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Accelerated failure time model for multivariate
two-stage current-status data with parallel and
longitudinal correlated random effects

YING-FANG WANG, Liu-CHIH Lo AND FUSHING HSIEH*

We develop a parametric accelerated failure time (AFT)
model with random effects for analyzing multivariate two-
stage current-status survival data. This model structure is
motivated by a breeding success study of common ravens
in Rostock Germany around the year 1996. Association be-
tween land use and the stages of the two breeding events—
hatching and fledgling—is of main research interest. Cor-
relation among eggs within the same nest is modeled by a
shared bivariate random-effect term, and the correlation of
this bivariate random-effect term is designed to account for
the dependency between the timing of two breeding events
for the same egg. Analytically we construct the likelihood
function and derive the maximum likelihood estimate with
its asymptotic variance. In regression parameter estimation,
the EM algorithm and a Monte Carlo version of the Newton-
Raphson maximizer are adapted. A numerical study is also
conducted to validate the likelihood based statistical infer-
ences. In the real data analysis, no significant effect for land
use was found for either stage. But low nest security in farm-
land might play some role in the fledgling stage, while food
abundance in farmland is typically related positively to the
breeding process.

KEYWORDS AND PHRASES: Breeding success, Frailty, Inter-
val censoring, EM algorithm, Metropolis sampler.

1. INTRODUCTION

This methodological development was motivated by an
observational study conducted during the common raven’s
breeding season (from mid-February to the beginning
of April in 1996) in a 1570 km? area near Rostock,
Mecklenburg-Vorpommern, Germany. This study attempted
to gain new information about breeding ecology and habitat
selection of common ravens, which were once considerably
reduced or extirpated in Central Europe during the early
1900s. Breeding plays a crucial role in the common raven’s
population dynamics, and a better understanding of the pro-
cess is very important in the conservational biology of this
species. Specifically, such knowledge will allow us to evaluate
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the relative importance of difference habitats and manage-
ment options in the recovery plans. In this study, for each
breeding nest, two visits were pre-scheduled to monitor the
number of hatched eggs and the number of fledglings that
have flown away, respectively, in addition to a prior visit
when the clutch size was recorded. One particular interest
was to assess habitat suitability with the underlying stages
of two serial breeding events—hatching and fledgling. The
monitoring time was chosen according to available biological
knowledge of this species of raven, and only current-status
information at each pre-scheduled visit is obtained. Even
though such a sampling schedule is fixed, the duration be-
tween the events of interest for each bird can vary to a great
extent. A proper survival model is needed to explore the
underlying breeding process.

Considering each individual egg to be the analysis unit,
there are two correlated current status response variables
together with the habitat covariate. Another distinct char-
acteristic of this data is that the clutch size—the number of
eggs sharing the same nest—is usually more than 2, and the
development of eggs within the same clutch are correlated
through several sources. Biologically, breeding is complexly
influenced not only by habitat factors, but also by the in-
dividual situations of the parental breeding pairs, such as
nutrition, health, age, physiological conditions or individual
characters, such as aggressive behavior, all of which cannot
be readily measured. Therefore, correlation among the eggs
within the same nest for reasons that cannot be explained by
the habitat factors should also be considered. This depen-
dence carries over from egg to hatching and then to fledgling
stage.

Two approaches have typically been discussed in han-
dling the dependency between serial events: marginal model
and frailty model. Marginal model focuses on modeling
the marginal mean of the cumulative number of events
over time, and multiplicative covariate effects are assumed
(Ghosh and Lin, 2002 and Chen and Cook, 2004). The de-
pendence among correlated events is implied while the exact
dependence structure is left unspecified. Under this semi-
parametric setting, the amount of information that needs
to be fed into the inference procedure is considerable for
the data structure we are targeting. The semi-parametric
intensity-based frailty (random effect) models were first in-


http://www.intlpress.com/SII/

troduced by Vaupel et al. (1979), under the Cox Propor-
tional Hazard Model setting. It has been commonly used
in explaining the associations among multivariate survival
times, whether parallel or longitudinal (Wolfe and Huang,
2004; Zhu et al., 2011). The shared frailty models assume
the unobserved factors to be the same within clusters, while
correlated random variables governed by a multivariate joint
distribution are used to characterize the random effects
within each cluster in the correlated frailty model (Yashin
and Tachine, 1995; Yashin et al., 1995; Yue and Chan, 1997).
But nonparametric estimation of the baseline hazard func-
tion is involved in the inference. With observations at only
two fixed monitoring times for all subjects, nonparametric
estimation will be almost noninformative except for two
time points and consequently make the inference proce-
dure very unreliable. The accelerated failure time (AFT)
model with additive random effects for multivariate right-
censored survival data can be seen in Lambert et al. (2004);
Chang (2004); Klein et al. (1999). It has the advantage of
being more intuitively and biologically interpretable, and
its GLMM-like formulation makes the computation that ac-
commodates the current-status censoring structure feasible.
In our analysis, a fully parametric AFT model with additive
random effects is developed for serial correlated multivari-
ate current status data. The correlation among eggs within
the same nest is explained by a shared random-effects term,
and correlated random-effect terms are used to account for
the association between the timing of two breeding events
for the same egg.

Event counts over specific periods of time provide another
way to describe the serial event process when continuous ob-
servation of subjects is not practical. He et al. (2008) mod-
eled the multivariate “panel count data” under the assump-
tion of multiplicative covariate effects on the marginal mean
functions of the cumulative event counts. In Fiocco, Putter,
and Houwelingen (2009), longitudinal counts of recurrent
events are modeled by Poisson process with a time-varying
gamma frailty term. But in our real data example, not only
can we not make continuous observations, but we actually
have just one observation for each event process. Trying to
model the whole count data process with only one or two
observations still seems quite challenging.

Another feature of the breeding process example is the
current status data structure, also referred to as “Type-I
interval censoring”. It arises when the exact failure time
cannot be observed, and each individual is assessed only
once at a certain monitoring time. The event of interest is
only known to either exceed the monitoring time or not.
The monitoring time can generally be random or fixed, as
is the case in the other Type I censoring schemes (Klein
and Moeschberger, 2003). Under the bivariate copula model
setting, Wang and Ding (2000) proposed an inference pro-
cedure to estimate the association between two correlated
survival events when current status data of a common mon-
itoring time is observed. Sun et al. (2006) developed such
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an estimation under the interval censoring scheme and the
monitoring times for two events are allowed to be differ-
ent. But the nonparametric estimation of the survival func-
tions involved in the inference will again make the appli-
cation almost impossible for our data. Under the Bayesian
framework, Komarek and Lesaffre (2006) proposed to jointly
model an interval-censored first event time and a doubly
interval-censored difference time between first and second
events with the AFT model assumption. Association be-
tween two subjects of the same cluster is captured by a
semi-parametric bivariate error distribution, inspired by the
penalized smoothing technique where the shape is partially
driven by the data. Komarek and Lesaffre (2008) extended
the discussion to a situation when the number of subjects
within each cluster can be arbitrarily more than two. A
shared random effect term is introduced to the AFT model
for the association of the subjects in the same cluster, and a
univariate version of the same smoothing technique is used
for the random effect and error distribution. Several com-
plications regarding censoring structures are involved in the
breeding process example we studied, which signified the
uniqueness and necessity of our proposed model. In particu-
lar, (1) the two serial events of the same subject do not have
a common censoring time; the censoring times are different
but in a fixed order (first for hatching and then for fledgling),
and (2) the censoring times are not random among subjects;
Ci;1 and Cjjo are fixed at 21 days and 42 days for all subjects
throughout the whole investigation. The lack of variation in
Ci;j1 and Cjjo in our real data example makes efficiency ex-
tremely important in our modeling attempt, and that’s the
main reason why we chose to start with a fully parametric
approach over the Bayesian approaches that also requires
some modifications in the analysis of breeding process.

The purpose of this paper is to develop a methodology
that can be used to analyze multivariate two-stage current-
status survival data. It is then to be applied to explore the
relationship between habitat selection and breeding dynam-
ics of the common raven. This article is organized as fol-
lows: in Section 2, we present the multivariate two-stage
AFT model with additive random effects, for current-status
data. In Section 3, we discuss the likelihood-based statisti-
cal inference. We present the results of a simulation study
in Section 4, and real data analysis is reported in Section 5.
Some related issues are discussed in Section 6.

2. MULTIVARIATE TWO-STAGE AFT
MODEL WITH ADDITIVE RANDOM
EFFECTS FOR CURRENT-STATUS DATA

Suppose that in a longitudinal study, the timing of two
serial events T;;; and Tj;o are of interest, wherei =1,...,n
is the index of the clusters, and j = 1,...,n; is the index of
each individual within cluster . Without observing the exact
timings, instead the status of event 1 and event 2 at two pre-
scheduled time points Cj;; and Cj;1 4+ Cyj2 are monitored,



respectively. Current-status information, i.e., whether or not
an event has yet occurred, is recorded at each time point.
Namely, Lij1 = I(Tijl < Cijl) and Lijo = I(’Tijl + Tij0 <
Cij1 + Cija), where I(-) is the indicator function. For both
events, we assume an accelerated failure time (AFT) model
with an additive random effect term that accounts for the
correlation among individuals within the same cluster, aside
from what is already explained by the covariates. The AFT
models for Tj;; and T2 of each individual are specified as
follows:

log(Tij1) = B1Z; + win + 016451
log(Tij2) = BaZi + wiz + 02e4j2

where Z; is a vector consisting of a 1 (to account for the in-
tercept) and the values of the cluster-specific covariates. The
distributions of Tj;; and Tjjo are determined by that of the
random error terms, €;;1 and €;52. 0,51 and o;;2 are the scale
parameters for the error distribution and therefore the vari-
ance of €;;1 and ;2 should be fixed at 1 for identifiability
of the parameters. Another way to specify the AFT mod-
els is to let o be absorbed within the distribution of . But
starting from Section 2.1, our discussion will be focused on
the extreme value distribution f(g) = e®e™®" that doesn’t
have a scale parameter specification. We therefore would
like to retain o in the equation here. The pair (w;1,w;g) is
the random effect shared by all individuals that belong to
cluster 4, and is termed fortitude for its positive effect on
lifetimes (Lambert et al., 2004) in contrast to frailty in the
proportional hazards framework. The positive association
between the two events for the same individual is accommo-
dated by the correlation between (w;1,w;2). Specifically, we
assume that each pair (a1, a;2) = (exp(w;1), exp(wiz)) is a
realization from a bivariate positive-valued distribution with
marginal mean one and positive correlation. When (o1, @;2)
is given, lifetimes T;;; and 7} are assumed to be indepen-
dent between each other as well as among different i’s and
j’s.

2.1 Likelihood

Throughout we assume censoring to be noninformative
about the fortitude. Therefore, independence still holds
among the observed data (Cjj;1, Cijo, Lij1,[;;2) for all ¢ and
J, given (a1, az). The likelihood can be derived as

n o) oo
(1) L= H/ / {fi(cijlvcij%lijlaliﬂ | vi1, ii2)
=170 JO

x g(ag1, Oéiz)} dajrdaga,

where n is the number of -clusters, fi(Cij1,Cijo2,
Iiji1, Iijo|cu1, ai2) s the joint conditional probability
function of the observed data given the fortitude terms for
cluster 4, and g(a;1, @;2) is the probability density function
of the fortitude. Four different scenarios can happen

Table 1. Possible scenarios among two serial visits for each

individual
A B Joint conditional probability representation
Yes Yes P(Tijl < Cij1, Tij1 + Tije < Cij1 + Cij2| 061'1,061'2)
Yes No P(Tij1 < Cij1,Tij1 + Tijo > Cij1 + Cija| qin, i)
No Yes P(Tij1 > Cij1, Tij1 + Tije < Cij1 + Cija| qin, aiuz2)
No No P(Tiﬂ > Cij1, Tij1 + Tij2 > Cij1 + Cij2| 061'1,061'2)

A: Occurrence of Event 1 before the first visit
B: Occurrence of Event 2 before the second visit

among the two serial visits for each individual, as listed
in Table 1. Specifically, the joint conditional probability
fi (Cijh Cijg, Iijl, Iijg | a1, Oéig) for all individuals in cluster
1 can be written as

ng
(2) { H P(Tij1 < Cij1, Tij1 + Tij2 < Cijn
j=1

+ Cija air, ) i =11i52=0

X P(Tij1 < Cij1, Tij1 + Tijo > Ciju

¥ Cugal it ) 1=

X P(Tij1 > Cij1, Tij1 + Tijo < Cijn

+ Cijal a1, Oéiz)I(I”'FO‘I“Fl)

X P(T;j1 > Cij1, Tij1 + Tijo > Cija

Iy ot g
+ Cijo| i1, ciz) (1”10’1”20’}

where n; is the number of individuals in each cluster. Con-
ditional on the fortitude, lifetimes follow an accelerated fail-
ure time model where the randomness comes from the error
terms. While a variety of choices may be considered for the
error terms, we adopt the extreme value distribution, which
constitutes a Weibull model with random effects. Weibull
models have the advantage of satisfying both the acceler-
ated failure time and the proportional hazard assumptions,
and it is commonly accepted in modeling survival time. The
positive-valued parameters o; and oo are assumed to equal
one here simply because the current-status data structure
very often does not carry sufficient information to afford
complex estimation, as is the case in our breeding success
study. Since our main interest is to understand the associ-
ation between the covariates and the time to two events,
measured by 1 and s, holding other nuisance parameters
fixed is a reasonable trade-off between computational sim-
plicity and adequacy. Therefore Tj;; and Tjj» will reduce to
exponential survival times. Explicit expressions of the joint
conditional probabilities in Table 1 can be derived as shown
in Appendix A, and these probabilities form the basis of
our likelihood-based estimation procedure in the next sec-
tion. A model-checking procedure will be presented in the
discussion section to further support the application of our
proposed parametric model with this specific setting to the
breeding success data.
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2.2 Choice for G(a1, az): Bivariate gamma
distribution

The Gamma distribution is a positive-valued probability
model that is widely applicable in survival analysis, and the
two-parameter representation Gamma(k, ) with shape k
and scale 0 has density

zFle

OFT (k)

—x/0
g(z; k,0) =

for x > 0, and k,6 > 0. This distribution has the property
that summation of two independent gamma-distributed ran-
dom variables with the same scale still follows a gamma
distribution, and the scale of a gamma distribution can
be adjusted to any value with simple constant multiplica-
tion of the original random variable. Therefore, a bivariate
gamma distribution whose components are positively corre-
lated can be developed from linear combinations of indepen-
dent gamma variables (Mathai and Moschopoulos, 1991). In
addition, to serve the purpose of random effect in the sur-
vival model, the marginal means of both « and as need to
be constrained at one. A form of the three-parameter bivari-
ate gamma distribution that can be applied to our proposed
model is thus constructed as follows.

Let Vo ~ Gamma(p, 1), Vi ~ Gamma(ps — p1,1/p2),
Vo ~ Gammal(ps — p1,1/ps) be three mutually independent
gamma-distributed random variables with both ps and p3
greater than p;, and let

1

A1 - —V()“F‘/l
P2
1

Ay = —WVo+ Vs
P3

Then (A1, A2) has a bivariate gamma distribution, whose
marginal means both equal one and whose marginal vari-
ances are 1/ps and 1/ps, respectively. A; and A, are pos-
itively correlated through a common variable Vj, and the
correlation coefficient equals 0 < py/ Vp2p3 < 1. For the
same reason as is stated in Section 2.2, throughout the rest
of the paper, both ps and ps are chosen to be fixed at one
to narrow down the number of parameters to be estimated.
The joint density of (Aj, As), as derived in Appendix B, in-
volved integration of a polynomial function to an unknown
power and does not have an analytical form. Nevertheless,
bivariate Gamma random variables defined this way are easy
to generate, and this makes our Markov Chain Monte Carlo
(MCMC)-based estimation procedure feasible.

3. ESTIMATION PROCEDURE

The likelihood function in (1) cannot be evaluated in
closed form because the integration is intractable, and nei-
ther can the log-likelihood function. To avoid such compu-
tational difficulties, the Expectation-Maximization (EM) al-
gorithm is set up by considering the fortitude terms «;; and
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a2 to be the missing data. The log-likelihood based on the
complete data W = (Cy,Cy, I1, Iz, a1, a2) is then given by:

(3) log(Lw) = Z {log[fi(Cij1, Cijo, Lij1, Lijo | a1, cu2)]

+log[g(cvi1, ai2)]}

The conditional expectation of the complete-data log-
likelihood given the observed data Y = (C1,Cy, 11, 1)
required in the EM algorithm still cannot be computed
directly, because the conditional distribution involves the
aforementioned integration. However, Monte Carlo approxi-
mation of the conditional expectation can be formed because
sampling from the conditional distribution (cy, as)|Y is pos-
sible. A particularly neat form of the Metropolis sampler as
suggested by McCulloch (1997) is described in Section 3.2.

3.1 Monte Carlo Newton-Raphson
procedure

To speed up maximizion of the likelihood, the Newton-
Raphson procedure is often adapted when the score U(/3),
first partial derivatives of the log-likelihood function, and
the observed information I(f), negative of the second partial
derivatives, can be easily calculated as a function of 3. Each
Bm is updated by gmt = glm) 4 [1(gm)]~LU(pm))
iteratively until convergence. In our EM setting, the pri-
mary parameters of interest 5 = (1, 82) enter only the first
term of the complete-data log-likelihood function in (3), and
the complete-data score with respect to 8 can be derived,
as shown in Appendix C. The conditional expectation of
the complete-data score given the observed data is shown
to equal the observed-data score (Gauderman and Navidi,
2001): U(B;Y) = E[U(B; W) | Y]. Therefore, it can be ap-
proximated to take place of U(f8) in the Newton-Raphson
procedure, and so can the conditional-expectation expres-
sion of the information defined below (Louis, 1982) in place

of I(pB).
I1(8;Y) = E[I(B; W) | Y] = Cov[U(B; W) | Y]

This is also how the observed information matrix will be
extracted in the EM algorithm to obtain the standard error
estimates once convergence is achieved. Since both W; =
(CijlaCij2aIij1;Iij2aai1;ai2) and Y; = (Cijhcijz,fijlafijz)
are independent among ¢ = 1,...,n, U(B;Y) and I(3;Y)
can be further broken down into the summation of n
terms: U(B;Y) = Y1l E[U(8; W) | Yi] and I(B;Y) =
i1 BL(B;Wi) | Yi] = Cov[320L, Ui(B; W) | Yi]. Monte
Carlo approximations are then constructed in the following
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where each W} consists of the observed data Y; and
(ak,,ak,), a random sample drawn from the conditional dis-
tribution of 7((ou1,2)|Y:). An EM-based Monte Carlo
Newton-Raphson (MCNR) approach in finding maximum
likelihood estimates(MLE) can be carried out using the ap-
proximations in (4) and (5), elaborated as the following

steps:

Step 1. Select initial values 89 and p(®).
Step 2. E step

a) Generate K pairs of random samples,
(ol al), (0l a), ... (al{” ,al}") from the

conditional distribution (a1, ;o | Y27 B plm))
for ¢ = 1,...,n using the Metropolis sampler
described in Section 3.2.

b) Calculate the Monte Carlo approximations as in
(4) and (5).
Step 3. M step

a) Update [ value with A0m+D glm) 4
[H(B V)70 (B0 Y).
b) Choose plm 1) that maximize

L/K 325, loglg,(af, af)].
Step 4. Repeat Steps 2—4 until convergence and declare
B+ and p(m+1) to be the MLE.
Step 5. Repeat Step 2 one more time to calculate the MC
estimates of the observed information matrix. The stan-
dard error estimate is then [I(3;Y)]~1/2.

Note: Since our methodology focuses on studying the asso-
ciation between the covariates and the time to two events,
the algorithm is mainly developed to estimate 8, and fs.
Due to the computational difficulty of the intractable like-
lihood function of the bivariate gamma distribution, only a
point estimate of the nuisance parameter p is given, while
its precision is unknown.

Table 2. Percentage of each scenario in the simulated data

A B Percentage
n =50 n = 100
Yes Yes 70% 70%
Yes No 10% 10.5%
No Yes 5% 5.5%
No No 15% 14%

3.2 Metropolis sampler

When generating samples directly from a distribution
is not possible, a Markov chain that converges to a sta-
tionary distribution of interest can be used instead. Our
target distribution here is the bivariate conditional distri-
bution 7(«;|Y;) with «; denoting (i1, au2) for notational
simplicity. In the (k + 1)** step of the Metropolis sampler,

(k+D7 4 sampled from a proposal dis-

(k+1)")

i

a candidate point «;
tribution q(a1|a( ). With probability A(a(-k) !

‘n'( (k+1)* |Y)q(a(k)|a(k+l) )
(’C)Iy) ( (k+1)* ‘ (k)

cepted to be aEkH) otherwise «; gk). As suggested

by McCulloch (1997), when G the bivariate distribution of
the fortitude terms is chosen as the proposal distribution,
the acceptance probability involves only the conditional dis-
tribution f;(Y;|cy) as derived in ( ) and is easy to compute:
A(agk),agkﬂ)*) %} The chain can be
repeated for any desirable length. A burn-in period, usually
the first 1% ~ 2% of the total iterations, is to be discarded,
and the remaining constructs a random sample of (e | Y;).

}, the candidate point is ac-
(k+1) _

min{1,

= min{1,

4. SIMULATION

4.1 Performance of the estimation
procedure under correct model
assumptions

Simulations were conducted to evaluate the proposed
model and the performance of the estimating procedure. We
examine samples of two different sizes: n = 50 clusters and
n = 100 clusters, both with cluster size n; = 4. Data are
generated based on the model assumption in Section 2, con-
sidering one continuous covariate Z following a standard
normal distribution, and regression coefficients 51 = In(2)
for the first stage and 83 = — In(2) for the second stage. The
fortitude terms (o, az) are random draws from the bivariate
Gamma distribution described in Section 2.2, with marginal
means one, marginal variances one, and correlation coeffi-
cient 0.5. The error terms, €; and €5, are generated from
two independent extreme-value distributions. Fixed censor-
ing times, C and Cy, are chosen to allow approximately 80%
of the data to have event 1 occur before Cy so that I; =1,
while 75% of the data have event 2 occur before Cy + Cy
so that Iy = 1. Table 2 shows the approximate percentages
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Table 3. Summary of parameter estimation results from 300 simulation replicates

Proposed model

Modeling separately

Bias T.SE E.SE 95% CR Bias T.SE E.SE 95% CR
n = 50
b1 0.000 0.145 (0.225%) 0.214 2% —0.142 0.214 0.198 89%
B2 —0.014 0.179 (0.256™) 0.229 89% 0.688 0.175 0.147 3%
p —0.011 0.054
n = 100
b1 0.016 0.101 0.151 82% —0.122 0.149 0.128 87%
Ba 0.006 0.122 0.173 2% 0.698 0.121 0.096 0%
p —0.016 0.046

*

of the data that fall into each of the four scenarios given in
Table 1.

We generate 300 replicates and fit the proposed model to
each. The average bias, average estimated theoretical stan-
dard error (T.SE), empirical standard error (E.SE), and cov-
erage probability of the 95% confidence interval are summa-
rized in Table 3. When the sample size is 50, as shown in the
top-left corner of the table, the biases of all the parameter
estimates are fairly small, concordant with the consistency
of the MLEs. The average theoretical standard error esti-
mated by step 5 of the EM-based MCNR algorithm, and
the empirical standard error calculated as the sample stan-
dard deviation of 300 estimation values, are both reported
in order to examine the variation of the 3 estimates. The
theoretical SE is obviously underestimated for several pos-
sible reasons, one of which may be ignorance of the variation
coming from the estimates for nuisance parameter p in step
5 due to computational limitations. Such underestimation of
the SEs is also reflected in the 95% coverage rate being lower
than the nominal level, at 82% and 89% respectively. Boot-
strap can be a potential remedy in such situations that the
analytical derivation is intractable. But because our MCNR
estimation itself already relies on an iterating procedure, the
computational time to combine our MCMC iterations with
the bootstrap estimation is not likely to be very practical for
most users. For the small sample size setting, we report our
simulation summary when the Bootstrap SEs are estimated
by 30 resamplings of clusters with replacement (Field and
Welsh, 2007). It shows that the bootstrap procedure has the
potential to recover much of our underestimation in the the-
oretical SE (even a slight overestimation is reflected). The
estimates will slowly become closer to the sample SE as the
number of bootstrap replicates goes up to 100 or even 200,
but we stopped at 30 for the purpose of this demonstration.

As shown in the right side of the table, the results
are compared to those obtained when modeling the two
stages separately using the AFT model with additive
random effects by Therneau et al. (2003) in R/SPLUS. Our
proposed approach has a dramatic advantage in estimating
the regression coefficients at the second stage, demonstrated
by a much smaller sample bias and a much higher 95%
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numbers in brackets are the Theoretical Standard Error estimated by 30 Bootstrap replicates

coverage rate. Modeling separately suffers from the fact
that the starting time of the second stage is unknown and
the censoring time of the first stage is naively taken as a
substitute, while our proposed model adequately takes into
account such a censoring structure. A somewhat smaller
bias is also presented by our method in the coefficient
estimates of the first stage. From several sets of simulation
studies which are not reported here, we believe that the
traditional methods were unable to perform satisfactorily
even for the first stage mainly because (1) the amount of in-
formation carried by our current-status censoring structure
with fixed monitoring times is very limited, and (2) the two
stages are correlated with each other beyond the sharing of
common covariates and modeling jointly has the advantage
when such dependency should not be ignored. When we
increase the sample size to 100, a similar trend persists, and
a higher degree of precision can be reached, as reported in
the second part of the table. As a computational remark,
we note that the amount of information of p becomes small
when p is away from 0.5 and close to 1 or 0. In those cases
the EM-algorithm becomes instable or even not converging.

4.2 Comparison with other existing methods

Our approach is also compared to an existing method
proposed by Komarek and Lesaffre (2008). The parametric
AFT formulation in their Bayesian approach is very similar
to that in our proposed model, and the estimation procedure
for both of our methods mainly rely on the MCMC itera-
tions. While they employ the data-driven smoothing tech-
niques to allow for flexible distributional assumptions in the
random effect and error terms, their observations were made
in periodic visits and the event times were interval censored.
We were mainly concerned with the situation when observa-
tion is rather difficult or expensive, and only one observation
is made for each event which results in the current-status
data. With the exact same simulation setting of small sam-
ple size (n = 50), we applied the Bayesian AFT model in
Komarek and Lesaffre (2008) using the R BayesSurv pack-
age. Since Current-status data is a special case of interval
censoring, the application is straightforward for most cases.



Table 4. Bayesian approach (Komarek and Lesaffre, 2008)

Bias SD MSE
Current-status data with augmented information
B1 0.515 0.589 0.612
B2 0.505 1.019 1.294
Interval censoring with multiple visits
B1 —0.023 0.187 0.036
B 0.069 0.171 0.034

However, when both events have not happened by the time
of each observation (I; = 0 and Iy = 0), distinction needs
to be made whether the first event has already happened
or not by the time of the second observation. This is a very
natural observation in a dental example, but not necessar-
ily so in other cases when measurement of one event does
not come along with measurement of the other event. In the
numbers reported here for the purpose of numerical inves-
tigation, we have had to add such unobserved information
to 15% of the data (the forth group: I; = 0 and I, = 0)
to make the Bayesian approach applicable. The information
being fed into the two methods are not equally fair, and in
fact the Bayesian approach has the advantage of using the
more detailed data. However, as shown in the upper panel
of Table 4, the Bayesian approach cannot give accurate and
precise estimates for the regression coefficients. We believe
this has more to do with the lack of information due to the
current-status censoring structure, rather than the unknown
underlying distributions of the true event times. To confirm,
we did another set of analysis with the exact same simulated
event times, but interval censored by first visit drawn from
N(0.1,0.022) and consecutive visits of distance drawn from
N(0.05,0.0052). The results are shown in the lower panel of
Table 4, and the Bayesian approach now performs reason-
ably well as it was designed to.

4.3 Robustness against random-effect
misspecification

While a more relaxed distributional assumption is pre-
ferred so that the justification can be less concerned, the
cost is very likely to be the information carried by the data
and the censoring structure, which is the main pitfall of the
type of data we are facing. While the justification of this rel-
atively restrictive assumption is another challenging topic (a
crude model checking and diagnostic tool will be briefly dis-
cussed in Section 6), below we evaluate through simulations
the robustness of our proposed method against misspecifi-
cation of the random effect distribution in light of its poten-
tial to be applied to other scientific settings where repeated
measurements are not feasible. The evaluation has mainly
focused on the performance of our proposed model when
there is a negative dependency between the two event times
besides the effect caused by their common covariates of in-
terest. The fortitude terms (o, ) are random draws from

Table 5. Simulation Comparisons: n = 50 clusters with
cluster size n; = 4. Z ~ N(0,1), 81 = In(2), 52 = In(2),
and (aq, ap) ~ bivariate lognormal distribution with marginal
means one, marginal variances one, and correlation coefficient
—0.5 and —0.3. Both 1 and €5 ~ extreme-value distribution.
Fixed censoring times, Cy and Cs, are chosen to allow
approximately 80% of the data to have event 1 occur before
Ci so that I1 = 1, and 75% of the data have event 2 occur
before C7 + Cy so that I, =1

Proposed model

Bias T.SE E.SE 95% CR

r=—0.5
51 0.072 0.148 0.231 79%
B2 0.226 0.205 0.305 73%
P 0.837 0.022

r=—0.3
B1 0.072 0.149 0.221 81%
B2 0.167 0.204 0.307 76%
p 0.860 0.029

the bivariate lognormal distribution with marginal means
constrained at one. Marginal variances are chosen to be one
as well and the correlation coefficient equal to —0.5, or —0.3
for the last setting in Table 5. Fixed censoring times, C; and
Cs, are chosen to allow for the desired rates of events that
have already happened, as specified in more details next
to the presentation of the each result. Everything else not
mentioned here remains the same as the small sample size
(n = 50) simulation setting in Table 3.

1. When the common covariates have an effect in
an opposite direction:
Our estimation procedure for the regression coefficients
(61 and f32), which is the main target of our methodol-
ogy, is not very sensitive to departure of the positive-
correlation assumption in the proposed model when (1)
the common covariates have an effect on the event time
in an opposite direction that facilitate the negative cor-
relation between the two event times, and (2) the rates
of events happened before monitoring times are high.
In current-status data, we only observe the status of
the event once at the monitoring time. Therefore, the
actual event times (737,75) are unobserved, but only
the monitoring time (C7,C5) and its status (Iy, I2) are
recorded. High rates of already-happened events refer
to relatively late monitoring times during the study. In
such cases, many of the unobserved actual event times
tend to be much smaller than the monitoring times be-
cause the event time (77,7%) grows exponentially un-
der the AFT assumption. We do not however observe
exactly how much smaller they are, and that’s one of
the reason why misspecified random effect distribution
can sometimes get away for the purpose of regression
estimates. The underlying negative dependency is ab-
sorbed by the 8, and f5 estimates of opposite direction
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Figure 1. Bias for 1 and (32 estimates vs Rate of
Already-Happened Events: n = 50 clusters with cluster size
n; = 4. Z ~ N(O, 1), 51 = In(2), 52 = 7'"(2), and
(a1, a0) ~ bivariate lognormal distribution with marginal
means one, marginal variances one, and correlation coefficient
—0.5. Both €1 and g5 ~ extreme-value distribution. Fixed
censoring times, C1 and Cs, are chosen to allow
approximately 10% to 80% of the data to have event 1 occur
before C; so that Iy = 1, and 10% to 80% of the data have
event 2 occur before C; 4+ Cs so that I, = 1.

and reflected in a reasonable bias away from zero. On
the other hand, when rates of already-happened events
are low and monitoring times are early, many of which
are closer to the actual event times, our model will lose
its robustness against negatively-correlated random ef-
fects. The bias for B, estimates starts to pass beyond
0.1 when the rates of already-happened events are be-
low 30% for both events (see Figure 1).

2. When the common covariates have an effect in
the same direction:
Other times, the covariates have an effect on the two
events in the same direction while frailty takes effect in
the opposite direction, and that’s when our proposed
model can become more problematic. 82 tends to be
overestimated, even when the rate of observed events
are high (80% for event 1 and 75% for event 2; see
the upper of Table 5). When the negative correlation
drops to —0.3, such bias decreases a little bit but is
still unignorable (see the lower panel of Table 5).

Several other simulation results also support the robustness
of our model when the random effects are generated by a bi-
variate gamma distribution with various covariance matrix
(marginal variances that are not necessarily one), but esti-
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Table 6. Frequencies of each scenario in the real data

A B Frequency
Yes Yes 212
Yes No 12

No Yes 0

No No 64

mated by a one-parameter (p) bivariate gamma; the tables
are omitted here. In summary, this investigation brings to
our awareness certain scenarios that our model might lose
its robustness against random-effect misspecification, par-
ticularly when the bivariate random effect is negatively cor-
related. The relative direction of the regression coefficients
for the common covariates plays a role, as well as the rates
of already-happened events. When the common covariates
influence the two stages in the same direction and the bi-
variate random-effect does not, our method might not be
able to provide a consistent estimate. But as expected, the
bias decreases as the negative correlation increases towards
Z€ro.

5. ANALYSIS OF THE BREEDING SUCCESS
OF COMMON RAVENS

In the 1996 breeding process study on common ravens in
Germany, 65 nests were visited at sparsely-scheduled time
points. The average number of eggs in each nest was 4.43,
and there were 288 eggs observed in total. One of the vis-
its happened 21 days after the visit when clutch size was
counted, followed by another visit which happened 42 days
later. Notice that C;; and Cjj;2 can generally be either ran-
dom time points or fixed ones, and the example presented
here is a special case of current-status data where the mon-
itoring time is fixed. Techniques developed for our proposed
model are based on the conditional distribution of the actual
event time, given the monitoring time. They can typically
be used for random censoring times, but work equally well
for fixed ones (Jewell and van der Laan, 2004). At these two
visits, current-status information is recorded for each egg re-
garding hatching and fledgling flown away, respectively. The
frequencies of the four scenarios are listed in Table 6. Our
analysis focuses on the association between land use of the
breeding territory and timing of the two breeding events.
The percentage of farmland use in breeding territory is used
as the covariate, with a mean of 76.94% and standard devi-
ation of 14.69% among all the observed eggs.

In a previous analysis (2011, unpublished), land use was
identified as the single-most important factor in the regres-
sion analysis of reproduction, as measured by the number of
eggs laid by each female common raven. However, it is not
even a significant factor in the logistic regression analysis of
breeding success. Breeding is defined as being successful for
each nest if at least one fledgling has flown away from the
nest in the previous analysis (2011, unpublished), which is



Table 7. Breeding success data analysis result

Coefficient
Estimates S.E. Z P-value
Proposed Model*
Time to Egg Hatched
(Intercept) 2.39 0.58 4.12 0.00
Farmland % 0.72 0.75 0.96 0.34
Time to Fledglings Flown Away
(Intercept) 3.42 0.69 4.96 0.00
Farmland % -0.18 0.89 -0.20 0.84
Modeling Separately
Time to Egg Hatched
(Intercept) 2.04 0.79 2.57 0.01
Farmland % 0.46 1.02 0.45 0.65
Time to Fledglings Flown Away
(Intercept) 3.01 0.79 3.83 0.00
Farmland % 0.28 1.02 0.27 0.78

*p = 0.6, but no further inference is made regardingthis parameter

related to the second event of each individual egg that we
discuss here. Now we have information about the hatching
stage, and we want to incorporate the information about
both events. When the time to hatching and the time to
fledgling were modeled separately using the AFT model with
additive random effects, the percentage of farmland use in
the breeding territory shows an insignificant positive effect
for both events with Z-statistics of 0.45 and 0.27 respec-
tively, as shown in Table 7. In this naive analysis, the time
of the first visit was taken as the starting point of the second
event. When we consider a more realistic censoring structure
and model the breeding process jointly with our proposed
approach, the percentage of farmland still does not show a
significant effect for the hatching stage, even though the Z-
statistic is slightly higher (0.96). From all unpublished previ-
ous analyses as well as the current analysis for the hatching
stage using our proposed model, the percentage of farm-
land has always been positively related to reproduction and
breeding of common ravens. It is noteworthy here that even
though it is also insignificant, a negative coefficient estimate
is revealed in the fledgling stage. This data set is relatively
small and does not provide sufficient statistical evidence of
a negative effect, but such a potential negative effect if valid
may bring out an interesting biological implication. For ex-
ample, a higher percentage of farmland in the breeding ter-
ritory provides a more abundant food supply, but the raven
offspring may therefore be exposed to a higher predation
risk. Food abundance primarily contributes to the breeding
process through the hatching stage, and nest security seems
more important in the fledgling stage. As discussed in the
simulation study, a larger sample size might provide better
statistical evidence if such a trend indeed exists.

6. DISCUSSION

The methodology presented in this paper is developed
to handle the multivariate two-stage current-status survival
data. Our accelerated failure time (AFT) model with paral-
lel and longitudinal random effects provides a realistic model
for the breeding success of common ravens. Both inter-
subject correlations at the same stage and intra-subject cor-
relations between stages are modeled through bivariate ran-
dom effect terms. We develop regression coefficient estimates
with their standard errors and the intra-correlation of sur-
vival times between the two stages. Our proposed model
and its statistical inference have valuable potential in appli-
cation to other real-world problems in which the timing of
two serial events is of interest, and yet only current-status
information is observed.

We hereby provide a crude model-checking tool to infor-
mally assess the fit of our proposed model to the breed-
ing success data. Cox-Snell residuals (Cox and Snell, 1968;
Klein and Moeschberger, 2003) of the exponential model
(Weibull with unity scale parameter) defined by r;;; =
exp(log(Cijk) — Mik), k = 1,2, where C,;;, is the monitoring
time of current-status information, and 7;; = 3kZ¢ + @ik
is the linear predictor, should approximate to a current-
status sample from a standard exponential distribution if the
model fits the data (Farrington, 2000). The logarithm of an
empirical Bayes estimate (&1, &z) (the mode of the posterior
distribution of (a1, as) given the data) are used to approx-
imate the unobserved fortitude terms involved in the linear
predictors (Lambert et al., 2004; Carlin and Louis, 2000). A
current-status version of the non-parametric survival func-
tion (Turnbull, 1974) is then calculated to compare with
the standard exponential distribution, as shown in Figure 2.
Because of the lack of information from our data structure,
(@1, 02) = (log &1,log &2) may not have been approximated
very accurately. Specifically, when all eggs in one nest are
left censored for both events, as is the case for almost half of
the observed sample, (@1,@2) tends to be underestimated,
and therefore produces large residuals. The dotted/dashed
curves seem to correspond well with the solid curve except
for the tail of the second stage that might have been caused
by the overestimation of some residuals. Given such condi-
tions, no obvious inadequacy is suggested by the figure. With
these empirical Bayes estimates (&, &z), we can also con-
duct a crude model checking for the gamma distribution of
random effects, using the existing diagnostic tools. Figure 3
presents a Q—Q plot of &; and & combined as one sample
compared to the marginal gamma distribution of mean one
and variance one. The empirical Bayes estimates (&q, az)
seem well aligned with the theoretical gamma distribution
when the value is less than 1.75 which has a cumulative
probability of 0.826. There is some discrepancy in the high
end of the range, showing that the gamma distribution is
more dispersed towards some large values. Again, a possible
explanation is the underestimation of the empirical Bayes
estimates as discussed above. The sensitivity and rigid use
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Figure 2. Cox-Snell Residuals for both stages, expected to be close to Exponential(1) if the model fits the data.
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Figure 3. Q-Q plot of the empirical Bayes estimates of
fortitude terms vs. Gamma distribution, expected to
approximately lie on the line y = x (the solid line) if the
assumption holds.

of this diagnostic tool needs further confirmation, but rig-
orous model checking itself is a complicated topic and is
beyond the scope of this article.
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One might notice that no egg that was still not hatched in
the first observation attempt became fledgling in the second
observation (frequency being zero in the third row of Ta-
ble 6). This might have to do with the fact that hatching af-
ter a certain point is quite impossible, or just the limitation
of our observation method. But in either case, we believe the
percentage is rather small or close to zero, and therefore this
modeling attempt still provides a reasonable way to study
the association between habitat selection and the breeding
success. The choice of fitting a frailty model, rather than
a logistic mixed-effects model, is cross-validated for a sin-
gle stage (hatching). The predictive error rates (24.50% for
the frailty model and 25.83% for the logistic mixed-effects
model, respectively) show slight preference to the frailty
model. Furthermore, the frailty model provides additional
information about time, and its underlying foundation coin-
cides better with the nature of our biological question. Given
the complex data structure and the limited amount of infor-
mation content, non-significant statistical results are some-
how expected even with serious modeling attempts. But the
statistical non-significance shall not reduce the biological
importance borne by this analysis.

In the breeding process of common raven, we expect the
breeding pair who was able to hatch the eggs fast would
carry the same ability and tendency to the fledgling stage.
Therefore, a positive correlation seems to be a reasonable as-
sumption for the analysis of breeding success data. Although
random effects in survival analysis are often modeled by a



Gamma distribution, it would be useful to relax the positive-
correlation assumption implied by the bivariate gamma dis-
tribution in Section 2.2. Our estimation procedure is directly
extendable to any other bivariate positive-value random ef-
fect distribution with constraints of unity marginal means,
as long as the bivariate random variables can be easily sam-
pled so that the K pairs of (a1,as) from the conditional
distribution in Step 2 of the MCNR algorithm can be gen-
erated. Bivariate lognormal (Xue and Brookmeyer, 1996)
generated by exponential transformation of bivariate nor-
mal is an example and it allows for negative correlation.
But again, the number of parameters that needs to be es-
timated has to be somewhat restricted, depending on the
information carried by the censoring distribution (for ex-
ample, random censoring time is usually better than the
fixed censoring time in this sense). Our model is directly
applicable to a more typical current status data type with
random censoring times. It can also be adapted beyond
group-specific covariates, such as time-independent covari-
ates of various levels or even hierarchical covariates. The
assumption of extreme-value-distributed error terms in this
paper implies that the survival time is Weibull-distributed
with an additive random effect. This model setup is in fact
equivalent to a fully-parametric Cox proportional hazard
model with a multiplicative random effect, a so-called frailty
model, with a Weibull baseline hazard. When the base-
line hazard is arbitrary, Shiboski (1998) provides a semi-
parametric method in analyzing current-status data. Ap-
parently the semi-parametric extension to the setting of
two-stage current-status survival data with frailty might
be worthy of consideration. However the needed compu-
tations are expected to be very challenging. The assump-
tion of extreme-value-distributed error terms in this pa-
per implies that the survival time is Weibull-distributed
with an additive random effect. This model setup is in
fact equivalent to a fully-parametric Cox proportional haz-
ard model with a multiplicative random effect, a so-called
frailty model, with a Weibull baseline hazard. When the
baseline hazard is arbitrary, Shiboski (1998) provides a semi-
parametric method in analyzing current-status data. Appar-
ently the semi-parametric extension to the setting of two-
stage current-status survival data with frailty might be wor-
thy of consideration. However the needed computations are
expected to be very challenging. Despite several of the re-
strictions in our model assumptions, we still believe this
approach has the potential to findings that cannot be dis-
covered by traditional methods.

APPENDIX A. JOINT CONDITIONAL
PROBABILITIES OF
(Ty, Ty + T») GIVEN THE
FORTITUDES

The error terms with extreme-value distribution have
density f(e) = e*e™®". Given the fortitudes, lifetime follows

an accelerated failure time model and its conditional density
function can be derived as

f(tijrlour, aiz)
= ay'e) expl—ag et ] for k= 1,2

The joint conditional density of (77, 75|A1, As), which are
mutually independent, is then

le T2| A1, A (tla ta |a17 aQ)
— al—lagle(—fhz—mz) eXp[—Ozl_le(_ﬂlZ)tl
— a;le(*ﬂzz)tg], for t1 > 0,t3 >0
Note that the indices ¢ and j are omitted here for simplicity
of notation. An explicit expression of the joint conditional

density of (71, T + 12| A1, As) can be obtained by transfor-
mation with the Jacobian =1,

le,T1+T2|A17A2 (a’7 b|0[1,042)
- aflagle(*ﬁlzfﬁzz) exp[—afle(’ﬁlz)a
— o5t (h—q)), for0<a<b
The joint conditional probability is then available through

integration of the joint conditional density with respect to
Ty and Ty + T within the appropriate range:

ey
P(T1 <C, T+ T, < Cy +CQ|A1,A2)

C1 pC1+C2
= / / le,T1+T2\A1,A2(aab|0¢1a042) dbda
0 a

=1 — exp[—ag te=A12)]
a;le(_ﬁlz)

a;le(*ﬂlz) — a;le(*ﬁzz)

X {exp[fozl_le(*ﬁlz)Cl —ay e y)

+

— exp[—agle(_ﬂQZ)(Cl + C’g)]}

(1I)
P(Tl < Cl,Tl + 715 > C’1 + 02|A17A2)
Cl o0
= / / fr 141 A4, (@, blag, ag) dbda
0 C1+C2

B afle(—ﬁlz)

arlte(=A12) — ayle(-522)

X {exp[fagle(*ﬁﬂ)(Cl + ()]

_ exp[—ozl_le(’ﬂlz)Cl _ agle(*ﬁzz)cz]}
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APPENDIX B. JOINT DENSITY OF THE
BIVARIATE GAMMA
DISTRIBUTION

By transformation and integration, we can obtain the
joint density of (A, A3) from the joint density of the mu-
tually independent random variables, (Vp, V1, V2). The joint
density of (Vp, V1, V2) is

—1 —p —
vg (U1U2) pe—(votvituvs)

L(p)L(1—p)°

9V, Vi, Va (UO7 VU1, 'UQ) =

where vg,v1,v2 > 0, and the joint density of (Ag, A1, Asz),
where Ag = Vj, will then be

9Ap,A1, Az (O‘()aalaaQ)
= gvo,vi,va (0, 1 — i, a2 — )
_ 048*1{(@1 —ap)(ag — ao)}*Pe(Cm*al*az)

T(p)T(1 - p)*

Notice that both «; and as should be greater than oy by
definition, and therefore aq is bounded by an upper limit
of the minimum between «; and as. The joint density of
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(a1, ) is available by integrating out «p, i.e.,

gay, 4, (01, 02)
min(ay,a2)

= fao,A1,4, (a0, a1, a2) dag
0

e*(l)é1+a2)

T(p)T(1 - p)*

min(aq,a2)
X / ab”
0

APPENDIX C. SCORE EQUATIONS IN
MCNR

The first partial derivatives of the complete-data log-
likelihood function with respect to 8, are computed as

(a1 — ag)(ag — ag)} Pel®) dag

0 1
95 log f = I(5,=1,5,= 1){m}
0 1] 0
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Then, the first partial derivatives of these sub-functions with
respect to B can be further derived as
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The first partial derivatives of the complete-data log-
likelihood function with respect to By are
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where a, b, d are given in (6), (7), (8), and then C,)%2(1)) =
a2} and 8%2(60 =
8%2~{d1 —al} where al, a2, and d1 are as previously defined.
The first partial derivatives of the sub-functions with respect

0. We again denote 8%Z(a) = 8%2{@1 —

to B2 are thus as follow:
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