

o
dt(Xat)

)
for i ∈ {1, . . . , na}, k ∈ {1, . . . , nb},m ∈ {1, . . . , nd},

where we use E
[
F o
bs(Xas)

]
= 1/2, a �= b = 1, 2, . . . , r, s =

1, . . . , p, under H0.
It thus follows that

δ(ab,ad)(s, t)

= cov

(
U

(a,b)
s√

na + nb
,

U
(a,d)
t√

na + nd

)
= cov

(√
na + nb

2nanb

na∑
i=1

nb∑
k=1

(I{xasi<xbsk} − I{xasi>xbsk}),
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√
na + nd

2nand

na∑
j=1

nd∑
m=1

(I{xatj<xdtm} − I{xatj>xdtm})

)

=

√
(na + nb)(na + nd)

4n2
anbnd

4nanbndcov
(
F o
bs(Xas), F

o
dt(Xat)

)
=

√
(na + nb)(na + nd)

na
cov
(
F o
bs(Xas), F

o
dt(Xat)

)
=

√
(ηa + ηb)(ηa + ηd)

ηa
cov
(
F o
bs(Xas), F

o
dt(Xat)

)
,

as min{n1, . . . , nr} −→ ∞.
Hence Ω(ab,ad) = Δ(ab,ad) as min{n1, . . . , nr} −→ ∞.

When a �= c, b = d, Ω(ab,cb) = Δ(ab,cb) as min{n1, . . . ,
nr} −→ ∞ where the derivation is similar to above.

When a �= c, b �= d, b = c,

cov
(
I{xask<xbsi}−I{xask>xbsi}, I{xbtj<xdtm}−I{xbtj>xdtm}

)
=0

for i �= j ∈ {1, . . . , nb}, k ∈ {1, . . . , na},m ∈ {1, . . . , nd}

and

cov
(
I{xask<xbsi} − I{xask>xbsi}, I{xbti<xdtm} − I{xbti>xdtm}

)
= E

{
E
[
(I{xask<xbsi} − I{xask>xbsi})

× (I{xbti<xdtm} − I{xbti>xdtm})
∣∣(xbsi, xbti)

]}
= E

[[
2F o

as(Xbs)− 1
][
1− 2F o

dt(Xbt)
]]

= −4cov
(
F o
as(Xbs), F

o
dt(Xbt)

)
,

for i ∈ {1, . . . , nb}, k ∈ {1, . . . , na},m ∈ {1, . . . , nd}.

Therefore,

δ(ab,bd)(s, t)

= cov

(
U (a,b)

√
na + nb

,
U (b,d)

√
nb + nd

)
= cov

(√
na + nb

2nanb

na∑
k=1

nb∑
i=1

[
I{xask<xbsi} − I{xask>xbsi}

]
,

√
nb + nd

2nbnd

nb∑
j=1

nd∑
m=1

[
I{xbtj<xdtm} − I{xbtj>xdtm}

])

= −
√

(na + nb)(nb + nd)

4n2
bnand

4nanbndcov
(
F o
as(Xbs), F

o
dt(Xbt)

)
= −

√
(na + nb)(nb + nd)

nb
cov
(
F o
as(Xbs), F

o
dt(Xbt)

)
= −

√
(ηa + ηb)(ηb + ηd)

ηb
cov
(
F o
as(Xbs), F

o
dt(Xbt)

)
as min{n1, . . . , nr} −→ ∞, which indicates that Ω(ab,bd) =
Δ(ab,bd) as min{n1, . . . , nr} −→ ∞. When a �= c, b �= d,b �= c,

cov( U(a,b)
√
na+nb

, U(c,d)
√
nc+nd

) = 0.

A.3 Proof of Theorem 2.3

I) Denote the ordered statistic among xas1, xas2, . . . ,
xasna by xas(i), i = 1, 2, . . . , na, a = 1, 2, . . . , r. Then

Ras· =
na∑
i=1

(
i+

r∑
b=1,b �=a

nb∑
j=1

I{xbsj<xas(i)}

)

=
na(na + 1)

2
+

r∑
b=1,b �=a

nb∑
j=1

na∑
i=1

I{xbsj<xasi}.

So,

Ras· −
na(n+ 1)

2
=

r∑
b=1,b �=a

nb∑
j=1

na∑
i=1

(
I{xbsj<xasi} −

1

2

)
,

s = 1, 2, . . . , p,

and

R̄as· −
n+ 1

2
=

1

na

r∑
b=1,b �=a

nb∑
j=1

na∑
i=1

(
I{xbsj<xasi} −

1

2

)
,

s = 1, 2, . . . , p.

Under H0, we have the conclusion.
II) Since R is a U-statistic, it converges to a normal dis-

tribution when min{n1, n2, . . . , nr} → ∞ under H0. Denote

the variance and covariance matrix of (
R̄a1·−n+1

2√
n

,
R̄a2·−n+1

2√
n

,

. . . ,
R̄ap·−n+1

2√
n

)′ and (
R̄b1·−n+1

2√
n

,
R̄b2·−n+1

2√
n

, . . . ,
R̄bp·−n+1

2√
n

)′ by

V (a,b) = (v(a,b)(s, t))p×p. We have

v(a,a)(s, t)

= cov

(
1√
nna

r∑
c=1,c �=a

nc∑
j=1

na∑
i=1

(I{xcsj<xasi}−1/2),

1√
nna

r∑
c=1,c �=a

nc∑
m=1

na∑
k=1

(I{xctm<xatk}−1/2)

)

=

r∑
c=1,c �=a

cov

(
1√
nna

nc∑
j=1

na∑
i=1

(I{xcsj<xasi}−1/2),

1√
nna

nc∑
m=1

na∑
k=1

(I{xctm<xatk}−1/2)

)

+

r∑
c=1,c �=a

r∑
d=1,d�=a,d�=c

cov

(
1√
nna

nc∑
j=1

na∑
i=1

(I{xcsj<xasi}−1/2),

1√
nna

nd∑
m=1

na∑
k=1

(I{xdtm<xatk}−1/2)

)

=

r∑
c=1,c �=a

1

nn2
a

[
nanc(nc − 1)cov

(
F o
cs(Xas), F

o
ct(Xat)

)
+ ncna(na−1)cov

(
F o
as(Xcs), F

o
at(Xct)

)
+ nancσ

]
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+

r∑
c=1,c �=a

r∑
d=1,d�=a,d�=c

1

nn2
a

nancnd

× cov
(
F o
cs(Xas), F

o
dt(Xat)

)
,

where |σ| ≤ 1, and more details about σ can refer to Liu et
al. (2010). When min{n1, n2, . . . , nr} → ∞,

v(a,a)(s, t)

=

r∑
c=1,c �=a

[
η2c
ηa

cov
(
F o
cs(Xas), F

o
ct(Xat)

)
+ ηccov

(
F o
as(Xcs), F

o
at(Xct)

)]
+

r∑
c=1,c �=a

r∑
d=1,d�=a,d�=c

ηcηd
ηa

cov
(
F o
cs(Xas), F

o
dt(Xat)

)
.

v(a,b)(s, t)
∣∣
a �=b

= cov

(
1√
nna

r∑
c=1,c �=a

nc∑
j=1

na∑
i=1

(I{xcsj<xasi} − 1/2),

1√
nnb

r∑
d=1,d�=b

nd∑
m=1

nb∑
k=1

(I{xdtm<xbtk} − 1/2)

)

= cov

(
1√
nna

nb∑
j=1

na∑
i=1

(I{xbsj<xasi} − 1/2),

1√
nnb

na∑
m=1

nb∑
k=1

(I{xatm<xbtk} − 1/2)

)

+ cov

(
1√
nna

nb∑
j=1

na∑
i=1

(I{xbsj<xasi} − 1/2),

r∑
d=1,d�=a,d�=b

1√
nnb

nd∑
m=1

nb∑
k=1

(I{xdtm<xbtk} − 1/2)

)

+ cov

(
r∑

c=1,c �=a,c �=b

1√
nna

nc∑
j=1

na∑
i=1

(I{xcsj<xasi} − 1/2),

1√
nnb

na∑
m=1

nb∑
k=1

(I{xatm<xbtk} − 1/2)

)

+

r∑
c=1,c �=a,c �=b

cov

(
1√
nna

nc∑
j=1

na∑
i=1

(I{xcsj<xasi} − 1/2),

1√
nnb

nc∑
m=1

nb∑
k=1

(I{xctm<xbtk} − 1/2)

)

= − 1

nnanb

[
nanb(nb − 1)cov

(
F o
bs(Xas), F

o
bt(Xat)

)
+ nbna(na − 1)cov

(
F o
as(Xbs), F

o
at(Xbt)

)
+ nanbσ

]
+

r∑
c=1,c �=a,c �=b

{
1

nnanb
ncnanb

[
−cov

(
F o
as(Xbs), F

o
ct(Xbt)

)

− cov
(
F o
cs(Xas), F

o
bt(Xat)

)
+cov

(
F o
as(Xcs), F

o
bt(Xct)

)]}
.

When mini=1,2,...,r ni −→ ∞,

v(a,b)(s, t)
∣∣
a �=b

= −
[
ηbcov

(
F o
bs(Xas), F

o
bt(Xat)

)
+ ηacov

(
F o
as(Xbs), F

o
at(Xbt)

)]
+

r∑
c=1,c �=a,c �=b

ηc

[
cov
(
F o
as(Xcs), F

o
bt(Xct)

)
− cov

(
F o
as(Xbs), F

o
ct(Xbt)

)
− cov

(
F o
cs(Xas), F

o
bt(Xat)

)]
.

III) This is a direct result from II.

A.4 Empirical estimates of covariances

For a < b ∈ {1, 2, . . . , r}, s = 1, 2, . . . , p, denote the esti-

mator of θ(a, b, s) by θ̂(a, b, s), where

θ̂(a, b, s) =
1

nanb

na∑
i=1

nb∑
j=1

[
I{xasi<xbsj} − I{xasi>xbsj}

]
.

Let the midrank R
(b)
asi = the midrank of xasi among {xasi,

xbs1, xbs2, . . . , xbsnb
}, i = 1, 2, . . . , na, and the midrank

R
(a)
bsj = the midrank of xbsj among {xbsj , xas1, xas2,

. . . , xasna}, j = 1, 2, . . . , nb. Then we have F̂ o
as(Xbs) =

R
(a)
bsj−1

na
, and F̂ o

bs(Xas) =
R

(b)
asj−1

nb
. When a < b, let P (a,b)

be the na × p matrix with (i, s) element

p(a,b)(is) = 2R
(b)
asi − 2− nb + nbθ̂(a, b, s),

and P (b,a) be the nb × p matrix with (j, s) element

p(b,a)(js) = 2R
(a)
bsj − 2− na − naθ̂(a, b, s).

A consistent estimator of cov
(
F o
bs(Xas), F

o
bt(Xat)

)
is then

given by

ĉov
(
F o
bs(Xas), F

o
bt(Xat)

)
=

1

na

na∑
i=1

[
R

(b)
asj − 1

nb
− 1− θ̂(a, b, s)

2

]

×
[
R

(b)
atj − 1

nb
− 1− θ̂(a, b, t)

2

]
=

1

4nan2
b

na∑
i=1

[
2R

(b)
asj − 2− nb + nbθ̂(a, b, s)

]
×
[
2R

(b)
atj − 2− nb + nbθ̂(a, b, t)

]
.
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A consistent estimate of cov
(
F o
as(Xbs), F

o
at(Xbt)

)
is

given by

ĉov
(
F o
as(Xbs), F

o
at(Xbt)

)
=

1

nb

nb∑
j=1

[
R

(a)
bsj − 1

na
− 1 + θ̂(a, b, s)

2

]

×
[
R

(a)
btj − 1

na
− 1 + θ̂(a, b, t)

2

]
=

1

4n2
anb

nb∑
j=1

[
2R

(a)
bsj − 2− na − naθ̂(a, b, s)

]
×
[
2R

(a)
btj − 2− na − naθ̂(a, b, t)

]
.

Then, a consistent estimator of the covariance matrix can
be derived, whose elements are given by(

ĉov
(
F o
bs(Xas), F

o
bt(Xat)

))
=

(P (a,b))′P (a,b)

4nan2
b

,

(
ĉov
(
F o
as(Xbs), F

o
at(Xbt)

))
=

(P (b,a))′P (b,a)

4n2
anb

,

for a < b ∈ {1, 2, . . . , r}.
Similarly, for a < b < c ∈ {1, 2, . . . , r}, we have(

ĉov
(
F o
bs(Xas), F

o
ct(Xat)

))
=

(P (a,b))′P (a,c)

4nanbnc
,

(
ĉov
(
F o
cs(Xas), F

o
bt(Xat)

))
=

(P (a,c))′P (a,b)

4nanbnc
,

(
ĉov
(
F o
as(Xbs), F

o
ct(Xbt)

))
=

(P (b,a))′P (b,c)

4nanbnc
,

(
ĉov
(
F o
cs(Xbs), F

o
at(Xbt)

))
=

(P (b,c))′P (b,a)

4nanbnc
,

and (
ĉov
(
F o
as(Xcs), F

o
bt(Xct)

))
=

(P (c,a))′P (c,b)

4nanbnc
,

(
ĉov
(
F o
bs(Xcs), F

o
at(Xct)

))
=

(P (c,b))′P (c,a)

4nanbnc
.
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