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Distributed iteratively reweighted least squares
and applications

Colin Chen
∗

The iteratively reweighted least squares (IRLS) method
has been one of the most used methods in statistics estima-
tion. From maximum likelihood estimation for various mod-
els, to general estimating equations with longitudinal data,
to robust regression, and to general nonlinear parameter es-
timation, IRLS has been popularly used to find solutions.
However, for very large data, the iterative style could be
computationally expensive. We propose a distributed ver-
sion of IRLS, which can be used on a cluster of comput-
ers/threads networked with high speed communications. We
explore applications of the distributed IRLS on various es-
timation problems. Using message passing interface (MPI),
we implemented the distributed IRLS for robust regression
on a cluster with 41 threads. Experiments from the imple-
mentation show that the distributed IRLS can solve very
large problems more efficiently and economically compared
to the classical non-distributed IRLS.
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1. INTRODUCTION

Most statistical estimation problems can be ultimately re-
duced to an optimization problem. In regression, assuming
yi, i = 1, . . . , n are independent observations from the re-
sponse variable Y and xij , i = 1, . . . , n, j = 1, . . . , p are the
corresponding covariates. The optimization problem with re-
spect to a p-vector of parameters β for typical regression has
the form

(1) min
β

n∑
i=1

ρ(xi, yi, β),

where xi = (xi1, . . . , xip)
T is the ith covariate vector, ρ is

the object function. When function ρ has continuous sec-
ond derivatives in β, the classical Newton-Raphson method
may be used to efficiently solve the optimal solution of β.
However, it is quite common that ρ does not have sec-
ond derivatives in β, for example, Tukey’s bisquare func-
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tion used in robust regression. In such cases, the itera-
tively reweighted least squares (IRLS) method by Beaton
and Tukey (1974, [1]), which uses an alternative explicitly
defined weight rather than the Hessian has proven efficient
(Holland and Welsch, 1977, [4]).

IRLS is not just used in robust regression. It has a wide
range of applications in maximum likelihood estimation with
generalized linear models and accelerated failure models
with censored data, quasi-likelihood estimation with gen-
eral estimating equations, estimation of generalized method
of moments, and general nonlinear parameter estimation. In
the expectation-maximization framework with mixed mod-
els, IRLS is also often used for the maximization.

The excellent paper of Green (1984, [3]) with discus-
sions gave a deep investigation of IRLS, from its relation
to Newton-Raphson and Fisher scoring to its extensive ap-
plications in generalized linear models, linear regression, and
nonlinear models. No doubt, after another quarter of cen-
tury practice in various areas, IRLS roots deeper in scien-
tific computing as well as faces some new challenges. One
challenge is with its performance for very large data sets.
With nowadays enormous data flow, the iterative style of
IRLS could be computationally expensive. In some cases,
it could be even slower than the well-known computation-
ally demanding linear programming (Chen, He, and Wei,
2008, [2]).

Multiple machines connected with high speed network
have demonstrated powerful and economical ways for ex-
tensive computing (Kontoghiorghes, 2006, [7]). We propose
a novel distributed version of IRLS on a cluster of comput-
ers/threads connected with high speed communication tools,
for example, the popular message passing interface (MPI).
The main idea of the distributed IRLS is decomposing the
weighted least squares, evenly distributing the computing
tasks and data on the cluster, and efficiently collecting in-
termediate results required by the iterative procedure using
a log2 scheme. This paper focuses on efficiently forming the
iterative reweighted least squares equations on a distributed
system. Solving the equations takes a much smaller portion
of the computing time of the IRLS procedure for most large
scale applications.

We explore applications of the distributed IRLS on var-
ious cases mentioned early. While in some cases, applying
the distributed IRLS is straightforward, in other cases ei-
ther the problem needs to be transformed or the algorithm
needs extension.
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Section 2 introduces IRLS and its applications in statis-
tics estimation. Section 3 presents the proposed distributed
IRLS. Applications of the distributed IRLS in several cat-
egories are investigated in Section 4. Section 5 shows some
results of an implementation for robust regression. Some ex-
tensions and future applications are discussed in Section 6.

2. IRLS

In this section, following the general formulation of Green
(1984, [3]), we briefly introduce IRLS, its relation to the
Newton-Raphson method and Fisher scoring method, and
some applications. More details including the history of
IRLS can be found in Green (1984, [3]).

The popularity of IRLS in statistics estimation sprouts
from the Newton-Raphson method for maximizing the log-
likelihood function L based on a statistical model. The sta-
tistical model is often assumed to have a probability (or
density) function, from which the log-likelihood function L
forms with observed values and predictors.

Let η be the n-vector predictor based on the observed co-
variant values. It is a function of a p-vector β of parameters
of interest (e.g., Xβ in linear regression). p is typically much
smaller than n. So the maximization problem is

(2) max
β

L(η(β)).

If L(η(β)) has continuous second derivatives in β, then the
Newton-Raphson method solves the likelihood equations

(3)
∂L

∂β
= 0

by iteratively solving

(4) − ∂2L

∂β∂βT
(β∗ − β) = DTu

for an updated estimate β∗, where the n×p matrix D = ∂η
∂β ,

u = ∂L
∂η , and the Hessian H = ∂2L

∂β∂βT are all evaluated at
the current value of β. Since the Hessian H depends on ran-
domly observed values, in practice −H may not be positive
definite and a solution of β∗ may not exist. Green (1984, [3])
provided an approximation,

− ∂2L

∂β∂βT
≈

(
∂η

∂β

)T

E

(
∂L

∂η

(
∂L

∂η

)T
) (

∂η

∂β

)

= DTAD,(5)

where A = E(∂L∂η (
∂L
∂η )

T ) is positive definite and (4) becomes

(6) DTAD(β∗ − β) = DTu.

Assuming D is of full rank p, (6) always has a solution for
β∗. The approximation by (5) is called the Fisher scoring

method for solving the likelihood equations in (3). (6) rep-
resents a standard weighted least squares estimation prob-
lem with weight A and design matrix D. The weight ma-
trix depends on β and needs to be updated (reweighted) for
each iteration. Thus the exact Newton-Raphson method for
solving the likelihood equations in (3) is approximated by
iteratively reweighted least squares.

In robust regression,

(7) − L(β) =

n∑
i=1

ρ(ri),

where ri = yi−ηi(β) = yi−xT
i β is the ith residual. As men-

tioned in the previous section, ρ might not have continuous

second derivatives. So, ∂2L
∂β∂βT might not exist. To solve the

likelihood equation

(8)
∂L

∂β
=

n∑
i=1

∂ρ

∂r
xi = 0,

let ψ(r) = ∂ρ
∂r and w(r) = ψ(r)

r . Then (8) becomes

(9) XTWXβ = XTWY,

where X = (x1, . . . , xn)
T , Y = (y1, . . . , yn)

T , and W is an
n× n diagonal matrix with diagonal elements w(ri), which
depend on β. With an initial value β, the likelihood equation
(8) can be solved iteratively by solving

(10) XTW (β)Xβ∗ = XTW (β)Y,

which are weighted least squares equations with weight
W (β) and design matrix X. Different from the Newton-
Raphson method, IRLS presented in (10) derives directly
from the likelihood equations (8) through an explicitly de-
fined weight function w(r), which has a clear statistical
interpretation in robust regression (Holland and Welsh,
1977, [4]).

The derivation of IRLS does not necessarily limit to the
above two methods. In general, any iterative method with
weighted least squares equations, such as those in (6) or
(10), has an IRLS formulation. Such easy formulations also
contribute to IRLS’ popularity.

Convergence of IRLS though generally is guaranteed in
practice, theoretical proofs may not be easy in some cases.
For example, in robust regression, proofs of convergence only
are known with strictly increasing ψ(r) (Huber, 1981, [5]).
If convergence is achieved, the solution of IRLS is usually a
local maxima/minima, which depends on the initial values.
To obtain a global solution, multiple initial values should be
tried.

3. DISTRIBUTED IRLS

The major computation involved in IRLS is forming and
solving the weighted least squares equations in (6) or (10).
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For large data, especially data with a large number of ob-
servations, forming these equations takes a large portion
of the total computing time. In this section, we decom-
pose the computing involved in (6) or (10) into indepen-
dent pieces and evenly distribute them on a cluster of com-
puters/threads. Intermediate results are efficiently collected
using a log2 scheme through high speed communications
on the cluster. Solutions are broadcasted on the cluster
to keep the iterative procedure proceeding until conver-
gence.

3.1 Decomposing

When the weight matrix is diagonal as in robust regres-
sion, computing XTWX can be decomposed according to
the rows of X,

(11) XTWX =

k∑
i=1

XT
i WiXi,

where XT = (XT
1 , . . . , X

T
k ) and Wi is the corresponding

sub-diagonal matrix to Xi. Data are split as equal as possi-
ble. If n

k is not an integer, the last piece Xk has less data.
Correspondingly, the right side in (10) is decomposed as

(12) XTWY =

k∑
i=1

XT
i WiYi,

where Y T = (Y T
1 , . . . , Y T

k ).
If W is not diagonal, but block-diagonal as often seen in

the longitudinal data analysis, we could decompose XTWX
and XTWY according to the block structure. Assuming W
has a large number of blocks, we would split the data such
that Wi, i = 1, . . . , k are sub-block-diagonal and roughly
of equal size. This may need some shuffling with the data
blocks.

If the weight matrix W in (10) (or A in (6)) can be di-
agonalized or block-diagonalized, the weighted least squares
equations are still decomposable. Let

(13) W = RTSR,

where R is an n × n constant matrix (does not depend on
β), then (10) becomes

(14) (RX)TSRXβ = (RX)TSRY.

By replacing X and Y with RX and RY , we have decom-
posable weighted least squares equations.

The weighted least squares equations in (6) (or (10)) are
not decomposable if the weight matrix A (or W ) is not di-
agonalizable. One suggestion is to transform the estimation
problem to have independent observations, or independent
groups of observations.

The decomposition considered in this paper, such as (11)
or (12), is row-wise. When the weight matrix A (orW ) is not

diagonalizable, it is not decomposable row-wise. However,
we can still decompose the multiplication of two matrice
column-wise—evenly split the columns of D and A corre-
spondingly and distribute the columns ofD and A according
to the blocks of the DTA to the workers. The column-wise
decomposition allows each worker to compute one final block
of DTA.

To decompose the multiplication of three matricesDTAD
(or XTWX) column-wise, we evenly split the work accord-
ing to the blocks of DTAD. Due to symmetry, only the
lower triangular of DTAD is considered. Columns of D are
distributed to the workers accordingly. Such column-wise
decomposition requires each worker to store and update the
weight matrix A (or W ). It is only suitable when A is rela-
tively sparse (e.g., a thin-banded) weight matrix.

The column-wise decomposition avoids intermediate re-
sults aggregation in the cost of repeatedly distributing the
same column to multiple workers. However, when the num-
ber of variables is large and data have been distributed to the
workers (or workers have independent access to the data),
the column-wise decomposition may be preferred. While fo-
cusing on row-wise decomposition, we will also show some
preliminary results for distributed IRLS with column-wise
decomposition.

3.2 Data distribution and intermediate
results aggregation

Once the weighted least squares problem is successfully
decomposed, we can distribute data and tasks on the cluster.
These include Xi, Yi, and codes to compute Wi, X

T
i WiXi,

and XT
i WiYi (Di,ui, if they depend on β). For data distri-

bution, the master may just tell each worker the necessary
information of its share of data and let the worker read the
data in.

The results XT
i WiXi and XT

i WiYi computed by each
worker need to be summed up. We use a log2 scheme—every
two workers aggregate their results on one of them, then this
worker continues the aggregation on the next level. The final
results are accumulated on the last worker k, who also solves
the equations and checks convergence. If convergence is not
achieved, worker k broadcasts the solution on the cluster
and the iterative procedure proceeds.

Data aggregation and broadcasting are supported by
communication tools on the cluster. The most popularly
used communication tool on a cluster is the message pass-
ing interface (MPI). MPI has been developed since 1993 by
researchers from Argonne National Laboratory (Pacheco,
1996, [10]) and has become a standard for message pass-
ing distributed computing. MPI provides an extensive set
of communication subroutines including point-to-point com-
munication, broadcasting and collective communication. It
has many implementations on a variety of distributed com-
puters including massive distributed computers, clusters,
and networks of workstations.
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Using MPI, through client requests, we set up a cluster of
computers/threads. One thread takes the role as the mas-
ter/root, coordinating data distribution and aggregation as
well as communicating with the client. The other threads are
called workers/nodes. Our design can also be implemented
using other communication tools with similar functions.

3.3 The algorithm

The algorithm for the distributed IRLS is summarized in
the following steps.

Step 0A. Data reading and distribution. There are multi-
ple options. The master can read the entire data, for
example the design matrix X and the response Y in
robust regression. Then it distributes the data to the
workers according to the decomposition. A potentially
more efficient way is that the master coordinates the
data distribution by telling the workers where and how
much they should read. Alternatively, data could be
pre-distributed to the workers according to a natural
decomposition.

Step 0B. Initial values. The initial values for the weights
are set to 1 (i.e., W = I, the identity matrix), which
corresponds to the ordinary least squares estimator. Al-
ternatively, β is set to some initial values andW (D and
u in (6) if they depend on β) is computed based on the
initial β values.

Step 1. Computing with each worker. Each worker com-
putes its portion of W , XTWX, and XTWY (or A,
DTAD, DTu in (6)). Except initial values, W is com-
puted according to the updated solution broadcasted
on the cluster by the last worker. This is done by each
worker independently by assuming a successful decom-
position.

Step 2. Intermediate results aggregation. Alternate work-
ers communicate neighbors to aggregate the computed
XTWX and XTWY (or DTAD and DTu) repeatedly
in a log2 scheme as shown in Figure 1. Worker k accu-
mulates the final results.

Step 3. Solving weighted least squares and checking conver-
gence. Worker k computes the weighted least squares
estimates β̂ = (XTWX)−1XTWY and checks the con-
vergence by comparing relative changes of β in consecu-
tive iterations. If convergence is not achieved, it broad-
casts β̂ to other workers and the iteration goes back to
Step 1 until the convergence is achieved or reports that
the number of iterations exceeds a limit.

Figure 1 presents the flow chart of the distributed IRLS
algorithm.

In the case of a diagonal weight matrixW , the distributed
IRLS reduces computing time for W , XTWX, and XTWY
from Ocompute(np

2) to Ocompute(np
2/k) with the cost of ad-

ditional communication time. However, the log2 scheme of
aggregation limits the communication time in the log2 scale

Figure 1. Distributed Iteratively Reweighted Least Squares.

of the number of workers Ocommunicate(p
2 log2 k), which al-

lows the algorithm to use a larger optimal number of workers
for a large problem compared to classical aggregation meth-
ods. The log2 scheme also solves the communication traffic
problem which incurs when all workers try to communicate
with the master to pass on intermediate results. As a gen-
eral implementation rule, we would always like to relieve the
master from heavy communication duty with workers, since
the master could be busy in communication with clients.

The algorithm focuses on the case of row-wise decomposi-
tion. For column-wise decomposition, we need some changes.
The main changes are for data distribution and intermedi-
ate results aggregation. The master distributes columns of
X and Y according to an even split of the lower triangular of
XTWX. To reduce the number of columns to be distributed
to the workers, we use some rule of thumb split, which might
not be optimal. For intermediate results aggregation, MPI
can use the efficient collective communication tool to fill in
the entire lower triangular of XTWX and XTWY by the
last worker.

It should be pointed out that the distributed IRLS pre-
sented in this paper is focusing on efficiently forming the nor-
mal equations in (6) (or (10)) instead of solving them. The
main reasons are that large scale IRLS problems are very of-
ten caused by a large number of observations, and that even
with a thousand variables, solving those normal equations
takes a much smaller portion of the computing time. We
do not exclude efficiently using parallel/distributed solvers
for these normal equations, e.g., parallel QR or other fac-
torization methods, especially when the number of variables
exceeds several thousands.

4. APPLICATIONS

In this section, we apply the distributed IRLS on sev-
eral popular statistical estimation problems, which include
maximum likelihood estimation for independent as well as
correlated data, robust regression, and nonlinear parameter
models.
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4.1 MLE with independent observations

With independent observations, the log-likelihood func-
tion L(η) has the form

(15) L(η) =

n∑
i=1

li(ηi).

So, both the Hessian H and the Fisher information matrix
A with respect to η = (η1, . . . , ηn)

T are diagonal. Decom-
position of the weighted least squares equations in (6) is
straightforward.

For generalized linear models in the exponential family
with canonical link

(16) li(ηi) = φ−1(yi − ηi − b(ηi)) + c(yi, φ),

where b(·) and c(·) are some functions and φ is a disper-
sion parameter, ηi = xT

i β is the canonical parameter. More
generally, Nelder and Wedderburn (1972, [9]) proposed

(17) li = φ−1πi(yi − θi − b(θi)) + c(yi, φ),

where b(·) and c(·) are prescribed functions, {πi} is a set
of given weights, and φ is the dispersion parameter as in
(16). The canonical parameter θi is a function of the linear
predictor ηi = xT

i β, i = 1, . . . , n. With this linear predictor,
D = X doesn’t depend on β.

For accelerated failure models with censored data

li(ηi) = δ1 log
f(μi)

σ
+ δ2 log s(μi) + δ3 logF (μi)(18)

+δ4 log(F (μi)− F (νi)),

where μi =
yi−xT

i β
σ , νi =

zi−xT
i β

σ . f , s, and F are the
corresponding density, survival, and cumulative distribu-
tion functions, respectively. δ1, δ2, δ3, δ4, are indicators
for uncensored, right-censored, left-censored, and interval-
censored, respectively. So,

∑4
i−1 δi = 1. σ is the scale pa-

rameter.
For some distributions with accelerated failure models,

the second derivatives of li may not be computed explicitly
and approximation is often used, for example, the gamma
distribution. The quality of such approximation affects the
weight in IRLS, and thus the convergence (Meeker and Es-
cobar, 1998, [8]).

The dispersion φ or scale σ parameter also needs to be
estimated on the cluster. In Section 4.3, we explain how
the scale parameter σ in robust regression is estimated on a
cluster.

4.2 Quasi-likelihood estimation with
correlated data

For longitudinal data, observations within a subject are
correlated. If there are nj observations yj1, . . . , yjnj for the

jth subject, j = 1, . . . , N , and n =
∑N

j=1 nj , the quasi-
likelihood method of Wedderburn (1974, [12]) assumes the
log-quasi-likelihood Q satisfying

(19)
∂Q

∂η
= V −1(η)(Y − η)

and solves the quasi-likelihood estimating equations

(20)
∂η

∂β

∂Q

∂η
= DTV −1(η)(Y − η) = DTu = 0,

where V (η) is the covariance matrix of Y and u =
V −1(η)(Y − η). Similar arguments as in (5) lead to the
weighted least squares for solving β∗

(21) DTV −1(η)D(β∗ − β) = DTu.

Since the covariance matrix is block-diagonal with block
sizes nj , j = 1, . . . , N , the weight matrix V −1(η) is
also block-diagonal. The decomposition strategy for block-
diagonal weight matrix described in Section 3 can be used.

Very often, block sizes nj , j = 1, . . . , N are not equal.
In practice, we sort the data by subject block sizes in de-
scending order, then group subjects into subgroups such
that these subgroups have roughly the same number of rows
of the design matrix D. These subgroups are matched to the
workers on the cluster.

4.3 Robust regression

IRLS may be the most used method for estimation in
robust regression. Adjusting the weights for potential out-
liers to get resistant estimates provides a direct statistical
interpretation for IRLS in robust regression.

The weights derived from (8) are decreasing functions
depending solely on the absolute residuals. When outly-
ingness with the covariates is also considered, the weights
should also be functions of the covariates. However, as
long as weights wi can be computed observation-wise, i.e.,
wi = w(ri, xi), the decomposition in (11) is maintained.

In robust regression, scale equivariance is often
required—changing measurement unit should not change
the outlyingness. A scale parameter σ is used in the model
and the weights are defined as functions of the standard-
ized residuals r̃i =

ri
σ . Often σ needs to be estimated. One

method is using the Huber function iteratively

(22) (σ̂(m+1))2 =
1

nh

n∑
i=1

χd(
ri

σ̂(m)
)(σ̂(m))2,

where

χd(x) =

{
x2/2 if |x| < d
d2/2 otherwise

is the Huber function and d and h are given constants.
Solving σ by (22) on the cluster needs aggregating squares

of the residuals. This can be done together with aggregating
XTWX in a log2 scheme.
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Table 1. Time (in millisecond) Used by Each Component of Distributed IRLS per Iteration

Time Component Operation

19128 XTWX weighted matrix-matrix multiply (25,000 rows)
16761 gather XTWX gather and sum results from multiply (log2)

98 XTWY weighted matrix-vector multiply
19 gather XTWY gather and sum results from multiply (log2)

751 (XTWX)−1 factor 1,000× 1,000 matrix
6 (XTWX)−1XTWY matrix-vector multiply (the solution)
1 distribute broadcast the solution to all workers

90 W update local potion of W

4.4 Nonlinear models

When the predictor η is a nonlinear function of β, the n×p
matrix, D = ∂η

∂β isn’t constant and depends on the updated
β in each iteration. However, the dependence of D on β does
not affect the decomposition in (11) as long as the weight
matrix W is diagonal or block-diagonal. The dependence of
D on β does add extra computing for updating D for each
iteration.

5. IMPLEMENTATION AND NUMERICAL
RESULTS

5.1 Distributed robust regression

We implemented the proposed distributed IRLS for ro-
bust regression on a cluster of 23 machines, each running
4 opteron 1.8 GHz processors sharing about 16 GB mem-
ory. MPI is used for the communication. In the experiment,
through client request, we acquired 41 threads spreading on
the 23 machines. One thread acts as the master and the rest
40 threads are workers.

For robust regression, we use Tukey’s bisquare weight
function

w(r, c) =

{
(1− ( rc )

2)2 if |r| < c
0 otherwise

with c = 4.685 which corresponds to a 95% asymptotic effi-
ciency for the estimate. For simplicity, we take a fixed scale
σ = 1.

In the experiment, data are simulated with X being a
1,000,000 by 1,000 design matrix and Y being a response
vector of length 1,000,000. In our implementation, to fur-
ther speed up the computing, we have both X and XT in
memory. The total memory occupied by X, XT , and Y is
about 16 GB.

Table 1 shows the time used on each component of the
algorithm in a single iteration. The unit of time is a mil-
lisecond.

After 6 iterations, the distributed IRLS converges. Each
iteration takes nearly the same amount of time. The total
computing time is about 4 minutes. It took 5 minutes to
distribute X and Y to the 40 workers by the master. In
this experiment, only the master has access to the full data.

Table 2. Time (in second) for Distributed Robust Regression
with p = 1,000 and k = 40

n 200,000 400,000 600,000 800,000 1,000,000

Time 127 151 178 206 238

We would expect much faster data reading if the workers
can read data independently according to the information
passed from the master.

For such a large problem, non-distributed IRLS would fail
on most commonly used computers. The distributed IRLS
achieves a reasonable speed economically.

5.2 Performance

In this subsection, we examine the scalability, accuracy,
and complexity of the proposed distributed IRLS.

To demonstrate the scalability, we run the distributed ro-
bust regression implemented in the previous subsection with
a different number of observations (n), number of variables
(p), and number of workers (k). We focus on the scalabil-
ity of the distributed IRLS with the iterative procedure by
excluding the data distribution part, which is not the core
of our proposed algorithm. For the iterative procedure, even
with the overhead of communications among master and
workers, the scalability of the distributed IRLS with n is
still largely linear. With p fixed, the time spent on com-
munication is largely constant, while the dominant part of
computing of the XTWX matrix by each worker is propo-
tional to n. Table 2 shows the time (in seconds) for five runs
with n = 200,000 to 1,000,000 by 200,000 and p = 1,000
fixed with 40 workers. We specified the convergence rule of
relative change of estimates to be 10−6. All five runs stop
after 6 iterations. Time in Table 2 is the average of two re-
peated runs. Figure 2 shows the fitted line of the run time
against the number of observations n.

Next, we fix n = 1,000,000 and k = 40 and run the
distributed robust regression for p = 200 to 1,000 by 200.
Table 3 shows the time of these runs. Each time is the av-
erage of two repeated runs. A plot of these times against p2

shown in Figure 3 suggests that the scalability with p2 is
roughly linear.
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Figure 2. Scalability with n.

Table 3. Time (in second) for Distributed Robust Regression
with n = 1,000,000 and k = 40

p 200 400 600 800 1,000

Time 58 80 117 176 238

Table 4. Time (in second) for Distributed Robust Regression
with n = 1,000,000 and p = 1,000

k 20 40 60 80

Time 355 238 191 164

We also tested the scalability with the number of workers.
With n = 1,000,000 and p = 1,000 we ran the distributed
robust regression using three more sets of workers, k = 20,
60, and 80. The average run time of two repeats are shown
in Table 4. Figure 4 shows the plot of speedup against the
number of workers. The solid curve represents the Amdahl’s
law with a 30% overhead, which fits the four runs well.

To show the efficiency of the distributed system, we tested
the large robust regression problem with n = 1,000,000 and
p = 1,000 on a single 2.2 GHz processor sharing 64 GB mem-
ory. After three hours, the robust regression was still running
its first iteration. We figured out that the processor could not
occupy the required memory and disk paging was running.
With smaller p, the single processor did run through. We
will report this with the credit data in the next subsection.

The accuracy for a large distributed computing system is
also important. We examine the accuracy of our proposed
distributed IRLS using the relative difference between the
estimates from the distributed IRLS and non-distributed
IRLS:

Figure 3. Scalability with p2.

Table 5. Relative Difference between Distributed and
Non-distributed Robust Regression with p = 100

n 200,000 400,000 600,000 800,000 1,000,000

RD 1.32 10−7 3.62 10−7 8.23 10−8 1.54 10−8 2.45 10−8

(23)
‖b̂d − b̂s‖2

‖b̂s‖2
,

where b̂d is the solution from the distributed robust regres-
sion and b̂s is the solution from a single processor. We ran
robust regression with a smaller p = 100 due to the long
computing time with the single processor and n = 200,000
to 1,000,000 by 200,000. Table 5 shows the relative difference
between the two sets of solutions. These relative differences
show that distributed robust regression converges nearly to
the same solutions as from the non-distributed version with
respect to the convergence criterion 10−6 used for both sets
of runs.

It should be pointed out that the good accuracy achieved
here is partly due to the existence of a unique solution with
our robust regression example. If the solution is sensitive by
itself, such accuracy may not be achieved. However, data
transition with MPI is highly accurate. Poor accuracy is
mostly due to the instability of the solutions rather than
the distributed system.

The worst case for our proposed distributed IRLS is when
the weight matrix W is not decomposable. If W is dense,
it needs np(n + p) multiplication operations from XTWX.
The iterative reweighted scheme requires W to be updated
in each iteration. An UDU decomposition of W does not
help too much to fit in the distributed IRLS with row-wise
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Figure 4. Scalability with k.

Table 6. Time (in second) for Thin-Banded Weight Matrix
with Column-Wise Decomposition and n = 1,000,000,

p = 1,000, and k = 40

s 1 3 5 7 9

Time 185 283 401 532 677

decomposition. In this case, we implemented the distributed
IRLS with column-wise decomposition. As described in Sec-
tion 3.1, when n is large, only relatively sparse W is suitable
to fit in the distributed IRLS. We allow W to be stored and
updated by a single worker or to be stored and updated
by all workers. With a single worker update, this worker
needs to broadcast W to other workers when it finishes the
update in each iteration. The balance between the broad-
casting and repeated updating by each worker depends on
the data size of W . However, our experience recommends
the latter.

We tested the distributed IRLS with column-wise decom-
position using the previous robust regression example. Al-
though the W matrix is diagonal in this example, we assume
it is a banded symmetric matrix with off-diagonal elements
being 0. Multiplication between a number and 0 is executed.
Table 6 shows the performance (in second) of the implemen-
tation. s is the size of the band. s = 1 indicates W being
simply diagonal.

Table 6 shows that for the diagonal W (s = 1) the it-
erative procedure with column-wise decomposition is faster
(took about 3 minutes) than with the row-wise decomposi-
tion (took about 4 minutes). This is in the cost of almost
twice of the data distribution time (took about 10 minutes).

We would point out that our column-wise decomposition
may not be optimal. There is room to improve. Here our
goal is to present an initial framework.

5.3 Distributed robust regression with credit
data

The credit data include about 16 million credit card ac-
counts. For security, identification information was removed.
The variable of interest is the lifetime late fee and inter-
est payments (FI). The explanatory variables were selected
characteristics of the accounts (e.g., age of the account),
account transaction information (e.g., number of inactive
months), and some geographic information. Totally, 102 ex-
planatory variables were selected. After removing records
with missing values, the data set has about 14 million ob-
servations.

We would like to explore the relationship between FI and
the 102 explanatory variables. Due to data quality, we prefer
to run robust regression. For such a large data set, the non-
distributed version of robust regression is inferior. It took
about 17 hours by a single 2.2 GHz processor sharing 64 GB
memory on a unix box.

We ran this data set on our distributed grid with 41
threads. It only took about 20 minutes. The difference of
the estimates from both the single processor and the dis-
tributed grid, as defined in (23), is less than 10−6.

6. DISCUSSIONS

We proposed a distributed version of the iteratively
reweighted least squares method based on successfully de-
composing the weighted least squares equations and effi-
ciently aggregating intermediate results in a log2 scheme.
As a popular tool for statistics estimation, we explored
applications of the proposed method in several categories.
Rather than giving implementation details for each appli-
cation, which is out of the scale of the current paper, we
focus on the implementation of the proposed algorithm on
robust regression and use it for the exploration of scalability,
accuracy, and complexity of the algorithm.

Although related to, but different from the traditional
parallel computing, the distributed version of IRLS takes
into account the data distribution. There are cases that data
are pre-distributed and cannot be collected together due to
some security issues (Karr, et al., 2005, [6]). The proposed
distributed IRLS fits well in such cases with secured com-
munications. Our distributed IRLS can also be considered
as an extension of “embarrassingly parallel” computing im-
plemented by Rossini et al. (2007, [11]) in R, which usually
doesn’t need intermediate communication among workers.

The current version of distributed IRLS works well for
data with large number of observations and the weight ma-
trix is row-wise decomposable. When the weight matrix is
not row-wise decomposable and relative sparse, we proposed
a version of distributed IRLS with column-wise decomposi-
tion. Although there is room to improve, our preliminary
results with column-wise decomposition show promise. We
are exploring more efficient split methods with the column-
wise decomposition. We are also exploring independent data
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reading by workers. We have not considered to implement
the distributed IRLS on GPUs (graphics processing units),
where memory might be a concern.
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