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Comparing spatial counts characterizing human
mobility using ratio maps

Ji Meng Loh
∗

Given two spatial data sets collected over the same geo-
graphical region, a common question of interest is the dif-
ferences between these two data sets. The data may have
been collected at two time points and the differences rep-
resent how the data has changed over the intervening time
period. Or they may be data on two sub-populations and
the differences then describe where and how these two sub-
populations vary relative to each other. We consider the
problem of objectively highlighting the differences between
two spatial data sets, and showing these differences on a
map. Specifically, we assume that the data sets are col-
lected over a lattice, and model the values of one set as
a function of those of the other data set, taking into ac-
count the inherent spatial structure. The model is a hierar-
chical model with spatial errors whose specification controls
the amount of smoothing applied to the data. Additional
covariates may be added to the model to explore more com-
plex relationships between the two data sets. We apply the
method to study the number of commuters to a town as ob-
tained from cellular Call Detail Records, comparing them to
Census data, and also model the commuter numbers with
underlying population and distance away from the town. We
also study differences in the number of visitors to the town
during a St. Patrick’s Day parade with visitor numbers on
other days.
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Differences between maps, Human mobility, Spatial data.

1. INTRODUCTION

There is a lot of interest in characterizing human mo-
bility patterns [9, 20]. For example, town planners are in-
terested in traffic patterns and the relative use of roads
leading into and out of their towns. Knowledge of the com-
muting patterns of workers in a city can help urban plan-
ners improve transit lines, allocate parking spaces and so
on. Understanding where weekend visitors to a town come
from can aid planners in marketing its downtown busi-
nesses.

Call detail records (CDRs) have recently become an im-
portant source of data for the study of human mobility
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[2, 9, 14, 19]. CDRs are records of mobile calls and text mes-
sages collected by telecommunications companies for billing
purposes. These records contain information about times of
calls and the cell towers handling these calls. With the phe-
nomenal rise in the use of mobile phones, this data can pro-
vide rich information, on the aggregate level, about the pat-
terns of human mobility. These data are already routinely
collected and the cost of preparing the data for further anal-
ysis is marginal. Since CDR data is collected constantly as
calls are made, there is the potential for studies on the effect
of policy changes over short periods of time that would be
infeasible or costly to conduct. An example is the effect on
traffic patterns of a change in traffic signals on a few inter-
sections or the flow of people into a town for a big event
such as a St. Patrick’s Day parade.

Since cell towers typically have a coverage area of about
1 square mile [17], it is on a coarse enough scale to leave
some measure of uncertainty about the precise location of
the phones while providing ample information for studying
the aggregate movements of people.

Studies on human mobility often involve counts of peo-
ple on some form of lattice, e.g. zip-codes. Whether from
CDRs or otherwise, the data yield a geographical distribu-
tion of people counts based on some pre-specified criteria.
With such geographical distributions, what is often of inter-
est is the comparison of two or more such distributions. Such
comparisons allow investigators to understand how move-
ments of people differ or change under different conditions.

For example, the Census data as contained in the “Jour-
ney to Work” portion of the Census Transportation Plan-
ning Package (CTPP) provides information about worker
residences by zip-code. This data can be used to obtain the
laborshed of a town, i.e. the geographical distribution of the
residence of people who work in that town. A laborshed can
provide insight into commuting and traffic patterns around
a town and inform policy planning. Figure 1(a) shows a map
of the Morristown, New Jersey laborshed using data from
the 2000 CTPP. Not surprisingly, most Morristown workers
live close to Morristown. However, some workers live further
away, e.g. in New York City, and especially in the Newark
area between Morristown and New York City.

In [4], CDRs collected for calls (and text messages) made
in and around Morristown, New Jersey were used to ob-
tain a similar laborshed for the town. Figure 1(b) shows a
map of the Morristown laborshed based on the CDR data.
Examining both maps in Figure 1 shows that they contain
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Figure 1. Maps of the laborshed for Morristown, New Jersey, indicated by the red dot, obtained from the 2000 Census data
(left) and derived from Call Detail Records (right). (Color figure online)

the same main features: a large bump at Morristown, and
somewhat higher numbers East of Morristown than to the
West.

However, we expect differences between these maps. Both
data sets are samples from a population. The underlying
populations are also different. With CDRs, the population
is of those with cellphones from the company where the
data was obtained from, and this population may be biased
relative to the population of workers. Furthermore, there
is about a 10-year gap between the collection of these two
data sets. Comparing the two maps, we note that there ap-
pears to be (a) higher CDR numbers in New York City,
(b) higher Census numbers further North-West of Morris-
town, and (c) a few other minor differences, e.g. midway
between Manhattan and Morristown.

While an investigator can examine two such maps and
try to identify differences between them, this is subjective
and different people looking at the same two maps may not
identify the same differences. The focus of this paper is thus
on objectively and succinctly comparing two spatial distri-
butions, each consisting of counts at a sub-regional (say,
zip-code) level, so as to highlight the differences between
maps without requiring the reader to subjectively extract
this information.

We do this in the context of comparing the Morristown
laborsheds obtained from Census data and from CDR data,
and of comparing Saturday visitors to Morristown for a St.
Patrick’s Day parade (a paradeshed) to regular Saturday vis-
itors. The latter was studied in [3] and is an example of how
CDRs can provide timely information that is not available
from Census data and that can be obtained only via a sur-
vey study that may be expensive or time-consuming to plan
and conduct. Such information about the paradeshed may
inform town planners about providing additional transport

services to and from particular neighboring areas in prepa-
ration for the parade.

While the focus of the application in this paper is on
human mobility, this method of comparing maps can be
applied more broadly. For example, in telecommunications,
metrics such as the rate of dropped calls, the amount of
data uploaded etc. are collected at cell-towers to monitor
network performance. The same method described in this
work can be used to compare these metrics collected at two
time periods to examine, e.g. the differences in performance
levels on weekdays and weekends, or to assess the results of
improvements made to the network equipment.

We consider two methods for comparing two spatial
datasets collected on a lattice. The first method is an ad-hoc
method where we aggregate data from nearest neighbors so
that the denominator is above some threshold T . This helps
to control excessive variability due to small denominators.
We also construct a quantity as a criterion for selecting T .
In our second method, we explicitly model the two data sets
under comparison, linking one data set with the other using
a hierarchical Bayesian model with spatial and independent
errors, where the spatial errors have a conditional autore-
gressive (CAR) specification [6]. The model is fit using a
Bayesian approximation method called INLA [15]. The sys-
tematic portion of the model shows the main relationships
between the two data sets, while the spatial errors show de-
viations from this systematic relationship. In the comparison
of two maps, the spatial errors highlight differences between
the two geographical distributions. The modeling approach
allows us to include other explanatory covariates that can
help in further understanding the relationships between the
two spatial sets.

These methods are described in greater detail in Section 4
and used to examine the differences between the CDR and
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Census commuter numbers. In Section 5 we use the Bayesian
model to incorporate covariates into the modeling, investi-
gating the relation of CDR commuter numbers to the un-
derlying population and the distance from Morristown. We
also look at the differences between the St. Patrick’s Day
paradeshed and the geographical distribution of visitors to
Morristown on other Saturdays.

2. DATA COLLECTION & PRIVACY

Morristown is located in the greater New York City
metropolitan area and has about 20,000 residents. It is a
regional center of commerce and shopping, with a vibrant
night-life, and draws workers from the nearby suburbs and
even New York City. The data used in this study comes from
Call Detail Records, CDRs for short, collected for calls and
text messages made in and around Morristown. More details
about the data set can be found in [4].

Several features of the data used in this study ensure
individuals’ privacy. First, CDRs provide only sparse infor-
mation about a phone. A record is created only when the
phone is used for a call or SMS message. No information
about the phone is recorded in the CDRs when it is not
in use. Also, the location of a phone is available only ap-
proximately, based on the coverage of the antennas involved
with the call, and not with GPS. Since, as mentioned ear-
lier, an antenna typically covers an area of about one square
mile, this limits the spatial resolution available on individual
phones.

Besides the inherent features of the data, we also took
active steps to protect privacy. Specifically, all CDRs are
anonymized by a third party not involved in this work. The
phone number is not used. Rather, a separate unique iden-
tifier is generated and used in this analysis.

In addition, we are careful to use only the minimal in-
formation needed for the study. Our data records consist
only of the anonymous identifier, date and time of a voice
call or SMS message, elapsed time of a call, and the cell
antennas involved in the event. Our data does not in-
clude demographic information for the cellular subscriber
nor any information about the other party in the communi-
cation.

Finally, all of our results are presented in aggregate form,
specifically at the zip-code level. No individual phone was
singled out for analysis.

3. RELATED WORK

Work done in disease mapping is relevant to our work.
There is much research in this area and this brief overview
cannot be exhaustive. The reader can refer to [11] and [10]
for more comprehensive overviews of common methods. In
disease mapping, the interest is often to display the relative
risk, also called the standardized mortality rate (SMR). This
is given by the ratio of the observed to the expected number
of disease cases. Similar to our comparison of two spatial

data sets, the SMR suffers from increased variability due to
small denominators.

[7] introduced an empirical Bayes method to shrink rela-
tive risk estimates towards the global estimate. [13] extended
this to allow for spatial autocorrelation. Hierarchical mod-
els have been applied to epidemiological data to estimate
relative risk. [12] compared a spatial filtering method and a
binomial hierarchical model for mapping the spatial relative
risk of neural tube defects for several provinces in China.

[5] considered using kriging to obtain a continuous spa-
tial risk function from regional count data. [8] proposed a
method to better estimate the relative risk of diseases using
an adaptive bandwidth method for density estimation that
is specially catered for estimating relative risks (i.e. the ra-
tio of risks). Briefly, they defined the log-transformed risk
as ρ = log(f/g) where f and g are densities, each estimated
by a kernel density estimator. So an estimator for f is given
by

f̂(z) =
1

n

n∑
i=1

1

hf (xi)2
K

(
z − xi

hf (xi)

)
,

where K is a kernel and hf the bandwidth. Thus ρ̂(z) =

log[f̂(z)/ĝ(z)]. Their adaptive method involves letting hf

and hg vary, so that e.g.

hf (x) =
h0

f(x)1/2γ
,

with h0 a global bandwidth and γ the geometric mean of f .
Since f and g are not known, hf and hg are estimated using
pilot estimates of f and g obtained with fixed bandwidths.
[8] also provides the asymptotic bias and variance of the
resulting risk estimator.

The adaptive bandwidth method of [8] is available in an R
package sparr. We applied it to our data sets but the method
did not seem to work well, with extreme values around the
borders of our study region. This suggests that the reason
could be due to inadequate accounting of the complicated
boundaries of the study region, though one would expect the
edge effects in the numerator and denominator to cancel out.
Other adaptive methods, e.g. based on Voronoi tessellations
in the spatstat R package [1], are available, but they are not
explored here.

Another possible method is to use spatial interpolation.
To do that we can use the smooth function in the spatstat
package. However, this function performs kernel smooth-
ing in the numerator and the denominator and encountered
problems when the denominator is small. A possible exten-
sion would be to perform adaptive kernel estimation for the
interpolation.

In the paper we use a Poisson hierarchical model and fit
the model using a Bayesian approximation method called
INLA. [16] also considered using INLA for disease mapping.
Their focus, however, was on models for spatial-temporal
data with emphasis on modeling the time trend, parametri-
cally or non-parametrically.
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Figure 2. Ratio of Census to CDR counts on the zip-code level of commuters to Morristown, NJ. (a) raw ratios, (b) ratios
smoothed by using neighboring zip data to make the denominator at least a threshold level T = 300, and (c) ratios obtained

from the hierarchical model fit using INLA. (Color figure online)

4. METHODS

In this section, we describe two methods for comparing
two spatial data sets on a lattice.

4.1 Thresholds for denominators

One way to compare two spatial data sets is to simply
take the ratio of the data values at the zip-code level and
plot the ratios on a map. We choose a color scheme that
has light blue in the middle of the scale, and green-yellow
and purple-red on the opposite ends of the scale. Doing this
allows an easy way to visually show large and small values
of the ratios.

Applying this to the CDR and Census data results in
the leftmost map of Figure 2. While this figure shows accu-
rately the differences between the two data sets, there are
some extreme values at individual zip-codes, due to small de-
nominators. To deal with this, we perform some smoothing.
Suppose for zip-code z, the data values are uz and vz. We set
a minimum threshold T for the denominator. For each z, if
vz < T , we consider the nearest zip-code z′. If vz + vz′ ≥ T ,
then we set the ratio to be rz = (uz+uz′)/(vz+vz′). Other-
wise we consider the next nearest zip-code and so on, until
the sum of the v values of zip-code z and the neighboring
zip-codes is at least T . The resulting values are denoted uT

z

and vTz and the ratio that is plotted at zip-code z is given
by uT

z /v
T
z .

In order to find an appropriate T , we can use a criterion
function that consists of two terms, one increasing in value
and the other decreasing in value as T increases:

(1) C(T ) =
∑
z

(
uT
z

vTz
− uz

vz

)2

+
∑
z

(
uT
z

vTz
−

∑
z uz∑
z vz

)2

.

The expression in the brackets of the first term on the
right-hand side of (1) represents the bias between the
smoothed ratio uT

z /v
T
z and the raw ratio uz/vz. The quan-

tity
∑

z uz/
∑

z vz represents the overall ratio between the

two datasets when there is complete smoothing and no vari-
ation between zip-codes z. The value Tmin that minimizes
C(T ) balances between not deviating too much from the
overall ratio while staying true to the actual zip-code val-
ues. With the Census and CDR commuter data, Tmin = 302.
The resulting map is shown in Figure 2(b) for Tmin = 300.

We find that the main features showing the differences
between the two laborsheds are still present but with ex-
treme values present in the map on the left smoothed out.
There is somewhat more smoothing to the West than to
the East in New York City. The zip-codes in New York City
have relatively large populations but have small areas. Hence
the neighboring zip-codes included to make the denomina-
tor larger than T will tend to cover a smaller spatial area in
New York City than further inland in New Jersey.

4.2 Bayesian smoothing

Instead of the threshold method described above, we can
compare two maps using Bayesian smoothing. Specifically,
for data Uz and Vz we have

Uz ∼ Poisson(μz)

log(μz) = α+ log Vz + bz + ez,

where bz and ez are spatial and independent errors respec-
tively. The prior for ez is set to be independent normal, while
for bz we use a conditional autoregressive (CAR) specifica-
tion [6], where the neighborhood matrix is defined using a
distance threshold of 5 miles, i.e. a zip-code’s neighbors are
all zip-codes within a 5 mile radius of that zip-code. We
note that Manhattan is about 2.5 miles across at its widest,
hence 5 miles spans a distance slightly less than 1/10 of the
map in Figure 2.

We can fit the model in two ways, using the Open-
BUGS software for a full Bayesian fit or the approximation
Bayesian method INLA developed by [15]. We chose the
INLA method as it allows for very quick fitting of the model
to the data. The map on the right of Figure 2(c) shows the

580 J. M. Loh



fitted values of μz/Vz obtained from the INLA method. We
find that the map obtained from Bayesian smoothing, like
the one obtained with the threshold method of Section 4.1,
displays differences between the two maps in Figure 1 in a
smooth way that avoids sharp jumps in values.

5. BAYESIAN MODELING

The advantage of the Bayesian smoothing method of Sec-
tion 4.2 is that the Bayesian model can be used to explore
dependencies of the data on various covariates. We show
here modeling done to explore how the numbers of com-
muters to Morristown relative to the underlying zip-code
level population varies with distance from Morristown.

The model is:

Uz ∼ Poisson(μz)
(2)

log(μz) = α+ log pz + βdz + bz + ez,

where Uz is the number of commuters to Morristown from
zip-code z inferred from the CDR data, pz the zip-code pop-
ulation obtained from the 2000 Census data, and dz the
distance from the zip-code centroid to Morristown. Maps in
Figure 3 show the results of fitting this model. The Deviance
Information Criterion (DIC), a measure of model fit intro-
duced by [18], dropped from 3,402 for the model without dz
to 3,385 for (2).

Figure 3(a) shows the fitted mean values μz, with yellow,
green and light blue indicating decreasing numbers. We find
that most workers in Morristown reside in the neighborhood
of Morristown, with a higher tendency to be just north and
south of Morristown than to its east or west. Figure 3(b)
shows the count per 6,000 people in the zip-code. This ac-
counts for the underlying population density. Although we
find a similar concentration at Morristown, this second map
shows a clearer circular shape, with counts decaying with
distance. Comparing Figure 3(a) with 3(b) suggests that the
areas just north and south of Morristown have a higher pop-
ulation which contributes to the higher counts in the first
map. The estimate of β is −.159, which gives the expected
rate of decay with distance of the proportion of a zip-code’s
population that work in Morristown: with each mile away
from Morristown, the proportion of a zip-code’s population
that work in Morristown drops by about 15%.

Figure 3(c) is a map of the spatial errors where the yellow-
green scale indicates positive errors while the red-purple
scale shows negative errors. It shows locations where there
are more (or fewer) commuters to Morristown after account-
ing for distance and population. There is a distinct separa-
tion between the areas east and west of Morristown, suggest-
ing that there is a difference in the numbers of commuters
to Morristown (relative to underlying population) between
the areas east and west of Morristown, with a higher propor-
tion of the population west of Morristown working in Mor-
ristown. Morristown is one of the larger towns in the area
and thus attracts a significant number of workers from its

Table 1. Coefficient estimates, standard errors and 95%
intervals for models (2) and (3) using commuter counts based

on CDR data (top two lines and bottom three lines
respectively)

estimate (error) 95% interval

intercept −3.68 (.258) (−4.18, −3.16)
β −.159 (.009) (−.177, −.142)

intercept −3.765 (.252) (−4.26, −3.26)
βeast −.163 (.009) (−.188, −.146)
βwest −.115 (.010) (−.136, −.095)

neighboring vicinity. However, working people living east of
Morristown also live closer to New York City, a major source
of jobs and is probably the reason for a smaller proportion
of these people working in Morristown.

Figure 3(d) shows the independent errors obtained from
model (2) and shows much less spatial structure than Fig-
ure 3(c) as expected.

We can fit a model allowing for different rates of decay
with distance east and west of Morristown:

Uz ∼ Poisson(μz)

log(μz) = α+ log pz + βwestIwest,zdz(3)

+ βeastIeast,zdz + bz + ez,

Iwest,z and Ieast,z being indicator variables, with value 1 if
zip-code z is west or east of Morristown respectively. We
find a slight drop in the rate of decay for zip-codes west of
Morristown, with rate −.115 compared to −.163, in agree-
ment with our observation from the maps. The DIC for this
model is 3,363. Note from Table 1 that the 95% intervals for
the rates east and west of Morristown do not overlap.

Figures 3(e) and (f) show respectively the spatial and
independent errors obtained from fitting (3). The spatial er-
rors still show mostly negative values in the New York area,
but generally this is a bit less pronounced than the spa-
tial error map from fitting (2). Table 1 shows the coefficient
estimates and standard errors for models (2) and (3).

5.1 Modeling St. Patrick’s Day parade-goers

We perform a similar analysis to study the geographical
distribution of attendees of a St. Patrick’s Day parade in
Morristown, comparing it to visitors to Morristown on other
Saturdays. To do this, we focus on calls and messages made
during the parade, from 11am to 3pm on Saturday Mar 12,
2011, that were handled by cell-towers covering the parade
route, and on the same time period on other Saturdays in
the dates covered by our data. If Pz and Sz represent the
numbers of visitors to Morristown from zip-code z on Mar
12, 10am–3pm and on other Saturdays respectively, the two
models we use are given by

Pz ∼ Poisson(μz)
(4)

log(μz) = α+ log(Sz) + bz + ez
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Figure 3. Maps at the zip-code level for the CDR commuter data. From top to bottom, left to right, these are maps of
(a) smoothed counts, (b) smoothed counts per 6,000 people, (c) spatial errors with the distance covariate, (d) independent

errors with the distance covariate, (e) spatial errors with East/West distance covariate and (f) independent errors with
East/West covariate. (Color figure online)
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Figure 4. Maps at the zip-code level comparing the geographical distribution for attendees of the St. Patrick’s Day parade to
that of regular Saturday visitors to Morristown, NJ. From top to bottom, left to right, these are maps of (a) smoothed counts
of parade-goers, (b) ratio of parade goers to regular visitors, (c) independent errors, (d) spatial errors from the model with a

distance covariate. (Color figure online)

and

(5) log(μz) = α+ log(Sz) + βIwest,z + bz + ez.

The maps are shown in Figures 4(a)–(d). Figure 4(a) shows
the smoothed counts of parade-goers. As expected, most of
them come from Morristown and its vicinity. Figure 4(b)
compares the counts by zip-code of parade-goers compared
with average counts of visitors to Morristown during the
same time period on other Saturdays. We find an increased
number of parade-goers to the north and west of Morristown
and lower than usual visitors on St. Patrick’s Day from the
New York City area. Figure 4(c) shows the independent er-
rors from model (4), showing little spatial structure. Finally,
the spatial errors obtained from model (5) fit to the data
are shown in Figure 4(d). We find that there is still a fair
amount of spatial structure, suggesting that the additional
covariate did not capture well the residual spatial structure
from model (4). Indeed, the 95% predictive interval obtained

from INLA contained 0. The DIC of the two models are also
very similar.

6. CONCLUSION

It is common when dealing with spatial data sets to
compare the distribution of these data sets in order to
identify differences or changes between them. We proposed
a method to objectively highlight these differences. The
method involves modeling one data set as a function of
the other together with spatial and independent errors.
The spatial errors have a conditional autoregressive spec-
ification, and the amount of smoothing can be controlled
by means of the neighborhood structure. Computation-
ally efficient fitting of the model is achieved using the
INLA Bayesian approximation method. The model also al-
lows for additional covariates to be included so that more
complex relationships between the data sets can be ex-
plored.
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In our analysis, we found that Morristown commuter
counts decreased with distance from Morristown, as ex-
pected. In particular, we found that the decay in counts
with distance was greater east of Morristown (nearer New
York City) than west of it. With the data on visitors to
Morristown on Saturday mornings, we find that areas to the
north-west of Morristown had more parade attendees than
expected based on visitor counts from other Saturdays.

Measures of uncertainty can be as important as maps of
the smoothed ratios. Although we do not reproduce them
here, maps showing the standard errors can be drawn using
the output of the model fit.

There is some subjectivity in terms of the choice of col-
ors and the range of values over which the colors represent.
However, this is true when drawing any map.
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