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Bayesian analysis for exponential random graph
models using the adaptive exchange sampler∗
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Exponential random graph models have been widely used
in social network analysis. However, these models are ex-
tremely difficult to handle from a statistical viewpoint, be-
cause of the existence of intractable normalizing constants.
In this paper, we consider a fully Bayesian analysis for
exponential random graph models using the adaptive ex-
change sampler, which solves the issue of intractable normal-
izing constants encountered in Markov chain Monte Carlo
(MCMC) simulations. The adaptive exchange sampler can
be viewed as a MCMC extension of the exchange algorithm,
and it generates auxiliary networks via an importance sam-
pling procedure from an auxiliary Markov chain running in
parallel. The convergence of this algorithm is established
under mild conditions. The adaptive exchange sampler is
illustrated using a few social networks, including the Flo-
rentine business network, molecule synthetic network, and
dolphins network. The results indicate that the adaptive
exchange algorithm can produce more accurate estimates
than approximate exchange algorithms, while maintaining
the same computational efficiency.
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Keywords and phrases: Exchange algorithm, Exponen-
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Carlo, Social network.

1. INTRODUCTION

The social network is a social structure made of actors
(individuals, organizations, etc.), which are interconnected
by a certain relationship, such as friendship, common inter-
est, financial exchange, etc. The network can be represented
in a graph with a node for each actor and an edge for each
relation between a pair of actors. This graph representation
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can provide insight into organizational structures, social be-
havior patterns, and a variety of other social phenomena.
Recently, social network analysis has been applied to many
other disciplines, such as biology [42] and politics [7].

Many models have been proposed in the literature for so-
cial network analysis, including the Bernoulli random graph
model [9], p1 model [18], p2 model [48], Markov random
graph model [10], exponential random graph model [45],
among others. The model of particular interest is the ex-
ponential random graph model (ERGM), which describes
parsimoniously the local transitivities that shape the global
structure of a network [22]. An ERGM allows one to in-
clude various network dependent structures in the analysis
and thus can generally improve goodness-of-fit of social net-
works. The information from an ERGM can be used to un-
derstand a particular phenomenon or to simulate new ran-
dom realizations to networks that retain the essential prop-
erties of the original. See [40] and [41] for an overview of
ERGMs.

Consider a social network with n nodes, which can be
either directed or undirected. The network can be specified
in an n×n-matrix y = (yij), where yij = 1 if there is an edge
between node i and node j and 0 otherwise. This matrix is
also known as the adjacency matrix. The likelihood function
of the ERGM is given by

(1) f(y|θ) = 1

κ(θ)
exp

{∑
i∈A

θiSi(y)

}
,

where Si(y) denotes the network statistic (explained in Sec-
tion 2), θi is the corresponding parameter, A specifies a set
of network statistics included in the model, and κ(θ) is an
intractable normalizing constant with θ = {θi : i ∈ A}. The
parameter θi measures how likely a structure summarized
by Si(y) appears in the network. A larger value of θi indi-
cates a higher probability that the structure described by
Si(y) appears. The parameter θi can also be interpreted as
the log-odds of different types of ties [22]. If we assign θ a
prior density π(θ), the posterior density of θ is given by

(2) π(θ|y) ∝ π(θ)

κ(θ)
exp

{∑
i∈A

θiSi(y)

}
.

Sampling from this posterior density function is challeng-
ing due to the intractability of κ(θ). As a result, the existing
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Monte Carlo algorithms, such as the Metropolis-Hastings
(MH) algorithm, cannot be directly applied to sample from
the posterior (2) as the acceptance probability would involve
an unknown normalizing constant ratio κ(θ)/κ(θ′), where θ′

denotes the proposed parameter value.

The posterior sampling for the EGRM was further com-
plicated by the problem of model degeneracy, which refers
to the phenomenon that for some configuration of θ, the
ERGM has all or most of its probability mass on just one or
a few possible networks, typically the complete (fully con-
nected) or empty (entirely unconnected) graphs [17]. The
model degeneracy can cause serious issues on MCMC sim-
ulations and statistical inference for the ERGM [43]. For
example, the Markov chain can mix very slowly, and in par-
ticular, if the mode of (1) is not unique, the Markov chain
may be trapped at one of the modes.

Many methods have been proposed to address the prob-
lem of the intractability of κ(θ). Instead of directly sam-
pling from π(θ|y), Møller [35] proposed to augment the
posterior distribution π(θ|y) to π(θ,x|y) by including the
auxiliary variable x. By choosing an appropriate auxiliary
variable distribution f(x|θ,y) and an appropriate proposal
distribution f(θ′|θ,y), the unknown normalizing constants
κ(θ)/κ(θ′) canceled in simulation. The Møller’s algorithm
was further improved by the exchange algorithm [36] based
on the idea of the parallel tempering algorithm [11]. Unfor-
tunately, both the Møller’s and exchange algorithms cannot
be directly applied to the ERGM because these two meth-
ods require a perfect sampler, which is not available for the
ERGM, for generating auxiliary social networks.

To address this issue, Liang [26] proposed the double
Metropolis-Hastings (DMH) sampler, which avoids the use
of perfect samples by using the auxiliary sample that is
drawn via a short MH chain initialized at the observation
y. Although initializing the auxiliary MH chain with the
observation y improves the convergence of the algorithm,
the convergence of the short MH chain is not theoretically
guaranteed and the resulting estimator can be biased.

Alternatively, some methods directly approximate the
normalizing constant ratio κ(θ)/κ(θ′) or the function κ(θ)
using Monte Carlo samples. Koskinen [25] and Liang and
Jin [27], proposed to approximate the normalizing constant
ratio κ(θ)/κ(θ′) at each iteration using an importance sam-
pling approach. However, like the DMH sampler, these al-
gorithms also suffer from the theoretical drawback on con-
vergence, i.e., the importance sampling estimator might fail
to converge to the true ratio κ(θ)/κ(θ′) with only a finite
number of samples. By viewing κ(θ) as a marginal den-
sity of g(y, θ) ∝ exp{

∑
i∈A θiSi(y)}, Atchade, Lartillot and

Robert [3] proposed to approximate κ(θ) using Monte Carlo
samples, but that method is usually very time consuming,
especially when the dimension of θ is high. In addition, due
to the model degeneracy of the ERGMs, approximation of
κ(θ) over the entire parameter space is often impractical.

In this paper, we propose to conduct the Bayesian anal-
ysis for ERGMs using the adaptive exchange (AEX) algo-
rithm [28]. The AEX algorithm is an adaptive Monte Carlo
version of the exchange algorithm, where the auxiliary vari-
ables are generated via an importance sampling procedure
from an auxiliary Markov chain running in parallel. To ad-
dress the model degeneracy problem, we propose to use the
approximate Bayesian computation (ABC) algorithm ([5],
[33]) to select some auxiliary parameter points on which the
auxiliary Markov chain is running. We study the conver-
gence theory of AEX under relaxed conditions compared to
those given in [28], which extends the application of AEX
to problems with non-compact parameter spaces.

Compared to the exchange algorithm, the proposed AEX
algorithm removes the requirement of perfect sampling, and
thus is applicable to ERGMs. Compared to the DMH sam-
pler, the AEX overcomes its theoretical flaw on convergence,
while maintaining its computational efficiency. Compared
to the normalizing constant or normalizing constant ratio-
approximation methods, the AEX is more efficient and,
more importantly, its convergence is ensured as the num-
ber of iterations becomes large.

This paper focus on the Bayesian analysis of ERGMs, but
we note some frequentist approaches, including the maxi-
mum pseudo-likelihood method (see, e.g., [46]; [49]), Monte
Carlo maximum likelihood estimation (MCMLE) method
(see, e.g., [4]; [13]; [21]), and stochastic approximation-based
methods ([23]; [44]), among others.

The paper is organized as follows. Section 2 starts with
a description of the ERGM, and then we discuss the asso-
ciated model degeneracy problem. In Section 3, we describe
the AEX sampler and study its convergence. Section 4 is
dedicated to an ABC-based method for auxiliary parame-
ter points selection. Section 5 presents the numerical results
of AEX for several social network examples. Section 6 con-
cludes the paper with a brief discussion.

2. EXPONENTIAL RANDOM GRAPH
MODELS, MODEL DEGENERACY AND

PRIOR SELECTION

To define an ERGM, one needs to specify the network
statistics Si(y) appeared in (1). Among a large number of
network statistics which are available in the ERGMs, we
will consider here some commonly used ones, including basic
Markovian statistics [10], heterogeneity of degree statistics,
and high-order transitivity statistics [45].

Basic Markovian statistics This class of statistics describe
the basic structure of a network, including the edge count,
two-star count, . . ., k-star count (k2-star, . . ., kk-star), and
triangle count. The edge count, denoted by S1(y), is the
count of the edges contained in the network y. The two-
star refers to a structure with one node connecting to two
other nodes, and the k-star is a structure that one node
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Figure 1. Visualization of basic Markovian statistics.

connects to k other nodes. The counts of two-stars, . . ., k-
stars are denoted by S2(y), . . ., Sk(y), respectively. If node
‘a’ connects to node ‘b’, node ‘b’ connects to ‘c’, and node ‘c’
connects to node ‘a’ simultaneously, then the nodes ‘a’, ‘b’,
and ‘c’ form a triangle. The count of triangles is denoted by
T (y). Mathematically, the statistics Sk(y) (k = 1, . . . , n−1)
and T (y) can be defined by

Sk(y) =
∑

1≤i≤n

(
yi+
k

)
, k = 1, 2, n− 1;

T (y) =
∑

1≤i<j<h≤n

yijyihyjh,
(3)

where yi+ denotes the degree of nodes i, and the degree of
a node refers to the number of edges incident to it.

Geometrically weighted degree Let the degree count,
Dk(y), denote the number of nodes with degree k. Since
the number of stars is a function of the degrees, Dk(y) is
equivalent to modeling the k-star statistic. The geometri-
cally weighted degree (GWD) statistic ([19]; [21]; [45]) en-
ables to model all degree distributions as a function of single
parameter by placing decreasing weights on the higher de-
grees. GWD is defined by

(4) u(y|τ) = eτ
n−2∑
k=1

{
1−

(
1− e−τ

)k
}
Dk(y),

where the additional parameter τ specifies the decreasing
rate of the weights put on the higher order terms. Following
[20], τ is fixed as a constant in this paper.

Shared partnership Let EPk(y) denote the number of un-
ordered pairs (i, j) for which i and j have exactly k common
neighbors and Yij = 1. In the literature, EPk(y) is called
the edge-wise shared partnership statistic. Since EPk(y) is
a function of triangles, EPk(y) is equivalent to modeling
the high-order transitivities. Like GWD, the distribution

of edge-wise shared partnership can be modeled as a func-
tion of single parameter by placing decreasing weights on
the higher transitivities, the geometrically weighted edge-
wise shared partnership (GWESP) statistic ([19]; [21]; [45]).
The GWESP statistic is defined, respectively, by

v(y|τ) = eτ
n−2∑
k=1

{
1−

(
1− e−τ

)k
}
EPk(y),(5)

where the parameter τ specifies the decreasing rate of
weights put on the higher order terms. As for the GWD
statistic, τ is fixed as a constant in this paper.

Model degeneracy and prior selection As aforementioned,
ERGMs can suffer from the model degeneracy problem.
Schweinberger [43] showed that the model degeneracy can
be caused by Markov dependent statistics, heterogeneity of
degree statistics or high-order transitivity terms, and that
near-degeneracy will occur for any model, regardless of what
statistics are included, if parameter values become too large.
Since the observed network is not degenerated, it is natural
to put our emphasis on the non-degeneracy region. This sug-
gests that a data-dependent prior might be used in Bayesian
analysis of ERGMs in order to restrict the parameter space
to the non-degeneracy region. See Section 4 for an illustra-
tive example. However, we note that using a data dependent
procedure to select a prior would not be the first choice (so-
called empirical Bayes aside) but seems required here to deal
with the difficult problems of instability and near degener-
acy.

Besides models for graphs, the near degeneracy problem
has been encountered in some binary random field models.
For example, the 2-D Ising model has the famous phase tran-
sition behavior; the system undergoes a disorder-to-order
transition at the critical temperature. Similar behaviors are
also found for the autologistic model [15] and some Markov
random field models [24]. It is interesting to point out that
the spatial modelers and the graph modelers have different
views on this problem: The former see it as primarily one
of parameter space difficulties, while the latter see it as pri-
marily one of statistics included.

3. ADAPTIVE EXCHANGE ALGORITHM

This section is organized as follows. In Section 3.1, we
briefly review the exchange algorithm. In Section 3.2, we
describe the adaptive exchange algorithm and study its con-
vergence theory in Section 3.3.

3.1 The exchange algorithm

Let ψ(y|θ) = κ(θ)f(y|θ) denote the kernel of the den-
sity/mass function f(y|θ). The exchange algorithm requires
a perfect sampler for generating auxiliary social networks
and can be described as follows:

1. (Proposal) Propose a candidate point θ′ from a proposal
distribution q(θ′|θ).
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2. (Perfect Sampling) Generate an auxiliary variable y ∼
f(y|θ′) using a perfect sampler [38].

3. (Exchange) Set θt+1 = θ′ with the probability
(6)

α(θt,x, θ
′) = min

{
1,

π(θ′)ψ(y|θ′)
π(θt)ψ(y|θt)

q(θt|θ′)
q(θ′|θt)

ψ(x|θt)
ψ(x|θ′)

}
,

and set θt+1 = θt with probability 1− α(θt,x, θ
′).

Since a swapping operation between (θ,y) and (θ′,x) is in-
volved, the algorithm is called the exchange algorithm.

3.2 The adaptive exchange algorithm

The AEX algorithm consists of two chains running in par-
allel. The first chain is auxiliary, which is run in the space X
(of social networks) with the aim to draw samples from a
family of distributions f(x|θ(1)), . . . , f(x|θ(m)) defined on a
set of pre-specified parameter points θ(1), . . . , θ(m). The sec-
ond chain is the target chain, which is run in the space
Θ (of parameters) with the aim to draw samples from
the target distribution π(θ|y). For a candidate parameter
point θ′, the auxiliary network x is resampled from the
past samples of the auxiliary chain via an importance sam-
pling procedure. Here we assume that the neighboring dis-
tributions f(x|θ(i))’s have a reasonable overlap and the set
{θ(1), . . . , θ(m)} has covered the major part of the support of
π(θ|y), for example,

∫
Cθ

π(θ|x)dθ > 0.9999 and Cθ denotes

the convex set formed by θ(1), . . . , θ(m). These assumptions
ensure that x will be distributed as f(x|θ′) as the number of
iterations of the auxiliary chain becomes large, and thus the
target chain can converge to the right distribution π(θ|y).

To draw samples from the family of distributions f(z|θ),
θ ∈ {θ(1), . . . , θ(m)}, we adopt the stochastic approximation
Monte Carlo (SAMC) algorithm [29]. SAMC ensures that
each of the distributions, f(z|θ(1)), . . . , f(z|θ(m)), can be
drawn with a pre-specified frequency. Some other MCMC
algorithms, such as the reversible jump MCMC algorithm
[14], parallel tempering [11] and evolutionary Monte Carlo
[31], can also be used here to draw samples from the fam-
ily of distributions. When parallel tempering or evolutionary
Monte Carlo is used, the temperature can be set to 1 for each
distribution f(z|θ(i)). To implement the SAMC algorithm,
we define p = (p1, . . . , pm) to be the desired sampling fre-
quencies of the distributions f(z|θ(1)), . . . , f(z|θ(m)), where
0 < pi < 1 and

∑m
i=1 pi = 1; and specify a positive, nonin-

creasing sequence {at}, which satisfies the condition (A1):

(A1) limt→∞ at = 0,
∑∞

t=1 at = ∞,
∑∞

t=1 a
η
t < ∞,

for some η ∈ (1, 2).

In this paper, we set p1 = · · · = pm = 1/m and

(7) at =
t0

max(t0, t)
, t = 1, 2, . . . ,

for some known constant t0 > 1. Let w
(i)
t denote a weight

attached to the distribution f(z|θ(i)) at iteration t. In our

simulations, we set the initial values w
(1)
0 = · · · = w

(m)
0 = 1.

Let zt denote the samples generated by SAMC at iteration
t, let ϑt denote the value of θ associated with zt, let J(ϑt)
denote the point index of ϑt (i.e., J(ϑt) = i if ϑt = θ(i)),

let wt = (w
(1)
t , . . . , w

(m)
t ) denote the weight vector learned

at iteration t, and let θt denote the sample of θ drawn from
the posterior π(θ|y) at iteration t. Given the above nota-
tions, one iteration of the AEX algorithm can be described
as follows:

Part 1: (Auxiliary) Sample Collection via SAMC.

1. (Sampling) Choose to update ϑt or zt with an equal
probability.

(a) Update ϑt: Select ϑ
′ from the set {θ(1), . . . , θ(m)}

according to a proposal distribution T (·|ϑt); and
set (ϑt+1, zt+1) = (ϑ′, zt) with probability

(8) min

{
1,

w
(J(ϑt))
t

w
(J(ϑ′

t))
t

ψ(zt|ϑ′)

ψ(zt|ϑt)

T (ϑt|ϑ′)

T (ϑ′|ϑt)

}
,

and set (ϑt+1, zt+1) = (ϑt, zt) with the remaining
probability.

(b) Update zt: Draw zt+1 ∼ f(·|ϑt) via one or a few
MH updates starting with the current sample zt,
and set ϑt+1 = ϑt.

2. (Weight updating) Set

log(w
(i)
t+1) = log(w

(i)
t )+at+1(et+1,i−pi), i = 1, 2, . . . ,m,

where et+1,i = 1 if ϑt+1 = θ(i) and 0 otherwise.
3. (Sample Collection) Append the sample (zt+1, θ

(j),

w
(j)
t+1), where j = J(ϑt+1), to the collection St. Denote

the new collection by St+1.

Part 2: (Target) Adaptive Exchange.

4. (Proposal) Propose a candidate point θ′ from the pro-
posal distribution q(θ′|θt).

5. (Resampling) Resample an auxiliary variable x from
the collection St+1 via an importance sampling proce-
dure; that is, setting x = zi with probability
(9)

P (x = zi) =

∑t+1
j=1 ωjψ(zj |θ′)/ψ(zj |ϑj)I(zj = zi)∑t+1

j=1 ωjψ(zj |θ′)/ψ(zj |ϑj)
,

where (zj , ϑj , ωj) denotes the j-th element of the set
St+1. Note that ϑj ∈ {θ(1), . . . , θ(m)}.

6. (Exchange) Set θt+1 = θ′ with the probability
(10)

α(θt,x, θ
′) = min

{
1,

π(θ′)ψ(y|θ′)
π(θt)ψ(y|θt)

q(θt|θ′)
q(θ′|θt)

ψ(x|θt)
ψ(x|θ′)

}
,

and set θt+1 = θt with probability 1− α(θt,x, θ
′).

On this algorithm, we have the following remarks:
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• The proposal q(·|·) can depend on y; that is, it can be
written in the form q(·|·,y). For notational simplicity,
we depress the dependence of q on y. For ERGMs, we
have the auxiliary network updated (in step 1(b) of the
auxiliary chain) by a sweep of the Gibbs sampler at
each iteration.

• On the choice of auxiliary parameter points
{θ(1), . . . , θ(m)}. In general, θ(i)’s can be chosen
according to some approximate quantiles of π(θ|y),
say, some samples by the DMH sampler. In this paper,
we propose to choose the auxiliary parameter points
for ERGMs based on ABC samples. This will be
described in Section 4.

• On the choice of {at} and convergence of AEX. In this
paper, we set the gain factor in the form (7) with a free
parameter t0. As discussed in [29], a large value of t0 will
force the sampler to reach all distributions f(z|θ(i))’s
quickly. Therefore, t0 should be set to a large value for
a complex problem. In this paper, t0 is set to 20,000 for
all examples.
In general, the choice of t0 should be associated with
the choice of N , total number of iterations of a run.
The appropriateness of these choices can be diagnosed
by checking the convergence of the auxiliary and tar-
get chains. The convergence of the auxiliary chain can
be checked through an examination for the realized
sampling frequencies (p̂1, . . . , p̂m), where p̂i denotes
the realized sampling frequency from the distribution
f(z|θ(i)). If (p̂1, . . . , p̂m) is not close to (p1, . . . , pm), the
auxiliary chain should be diagnosed as non-converged.
In this case, the algorithm should be re-run with a
larger value of N or a larger value of t0 or both.
Note that for the convergence diagnosis of the auxiliary
chain, multiple runs are not necessary, as it is known
that each of the distributions f(z|θ(i))’s is valid. How-
ever, to check the convergence of the target chain, mul-
tiple runs are still necessary.

3.3 Convergence of the adaptive exchange
algorithm

Liang et al. [28] studied the convergence of the AEX al-
gorithm by treating it as an adaptive MCMC algorithm, as
for which the proposal distribution of generating auxiliary
networks is changed from iteration to iteration. To establish
its convergence under the framework of adaptive MCMC,
restrictive conditions, such as both X and Θ are compact,
are assumed. However, taking a closer look at the AEX al-
gorithm, it is easy to see that AEX is different from conven-
tional adaptive MCMC algorithms. In conventional adaptive
MCMC algorithms, see, e.g., [16], the proposal changes from
iteration to iteration but also dependent on the past sam-
ples of the chain. However, AEX is different, for which the
proposal changes from iteration to iteration but is indepen-
dent of past samples. This motivates us to develop some new

theory for its convergence. Below we establish the conver-
gence for the AEX algorithm under relaxed conditions, in
particular, Θ is no longer required to be compact.

Lemma 3.1 concerns the weak convergence of auxiliary
networks, and it is a partial restatement of Lemma 3.1 of
[28]. To make the paper self-contained, a proof of this lemma
is given in Appendix B.

Lemma 3.1. Assume (i) both W (the space of wt) and
X (the space of x) are compact; (ii) f(x|θ) is bounded
away from 0 and ∞ on Θ × X ; and (iii) the conditions
(A1) and (A2) (given in Appendix A) are satisfied. Let

{z1, θ
(J1), w

(J1)
1 ; . . . ; zN , θ(JN ), w

(JN )
N } denote a set of sam-

ples generated by SAMC in an AEX run, where Jt ∈
{1, 2, . . . ,m} for t = 1, . . . , N . Let x1, . . . ,xn be dis-
tinct samples in {z1, . . . , zN}. Resample a random vari-
able/vector X from {z1, . . . , zN} such that

P (X = xk|θ′)

=

∑N
t=1

∑m
i=1

{
w

(i)
t

ψ(zt|θ′)
ψ(zt|θ(i))

I(Jt = i and zt = xk)
}

∑N
t=1

∑m
i=1

{
w

(i)
t

ψ(zt|θ′)
ψ(zt|θ(i))

I(Jt = i)
} ,

k = 1, . . . , n,

(11)

then the distribution of X converges to f(·|θ′) as N → ∞.

Andrieu et al. [1] considered the convergence of a varying
truncation version of the stochastic approximation MCMC
algorithm, which can be view as a more general version of
SAMC. Under mild conditions, they showed that the vary-
ing truncation of wt can only occur a finite number of times.
Thus, it is reasonable to assume that wt can be kept in a
compact set during simulations. In this paper, following [29],
we setW to [1/Bw, Bw]

m with Bw being a huge number, say,
10100, which, as a practical matter, is equivalent to setting
W = R

+. Regarding other conditions of Lemma 3.1, we note
that the condition A2 can be verified as in [29]. Given the
compactness of X , which is true for social networks, a suf-
ficient condition for satisfying A2 is to choose the proposal
distribution q(x,y) satisfying the local positive condition:

For every x ∈ X , there exist ε1 > 0 and ε2 > 0 such that
|x− y| ≤ ε1 =⇒ q(x,y) ≥ ε2.

Obviously, the Gibbs sampler satisfies this condition.
The tie-no-tie sampler [22], which will be described in Sec-
tion 5.1, also satisfies this condition.

For the AEX algorithm, {θt} forms an adaptive Markov
chain with the transition kernel given by
(12)

P̃l(θ, dθ
′) =

∫
X
α(θ,x, θ′)q(θ, dϑ)νl(dx|θ′) + δθ(dθ

′)ρ(θ),

where ρ(θ) = 1 −
∫
Θ×X α(θ,x, ϑ′)q(θ, dϑ′)νl(dx|θ′) denotes

the mean rejection probability at θ, α(θ,x, θ′) is defined in
(10), l denotes the cardinality of the set of auxiliary networks
collected from the auxiliary Markov chain, i.e., l = |Sl|,
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and νl(x|θ′) denotes the true distribution of x resampled
from Sl. Since α(θ,x, θ′), q(θ, ϑ) and νl(x|θ′) are all upper
bounded, it follows from Lemma 3.1 and Lebesgue’s domi-
nated convergence theorem that for any (θ, θ′) ∈ Θ×Θ,

(13) P̃l(θ, dθ
′) → P (θ, dθ′), as l → ∞,

where P (θ, dθ′) denotes the transition kernel of the exchange
algorithm with perfect auxiliary networks; that is,

P (θ, dθ′) =

∫
X
α(θ,x, θ′)q(θ, dϑ)f(dx|θ′)

+ δθ(dθ
′)

[
1−

∫
Θ×X

α(θ, ϑ′)q(θ, dϑ′)f(dx|θ′)
]
.

(14)

It is known that P (θ, dθ′) can induce a Markov chain which
is irreducible, aperiodic and admits π(θ|y) as the invari-
ant distribution, provided an appropriate proposal q(·, ·) has
been used therein.

Define

βl(θ,x, θ
′) =

νl(x|θ′)
νl(x|θ)

f(x|θ)
f(x|θ′) ,

r(θ,x, θ′) =
π(θ′)f(y|θ′)
π(θ)f(y|θ)

q(θ|θ′)
q(θ′|θ)

f(x|θ)
f(x|θ′) ,

rv(θ,x, θ
′) =

π(θ′)f(y|θ′)
π(θ)f(y|θ)

q(θ|θ′)
q(θ′|θ)

νl(x|θ)
νl(x|θ′)

,

which implies

r(θ,x, θ′) = βl(θ,x, θ
′)rv(θ,x, θ

′).

Also, the Markov chain defined by the acceptance rule
min{1, rv(θ,x, θ′)} is irreducible, aperiodic and admits the
invariant distribution π(θ|y), provided the Markov chain in-
duced by the transition kernel P is irreducible, aperiodic
and admits the invariant distribution π(θ|y). To ensure the
convergence of this Markov chain, νl(x|θ) is not necessarily
to have a support as large as X . In fact, its support can
be only a subset of X . Let Pv(θ, θ

′) denote the transitional
kernel of the Markov chain induced by the acceptance rule
min{1, rv(θ,x, θ′)}. Lemma 3.2 shows that P̃l(θ, θ

′) is also
irreducible and aperiodic and admits an invariant distribu-
tion, whose proof can be found in Appendix B.

Lemma 3.2. Assume that (i) X is compact; (ii) f(x|θ) is
bounded away from 0 and ∞ on Θ×X ; and (iii) P is irre-
ducible and aperiodic and admits an invariant distribution.
Then for any l ∈ N such that for any θ ∈ Θ, ρ(θ) > 0, P̃l

is also irreducible and aperiodic, and hence there exists a
stationary distribution π̃l(θ|x) such that for any θ0 ∈ Θ,

lim
k→∞

‖P̃ k
l (θ0, ·)− π̃l(·|y)‖ = 0.

Theorem 3.1 concerns the convergence of the AEX algo-
rithm, whose proof can be found in Appendix B.

Theorem 3.1. Assume the conditions of Lemma 3.1 and
Lemma 3.2 hold. Then for any ε > 0, there exist L(ε, θ0) ∈
N and K(ε, θ0, l) ∈ N such that for any l > L(ε, θ0) and
k > K(ε, θ0, l)

(15) ‖P̃ k
l (θ0, ·)− π(·|y)‖ ≤ ε.

This theorem implies that as the number of iterations
of both the auxiliary and target chains goes to infinity, the
samples drawn by the target chain will converge weakly to-
ward the posterior π(θ|y). By standard MCMC theory (see,
e.g., [47]), for any integrable function h(θ), the path aver-
aging estimator

∑n
k=1 h(θk)/n will converge to its posterior

mean almost surely; that is, as l → ∞ and k → ∞,

1

n

n∑
k=1

h(θk) →
∫

h(θ)π(θ|y)dθ, a.s.,

provided that
∫
|h(θ)|π(θ|y)dθ < ∞.

4. AUXILIARY PARAMETER POINTS
SELECTION

As discussed in Section 2, an ERGM may suffer from
the model degeneracy problem if it includes a Markov de-
pendence statistic and/or geometrically weighted statistics.
When the model degeneracy happens, the network tends to
be either empty or complete. Since the observed network is
usually neither empty nor complete, it is natural to put our
emphasis on the non-degeneracy region when conducting a
Bayesian analysis for the ERGM. To illustrate the model
degeneracy and non-degeneracy region to the graphics, we
explore the parameter space of an ERGM with only two
statistics, the edge count and k2-star, for a social network
with 16 nodes. It is known that this model can be degenerate
in some regions, as k2-star is included.

Figure 2 shows the degeneracy and non-degeneracy re-
gions of this model. To produce this plot, the Gibbs sampler
was run 5 times independently at each grid point of a 250 ×
100-lattice defined on the region [−3.5,−1.0] × [−0.5, 0.5].
Each run of the Gibbs sampler consisted of 100,000 itera-
tions, and thus a total of 50,000 networks were simulated
at each grid point. If any of the 50,000 networks had edge
counts less than 5 or greater than 100, the point was classi-
fied as a degenerate point. As shown in Figure 2, the non-
degeneracy region of an ERGM can be irregular. This sug-
gests that a lattice-based auxiliary parameter points selec-
tion method, which is used in [28] for autologistic models,
may not work well for ERGMs. For this reason, we propose
to use an ABC ([5]; [33]) based method for selecting aux-
iliary parameter points. This method can be described as
follows.

Let S(y) denote the set of statistics included in the
ERGM. Let xt and θt denote, respectively, the simulated
network and parameter at iteration t. Let u be a counter of
rejections. One iteration of the ABC-based method consists
of the following steps:
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Figure 2. Degeneracy (black) and non-degeneracy (white)
regions of an ERGM for a social network with 16 nodes.

ABC Algorithm.

(a) Propose a candidate parameter value θ′.
(b) Simulate a network x′ from f(x|θ′) using the Gibbs

sampler starting with xt.
(c) If d(S(y),S(x′)) ≤ ε, then accept (x′, θ′) with prob-

ability min{1, q(θ′,θ)π(θ′)
q(θ,θ′)π(θ) }, where d(·, ·) denotes a dis-

tance measure between S(y) and S(x′). If it is accepted,
set θt+1 = θ′, xt+1 = x′ and u = 0. Otherwise, set
u = u+ 1.

We find that the simulation can get stuck sometimes. To
prevent the ABC chain from clinging to certain locations,
ABC will be reinitialized when u exceeds a threshold value.
The threshold value was set to 100 throughout this paper.
For each example, ABC was run for 10,000 iterations. After
thinning by a factor of 200, 50 samples of θ were obtained,
which were then used as the auxiliary parameter points in
AEX. A proper choice for the number of auxiliary param-
eter points may be disputable, but our experience suggests
that 50 auxiliary parameter points are sufficient for most
ERGMs.

Of course, the ABC method is not the only choice for
the pilot exploration of parameter space. Some other cheap
MCMC algorithms, such as the DMH sampler, can also

be applied. However, compared to DMH, the ABC-based
method has one advantage that the auxiliary parameter
points can be easily made more dispersed by choosing a
larger value of ε.

5. NUMERICAL EXAMPLES

In this section, we illustrate the performance of AEX
using three examples, the Florentine business network,
molecule synthetic network, and dolphin network, which are
shown in Figure 3.

5.1 Florentine business network

This network was collected by [37] from historic docu-
ments. It represents a set of business ties, such as loans,
credits and joint partnerships, among families in Renais-
sance Florence, Italy. This network consists of 16 families
who were locked in a struggle for political control of the city
of Florence around 1430.

Since the size of this network is fairly small and this net-
work shows that few edges are present between the families
with quite a high level of two-star formulation, we consid-
ered the 2-dimensional model with edge count and k2-star,
leading to the following likelihood function

(16) f(y|θ) = 1

κ(θ)
exp {θ1S1(y) + θ2S2(y)} ,

where S1(y) is the edge counts and S2(y) is the 2-star count.
This network is a famous pedagogical example for showing
difficulties in the parameter estimation of the ERGMs under
the model degeneracy [6].

We adopted the following priors:

(17) θ1 ∼ Uniform(−4, 0), θ2 ∼ Uniform(0, 8),

based on two considerations. Firstly, the MPLE of this
model, which is (−3.39, 0.35) with the standard error (0.70,
0.14), indicates that θ1 may take a negative value and θ2 may
take a positive value. Secondly, our pilot parameter space
exploration, as shown in Figure 2, indicates that (−4, 0)
should have been wide enough for θ1, as the region with
θ1 < −4 is degenerate for the model. As suggested by the
MPLE, we restrict θ2 to be positive. Setting a wider prior

Figure 3. Visualization of three example networks.
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Figure 4. From the left to right: Column 1 shows the trace plots of the AEX samples of θ; column 2 shows the autocorrelation
plots of the AEX samples of θ; column 3 shows the autocorrelation plots of sufficient statistics of the auxiliary networks

resampled from the auxiliary chain; and column 4 shows the changing pattern of the plain-DMH estimates with the value of
Π, the number of sweeps of Gibbs sampler used for generating an auxiliary network.

for θ2, e.g., Uniform(−100, 100), should not change the per-
formance of AEX, but needing more auxiliary parameter
points and thus longer CPU time. For the same reason, we
have also restricted the parameter space of other examples
to a relatively small region after a pilot exploration of the
model through MPLE or DMH. If DMH is used, a wide
Gaussian prior can be specified at this stage.

The AEX algorithm was first applied to this example.
To select auxiliary parameter points, the ABC algorithm
was run with ε = (10, 20), where 10 denotes the tolerance
limit for the edge count and 20 for k2-star. AEX was run
10 times independently. Each run consisted of 160,000 it-
erations. For the first 100,000 iterations, only the auxiliary
chain was run and a database of auxiliary networks were
collected therefrom. Then the two chains were run simulta-
neously for 60,000 iterations and the samples generated from
the auxiliary chain were continuously collected and added
into the database. For the target chain, the first 10,000 it-
erations were discarded for the burn-in process, and 10,000

samples were collected from the remaining 50,000 iterations
at a time space of 5 iterations. The same running sched-
ule was also applied to other two examples of this paper.
The resulting parameter estimates were reported in Table
1 and can be interpreted as follows: if neither of the nodes
i and j is connected to some other nodes, then the log-
odds for them becoming connected is −2.4322; and if either
node i or node j is connected to some other nodes, then
the log-odds for them becoming connected rises to −2.2911
(= −2.4322 + 0.1141). The parameter estimates also show
that the probability of adding edges is smaller than those of
deleting edges, but there is a modest propensity to comple-
tion of a 2-star once an edge is formed.

To have an intuitive assessment for the convergence of the
target chains, we drew the trace and autocorrelation plots of
the samples of θ. Figure 4 shows that the target chain can
mix reasonably fast, and an independent sample of θ can
be obtained in about 50 iterations. This converts to about
1,000 independent samples generated in each run, and thus
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Table 1. Parameter estimation for the Florentine business network. The estimates were calculated by averaging over 10
independent runs with the standard Monte Carlo errors reported in the parentheses. CPU(s): The CPU time (in seconds) cost
by a single run on a personal computer with a quad-core i7 2.2GHz processor. ∗The results of CF-DMH are from [6], where
the standard errors were calculated based on 5 parallel chains, and the CPU time had been adjusted to our computer by

re-running their codes under the same setting as given in the paper

Method Edge Counts k2-Star CPU(s)

plain-DMH (Π = 1) -2.6348 (2.8e-3) 0.1978 (7e-4) 0.8
plain-DMH (Π = 20) -2.5242 (2.6e-3) 0.1439 (6e-4) 9.2
plain-DMH (Π = 200) -2.5043 (3.1e-3) 0.1334 (6e-4) 84.8
plain-DMH (Π = 1000) -2.4963 (2.6e-3) 0.1289 (3e-4) 434.7

CF-DMH∗ -2.44 (1.6e-2) 0.12 (4.5e-3) 47.7

AEX -2.4322 (8.4e-3) 0.1141 (1.0e-3) ≈ 360

the AEX estimates reported in Table 1 are reliable. In addi-
tion, column 3 of Figure 4 shows the autocorrelation plots of
the sufficient statistics of the auxiliary networks resampled
from the auxiliary chain, and it indicates that those auxil-
iary networks are nearly independent. This further implies
the validity of the AEX sampler.

Since the perfect sampler is not available for ERGMs, the
DMH sampler was applied to this example for the purpose
of comparison. A plain version of the DMH sampler is the
same as part 2 of the AEX algorithm except that the aux-
iliary network x is simulated at each iteration via a short
run (Π sweeps) of the Gibbs sampler initialized at the ob-
served network y. For this example, we tried four different
values of Π, 1, 20, 200 and 1,000. The plain-DMH sampler
should represent a fair comparison with the AEX algorithm,
as they both employ the Gibbs sampler for simulating aux-
iliary networks. Meanwhile, we also compared AEX with
the CF version of DMH [6]. The CF-DMH sampler is differ-
ent from the plain-DMH sampler in two respects: Firstly, it
employs the tie-no-tie sampler [22] for simulating auxiliary
networks. At each iteration of the tie-no-tie sampler, it first
selects with an equal probability the set of edges or the set of
empty dyads, and then swaps a dyad at random within that
chosen set. Since most of the realistic networks are sparse,
the tie-no-tie sampler does not waste too much time propos-
ing new edges which are likely to be rejected, and thus it
can converge generally faster than the Gibbs sampler. Sec-
ondly, it employs the adaptive direction sampler ([12]; [39]),
for updating θ. The adaptive direction sampler is a pop-
ulation MCMC algorithm, which makes use of distributed
information of individual samples of the population and thus
can generally converge faster than the single chain MCMC
approach. Refer to [30] for more discussions on this issue.

As shown in Table 1, the performance of the plain-DMH
sampler can heavily depend on the value of Π. For each
value of Π given in Table 1, the plain-DMH sampler was
run 10 times independently. Each run consisted of 60,000
iterations, where the first 10,000 iterations were discarded
for the burn-in process and the samples of θ were collected
from the remaining ones at every 5th iteration. As Π be-
comes larger and larger, the DMH estimates are closer and

closer to the AEX estimate. Column 4 of Figure 4 shows
this pattern. However, even when Π is equal to 1,000, the
DMH estimate still cannot reach the AEX estimate. This ex-
periment is consistent with the theory of [43] that a MCMC
sampler for (1) can converge slowly if the model suffers from
the degeneracy problem. The results from [6] indicate that
an efficient MCMC sampler is essential for the success of
the DMH sampler. However, even the CF-DMH sampler has
equipped with two advanced MCMC techniques, as shown
in Table 1, it seems that its estimate has still a little gap
to the AEX estimate. The success of AEX is due to its ef-
ficiency in drawing auxiliary social networks via running a
long Markov chain. As shown in column 3 of Figure 4, the
auxiliary networks resampled from the auxiliary chain are
nearly independent.

Regarding the comparison with CF-DMH, we note that
the estimates were from [6], and the standard errors were
calculated based on the results of parallel chains. The CPU
time had been adjusted to our computer by re-running their
codes under the same setting as given in [6]. Strictly speak-
ing, the CF-DMH estimate is not directly comparable with
ours, as different priors were used for them. In addition, due
to the convergence issue that DMH suffered from, poten-
tially, the CF-DMH estimate can be biased. However, the
CF-DMH estimate does provide us a good reference: It in-
dicates the validity of AEX. This note is also applicable to
the other two examples of this paper.

To further assess the accuracy of the AEX, plain-DMH
and CF-DMH estimates presented in Table 1, we evaluate
the root mean squared error (RMSE) of the estimates of
Sa(y)’s based on the idea of parametric bootstrap [8]. Since
the statistics {Sa(y) : a ∈ A} are sufficient for θ, Sa(y)’s
can be reversely estimated by the simulated networks from
the distribution f(y|θ̂), where θ̂ denotes an estimate of θ.
RMSE can be calculated as follows:

(a) For a given estimate θ̂, simulate K networks y1, . . .,
yK , independently using the Gibbs sampler.

(b) Calculate the statistics

Sa(yi), a ∈ A for i = 1, 2, . . . ,K.
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Table 2. Root mean square errors (RMSE) of the AEX, plain-DMH and CF-DMH estimates for the Florentine business
network

plain-DMH
Statistic Π = 1 Π = 20 Π = 200 Π = 1000 CF-DMH AEX

Edge Count 13.218 4.770 4.645 4.651 4.515 4.462
K2-star 112.825 20.963 20.405 20.488 20.040 19.886

(c) Calculate

RMSE(Sa) =

√√√√ K∑
i=1

{Sa(yi)− Sa(y)}2 /K

for all a ∈ A.

Obviously, a smaller value of RMSE implies a more accu-
rate estimate of θ. Table 2 reports respective RMSE val-
ues for the estimates presented in Table 1, and it shows
a strictly decreasing pattern from left to right. This indi-
cates that AEX provides a more accurate parameter esti-
mate than the plain-DMH and CF-DMH samplers for this
example.

To assess accuracy of the parameter estimates in a graph-
ical way, we used the goodness-of-fit (GOF) plots [20]. The
GOF plot shows the distribution (through box-plots and
confidence intervals) of three sets of statistics, the degree dis-
tribution, the edgewise shared partnership distribution and
the geodesic distance distribution, for the fitted model. If the
statistics of the observed network, which are represented by
a solid line in the GOF plots, falls into the confidence in-
tervals of the fitted model, then the fit is considered good.
The closer the solid line is to the center of the box-plots,
the better the fit is. Figure 5 in Appendix C indicates that
AEX provides a slightly better fit (in the plots of column 2)
for the network than the plain-DMH sampler with Π = 200.
The GOF plot for the CF-DMH estimate is similar.

Finally, to assess the effect of the choice of m, the number
of auxiliary parameter points, on the stationary distribution
π(θ|y), we compared the covariance matrix of π(θ|y) for dif-
ferent values of m = 50, 100, and 200. For each value of m,
AEX was run 50 times independently, but the number of it-
erations of each run varied with the value of m. For m = 50,
the total number of iterations was set to 160, 000, with the
first N1 = 100, 000 iterations being solely used for auxiliary
network collection, the next N2 = 10, 000 iterations being
discarded for the burn-in process of the target chain, and the
samples of θ being collected at every 250th iteration from
the remaining N3 = 50, 000 iterations. Recall that during
the last 60,000 iterations, the auxiliary and target chains
were run simultaneously. For m = 100 and 200, only the
setting of N1 was changed, while the settings of N2 and N3

were kept the same. We set N1 = 200, 000 for m = 100 and
N1 = 400, 000 for m = 200. The results were summarized in
Table 3, which implies that different settings of m can lead

Table 3. Effects of the number of auxiliary parameter points
on the stationary distribution π(θ|y). σ2

θ1
: the variance of θ1;

σ2
θ2
: the variance of θ2; and σαβ : the covariance of θ1 and θ2

Settings σ2
θ1

σ2
θ2

σαβ

m = 50 1.2× 10−1 2.8× 10−3 −1.4× 10−2

m = 100 1.2× 10−1 2.8× 10−3 −1.4× 10−2

m = 200 1.1× 10−1 2.8× 10−3 −1.4× 10−2

to almost identical posterior estimates as long as they are
large enough.

5.2 Molecule synthetic network

This network, shown in Figure 3(b), is obtained from the
ergm package [22]. It consists of 20 nodes and resembles the
chemical structure of a molecule. In this molecule synthetic
network, every node has at least one other node connected,
and there exist quite high levels of k-stars and triangles.
To reflect the structure of this network, we consider a 4-
dimensional ERGM model with edge counts, 2-star, 3-star,
and triangle. This model also shows model degeneracy which
causes difficulties for parameter estimation. The likelihood
function of the model is given by
(18)

f(y|θ)= 1

κ(θ)
exp {θ1S1(y) + θ2S2(y) + θ3S3(y) + θ4T (y)} ,

where S1(y) is the edge count, S2(y) is k2-star, S3(y) is
k3-star, and T (y) is the triangle count.

The parameters are subject to the following priors:

θ1 ∼ Unif(0, 8), θ2 ∼ Unif(−8, 0),

θ3 ∼ Unif(−8, 0), θ4 ∼ Unif(0, 3),
(19)

which constraints the parameters to be either positive or
negative values based on our pilot exploration of the model
through a short run of the plain-DMH sampler with Π = 1
and a wide Gaussian prior. As we mentioned in Section 5.1,
we can improve the computational efficiency of the AEX
algorithm by restricting the parameter spaces to a relatively
small region after a pilot study.

AEX was applied to this example. To implement the
ABC-based method for auxiliary parameter points selection,
we set ε = (10, 40), where the first component corresponds
to the edge count and the second component corresponds
to k2-star. No constraints were set for k3-star and trian-
gle counts. AEX was run 10 times independently. Each run
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Table 4. Parameter estimation for the molecule synthetic network. The AEX estimates were calculated by averaging over 10
independent runs with standard Monte Carlo errors reported in the parentheses. CPU(s): The CPU time (in seconds) cost by a
single run on a personal computer with a quad-core i7 2.2GHz processor. ∗The results of CF-DMH are from Caimo and Friel
(2011), where the standard errors were calculated based on 8 parallel chains, and the CPU time had been adjusted to our

computer

Method Edge Counts k2-Star k3-star triangle CPU(s)

AEX 1.93 (6.7e-2) -0.71 (1.0e-2) -0.25 (9.7e-3) 1.60 (2.4e-2) 95.4

CF-DMH 2.72 (3.9e-2) -1.02 (1.3e-2) -0.05 (1.2e-2) 1.60 (2.6e-2) ≈ 540

Table 5. Root mean square errors of the AEX and CF-DMH
estimates for molecule synthetic network example

Methods Edge Count k2-star k3-star Triangle

AEX 2.181 10.555 10.574 2.458
CF-DMF 2.234 10.883 10.642 2.460

consisted of 160,000 iterations with the same iteration set-
ting for the auxiliary and target chains as for the Florentine
business network example. The results were summarized in
Table 4. They can be interpreted as follows: if neither of the
nodes i and j is connected to some other nodes, then the log-
odds for them becoming connected is 1.93; if either node i or
node j is connected to some other nodes, then the log-odds
for them becoming connected is 1.22 (= 1.93− 0.71); if one
of the nodes i and j is connected to some other nodes which
also forms a two-star, then the log-odds for them becoming
connected is 0.97 (= 1.93− 0.71− 0.25); and if both node i
and j are connected to some other nodes, then the log-odds
for them becoming connected is 2.82 (= 1.93− 0.71+ 1.60).
The parameter estimates imply that the probability of
adding edges is larger than that of deleting edges but there
is no propensity to completion of 2-stars and 3-stars among
edges. However, once a 2-star or 3-star is formed in the net-
work, there is a tendency to completion of a triad. As a
reference, we also gave in Table 4 the results of CF-DMH.
The estimates produced by these two algorithms are not
quite consistent, especially for θ1, but the overall pattern is
similar. Here we mention again that the AEX and CF-DMH
estimates are not directly comparable due to the same rea-
son as discussed in the previous example.

To assess accuracy of the AEX and CF-DMH estimates,
we calculated their RMSE values with K = 20, 000. The
results are summarized in Table 5, which indicates that the
AEX estimate is more accurate than the CF-DMH estimate
in terms of RMSE values. Figure 6 in Appendix C shows the
goodness-of-fit (GOF) plots for the two estimates, which also
imply that the AEX estimate can be slightly better (in the
degree column) than the CF-DMH estimate.

5.3 Dolphins network

This network, shown in Figure 3(c), represents social as-
sociations between 62 dolphins living in Doubtful Sound in
New Zealand [32]. This network is inhomogeneous in that a

few nodes possess a large number of edges and the others
have only one or two edges. Since the size of the dolphins’
network is modest, including the high-order transitivity,
statistics is required to analyze ERGMs. Thus, we analyzed
this network using an ERGM with the degree and shared
partnership statistics. The likelihood function is given by

(20) f(y|θ) = 1

κ(θ)
exp {θ1S1(y) + θ2u(y|τ) + θ3v(y|τ)} ,

where S1(y) is the edge count, u(y|τ) is the GWD statis-
tic, and v(y|τ) is the GWESP statistic. For the GWD and
GWESP statistics, τ is fixed to 0.8, same as [6].

The parameters are subject to the following priors:
(21)
θ1 ∼ Unif(−6,−2), θ2 ∼ Unif(−8, 8), θ3 ∼ Unif(−8, 8).

As for the other two examples, this is set based on our pilot
exploration of the model through a short run of the plain-
DMH sampler with Π = 1 and a wide Gaussian prior.

AEX was applied to this network. To implement the
ABC-based method for auxiliary parameter points selection,
we set ε = (60, 15, 120), where the three components corre-
spond to the edge count, GWD, and GWESP, respectively.
AEX was run 10 times independently. Each run consisted of
160,000 iterations with the same iteration distribution for
the auxiliary and target chains for the Florentine business
network. The results are summarized in Table 6 and can
be interpreted as follows: if dolphins i and j have no com-
mon friends, then the log-odds for them becoming friends
is −4.29; and if they have any positive number of common
friends, and each is in at least one of the other triangle
connections with their friends, then the log-odds for them
becoming friends rises to−3.34. The parameter estimates in-
dicate that in the dolphin network, the probability of adding
edges is less than that of deleting edges but there is an over-
all tendency to form a k-star once an edge is formed in the
network, and there is a tendency to completion of a triad
once a k-star is formed in the network. For reference, Ta-
ble 6 also gave the estimate from [6]. The two estimates are
quite consistent for this example because the model does
not suffer from the degeneracy problem.

This example also indicates that the AEX algorithm has
a significant advantage over the CF-DMH sampler in CPU
cost for large social networks. For the Florentine business
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Table 6. Parameter estimation for the dolphin network. The estimates were calculated by averaging over 10 independent runs
with standard Monte Carlo errors reported in the parentheses. CPU(m): The CPU time (in minutes) cost by a single run on a
personal computer with a quad-core i7 2.2GHz processor. ∗The results of CF-DMH are from Caimo and Friel (2011), where

the standard errors were calculated based on 6 parallel chains, and the CPU time had been adjusted to our computer

Method Edge Counts GWD(τ = 0.8) GWESP(τ = 0.8) CPU(m)

AEX -4.29 (3.3e-2) 1.40 (7.0e-2) 0.95 (1.2e-3) 7.7

CF-DMH -4.27 (1.0e-2) 1.30 (1.1e-2) 0.95 (2.1e-3) 80.8

Table 7. Rooted mean square errors the AEX and CF-DMH
estimates for dolphin network example

Methods Edge Count GWD GWESP

AEX 17.058 3.795 36.455

CF-DMH 17.232 3.828 36.215

network, which consists of 16 nodes, the CF-DMH sampler
took 1,000 iterations to generate one auxiliary network and
iterated for 30,000 iterations for simulating from the poste-
rior. For the molecule synthetic network, which consists of 20
nodes, the CF-DMH sampler took 1,000 iterations to gener-
ate one auxiliary network and iterated for 32,000 iterations
for simulating from the posterior. While, for the dolphin
network, which consists of 62 nodes, the CF-DMH sampler
took 15,000 iterations to generate one auxiliary network and
iterated for 60,000 iterations for simulating from the poste-
rior. In [6], the chain used for generating auxiliary networks
is also called the auxiliary chain. As the network size in-
creases, DMH needs to significantly increase the iteration
number of the auxiliary chain, possibly, at an exponential
rate. However, for the AEX algorithm, only one auxiliary
chain is running, and its iteration number does not need to
increase very fast with the network size. As seen from this
example, the AEX algorithm still works well even with the
same iteration setting as for the Florentine and molecule ex-
amples. This reflects that the AEX costs in each single run
a little shorter CPU time for the Florentine and molecule
examples, but much shorter CPU time for the dolphin ex-
ample, than that of the CF-DMH sampler.

For both the AEX and CF-DMH estimates, we calculated
RMSEs with K = 20, 000. The results were summarized in
Table 7, which indicates that the AEX estimate can be a
little more accurate than the CF-DMH estimate. Figure 7
in Appendix C shows the goodness-of-fit (GOF) plots of the
two estimates. Based on Tables 6 and 7, we can conclude
that the AEX algorithm can perform equally well as or even
better than the CF-DMH sampler for this example, while
costing much shorter (less than 10%) CPU time.

6. DISCUSSION

In this paper, we have applied the AEX algorithm to
Bayesian analysis for ERGMs, and established the conver-
gence of the algorithm under mild conditions. Compared to

the exchange algorithm, the AEX algorithm removes the

requirement of perfect sampling, and thus is applicable to

ERGMs. Compared to the DMH sampler, the AEX algo-

rithm overcomes its theoretical flaw on convergence, while

maintaining its computational efficiency. Due to the conver-

gence issue, the DMH estimates can be biased, while this is

not for the AEX estimates. Our numerical results indicate

that the AEX algorithm can produce more accurate param-

eter estimates than the CF-DMH sampler for all three ex-

amples. In addition, the AEX algorithm has a significant

advantage over the DMH sampler in CPU time for large

social networks.

Our implementation for the AEX algorithm is plain in

the sense that the auxiliary network is updated using the

Gibbs sampler in the auxiliary chain and the parameter is

updated using the MH algorithm in the target chain. Its ef-

ficiency can be improved by equipping with some advanced

MCMC techniques in the auxiliary and/or target chains.

For example, one can replace the Gibbs sampler used in the

auxiliary chain by the tie-no-tie sampler, and apply adap-

tive direction sampling, parallel tempering, or evolutionary

Monte Carlo [31] for updating the model parameters in the

target chain.

In addition to parameter estimation, the AEX algorithm

is ready to be applied to the problem of variable selection for

ERGMs. This can be done by including multiple auxiliary

chains in the simulation with each corresponding to a spe-

cific candidate model. In this way, a model can be selected

from a pre-specified set of models under the Bayesian frame-

work. Due to the parallel nature of the auxiliary and target

chains, this algorithm can be conveniently implemented in

a parallel machine.

APPENDIX A

(A2) Let Pw denote the MH transition kernel for a given

w ∈ W used in the auxiliary chain. For any w ∈ W , Pw is

ψ-irreducible and aperiodic [34]. In addition, there exist a

function V : X̃ → [1,∞) and a constant α ≥ 2 such that for

any compact subset K ⊂ W ,

(i) there exist a set C ⊂ X̃ , an integer l, constants 0 < λ <

1, b, ζ, δ > 0 and a probability measure ν such that

570 I. H. Jin, Y. Yuan and F. Liang



• sup
w∈K

P l
wV

α(x) ≤ λV α(x) + bI(x ∈ C), ∀x ∈ X̃ ,

• sup
w∈K

PwV
α(x) ≤ ζV α(x), ∀x ∈ X̃ ,

• inf
w∈K

P l
w(x,A) ≥ δν(A), ∀x ∈ C, ∀A ∈ BX̃ .

where PwV (x) =
∫
X̃ Pw(x, y)V (y)dy and BX̃ is the

Borel set defined on X̃ .

(ii) there exists a constant c such that for all (w,w′) ∈
K ×K,

• ‖Pwg − Pw′g‖V ≤ c‖g‖V |w − w′|, ∀g ∈ LV ,

• ‖Pwg − Pw′g‖V α ≤ c‖g‖V α |w − w′|, ∀g ∈ LV α ,

where |z| denotes the norm of the vector z, ‖g‖V =

supx∈X̃ |g(x)|/V (x), and LV = {g : X̃ → R
m, ‖g‖V <

∞}.

APPENDIX B

Proof of Lemma 3.1. By the assumptions that X is compact

and f(x|θ) is bounded away from 0 and ∞, it follows from

the convergence and strong law of large numbers (SLLN) of

SAMC [2] that

1

N

N∑
t=1

m∑
i=1

{
w

(i)
t

ψ(zt|θ′)
ψ(zt|θ(i))

I(Jt = i)

}

→
m∑
i=1

∫
X

κ(θ(i))

pi

ψ(z|θ′)
ψ(z|θ(i))pif(z|θ

(i))dz = mκ(θ′).

(22)

Note that as t → ∞, the marginal distribution of zt con-

verges to the mixture distribution g(z) =
∑m

i=1 pif(z|θ(i)).
Similarly, for any Borel set A ⊂ X ,

1

N

N∑
t=1

m∑
i=1

{
w

(i)
t

ψ(zt|θ′)
ψ(zt|θ(i))

I(Jt = i & zt ∈ A)

}

→
m∑
i=1

∫
A

κ(θ(i))

pi

ψ(z|θ′)
ψ(z|θ(i))pif(z|θ

(i))dz

= m

∫
A

ψ(z|θ′)dz.

(23)

Putting (22) and (23) together, we have

∑N
t=1

∑m
i=1

{
w

(i)
t

ψ(zt|θ′)
ψ(zt|θ(i))

I(Jt = i)
}

∑N
t=1

∑m
i=1

{
w

(i)
t

ψ(zt|θ′)
ψ(zt|θ(i))

I(Jt = i)
}

→
∫
A

f(z|θ′)dz, as N → ∞,

which, by Lebesgue’s dominated convergence theorem, im-
plies that

P (X ∈ A)

= E
[
P (X ∈ A|z1, θ

(J1), w
(J1)
1 ; . . . ; zN , θ(JN ), w

(JN )
N )

]
→

∫
A

f(z|θ′)dz,

(24)

where X denotes a sample resampled from {z1, . . . , zN}
with a probability given in equation (11) of the original
manuscript. This completes the proof of the lemma.

Proof of Lemma 3.2. Since P defines an irreducible and
aperiodic Markov chain, so does Pv. To show P̃l has the
same property, it suffices to show that the accessible sets of
Pv are included in those of P̃l. More precisely, we show by
induction that for any k ∈ N, θ ∈ Θ and A ∈ B(Θ) such
that P k

v (θ,A) > 0, then P̃ k
l (θ,A) > 0. First, for any θ ∈ Θ

and A ∈ B(Θ),

P̃l(θ,A) ≥
∫
A

∫
X
(1 ∧ βl)(1 ∧ rv(θ,x, θ

′))νl(dx|θ′)q(θ, dθ′)

+ I(θ ∈ A)ρ(θ)

≥ (1 ∧ β∗)

∫
A

∫
X
(1 ∧ rv(θ,x, θ

′))νl(dx|θ′)q(θ, dθ′)

+ I(θ ∈ A)ρ(θ),

where I(·) is the indicator function and β∗ = minx,θ,θ′ βl(θ,
x, θ′). By the conditions (i) and (ii), we have β∗ > 0 and
thus the implication is true for k = 1. Assume the induction
assumption is true up to some k = n ≥ 1. Now, for some
θ ∈ Θ, let A ∈ B(Θ) such that Pn+1

v (θ,A) > 0 and assume
that ∫

Θ

P̃n
l (θ, dθ

′)P̃l(θ
′, A) = 0,

which implies P̃l(θ
′, A) = 0, P̃n

l (θ, ·)-a.s. and hence

Pv(θ
′, A) = 0, P̃n

l (θ, ·)-a.s. from the induction assumption
for k = 1. From this and the induction assumption for k = n,
we deduce that Pv(θ

′, A) = 0, Pn
v (θ, ·)-a.s. (by contradic-

tion), which contradicts the fact Pn+1
v (θ,A) > 0.

Proof of Theorem 3.1. For any k ≥ 1 and any φ : Θ →
[−1, 1], we have

P̃ k
l φ(θ0)− π(φ|y) = S1(k) + S2(k),

where π(φ|y) = π(φ(θ)|y) for notational simplicity, and

S1(k) = P kφ(θ0)− π(φ|y),
S2(k) = P̃ k

l φ(θ0)− P kφ(θ0),
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where P denotes the transition kernel defined in equation
(14) of the original manuscript.

For the term S2(k), we can further decompose it as fol-
lows. For any k0 (1 ≤ k0 < k),

|S2(k)| ≤ |P̃ k
l φ(θ0)− P̃ k0

l φ(θ0)|
+ |P̃ k0

l φ(θ0)− P k0φ(θ0)|+ |P k0φ(θ0)− P kφ(θ0)|

=

∣∣∣∣∣
k0−1∑
m=0

[PmP̃ k0−m
l φ(θ0)− Pm+1P̃

k0−(m+1)
l φ(θ0)]

∣∣∣∣∣
+ |P̃ k

l φ(θ0)− P̃ k0

l φ(θ0)|+ |P kφ(θ0)− P k0φ(θ0)|

=

∣∣∣∣∣
k0−1∑
m=0

Pm(P̃l − P )P̃
k0−(m+1)
l φ(θ0)

∣∣∣∣∣
+ |P̃ k

l φ(θ0)− P̃ k0

l φ(θ0)|+ |P kφ(θ0)− P k0φ(θ0)|.

(25)

For any ε > 0, it follows from equation (13) of the original
manuscript that there exists an L(ε, θ0) such that for any

l > L(ε, θ0),

|S2(k)| ≤ k0ε+ |P̃ k
l φ(θ0)− P̃ k0

l φ(θ0)|
+ |P kφ(θ0)− P k0φ(θ0)|
= k0ε+ S3(l, k, k0) + S4(k, k0).

The magnitudes of S1(k), S4(k, k0) and S3(l, k, k0) can be
controlled following from the convergence of the transition
kernel P and Lemma 3.2. For any ε > 0, there exists k0 =
K(ε, θ0, l) such that for any k > k0,

|S1(k)| ≤ ε, S3(l, k, k0) ≤ ε, S4(k, k0) ≤ ε.

Setting ε = ε′/(k0+3) and summarizing the results of S1(k)
and S2(k), we conclude the following: For any ε′ > 0 and
any θ0 ∈ Θ, there exists L(ε′, θ0) ∈ N and K(ε′, θ0, l) ∈ N

such that for any l > L(ε′, θ0) and k > K(ε′, θ0, l),

‖P̃ k
l (θ0, ·)− π(·|y)‖ ≤ ε′.

APPENDIX C

Figure 5. Goodness-of-fit (GOF) plots for the Florentine business network: Row 1: AEX; Row 2: plain-DMH with Π = 200.
The solid line shows the observed network statistics and the box-plots represent the distribution of simulated network statistics.
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Figure 6. Goodness-of-fit (GOF) plots for the molecule synthetic network: Row 1: AEX; Row 2: CF-DMH. The solid line
shows the observed network statistics and the box-plots represent the distribution of simulated network statistics.
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Figure 7. Goodness-of-fit plots for the dolphin network: Row 1: AEX; Row 2: CF-DMH. The solid line shows the observed
network statistics and the box-plots represent the distribution of simulated network statistics.
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