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Coordinate great circle descent algorithm with

application to single-index models

PENG ZENG* AND Y1icHAO WUTt

Coordinate descent algorithm has been widely used to
solve high dimensional optimization problems with a non-
differentiable objective function recently. To provide theo-
retical justification, T'seng (2001) showed that it leads to a
stationary point when the non-differentiable part of the ob-
jective function is separable. Motivated by the single index
model, we consider optimization problems with a unit-norm
constraint in this article. Because of this unit-norm con-
straint, the coordinate descent algorithm cannot be applied.
In addition, non-separability of the non-differentiable part
of the objective function makes the result of Tseng (2001)
not directly applicable. In this paper, we propose a novel co-
ordinate great circle descent algorithm to solve this family
of optimization problems. The validity of the algorithm is
justified both theoretically and via simulation studies. We
also use the Boston housing data to illustrate this algorithm
by applying it to fit single-index models.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H12,
62F10; secondary 62P05.

KEYWORDS AND PHRASES: Constrained optimization,
Coordinate descent algorithm, Penalization, Single-index
model, Unit-norm constraint.

1. INTRODUCTION

Due to the recent advance of data acquisition and stor-
age, statisticians have been challenged by data with a large
number of variables. The demand to analyze such data
has motivated the fast-growing area of variable selection.
Many methods have been developed for variable selection in
the regularization framework. Examples include the LASSO
(Tibshirani, 1996), the SCAD (Fan and Li, 2001), and the
adaptive lasso (Zhang and Lu, 2007; Zou, 2006) among
many others. A great deal of theoretical study and algo-
rithmic development have been devoted to these methods.
See Fan and Lv (2010) for a selective overview.
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Many of the aforementioned methods can be formulated
in the regularization framework

p

minQ(8) = £(8) + 3 p(1B51: A),

j=1

(1)

where ¢(-) denotes the loss function such as the negative log-
likelihood and p(-; \) denotes some penalty function with
tuning parameter A > 0. There exist many algorithms for
(1) depending on the choices of loss and penalty functions.
In general, these algorithms work great for problems with
a moderate number of parameters. Yet computational ef-
ficiency becomes an issue when the dimensionality is high.
To improve efficiency, Fu (1998) proposed the coordinate de-
scent algorithm which cycles through different components
of the parameter vector to be optimized and updates one
component each time. It was demonstrated to be very effi-
cient since each updating involves only a marginal univari-
ate optimization problem. This algorithm was later inves-
tigated by Daubechies et al. (2004), Friedman et al. (2007),
Wu and Lange (2008), and others.

Towards a theoretical understanding, Tseng (2001)
showed that the (block) coordinate descent algorithm
can guarantee to find a stationary point when the non-
differentiable part of the objective function is separable. Yet
this separability assumption usually cannot be satisfied by
constrained optimization problems, particularly those with
equality constraints since these equality constraints intrinsi-
cally introduce certain relationships among parameters and
thus make the objective function nonseparable. A typical ex-
ample is the single-index model (Hérdle and Stoker, 1989),
which assumes that E(Y|X) = m(X7) for some unknown
link function m(-) and index direction 8. The single index
is widely used to analyze financial and economic data. Ex-
amples are Powell et al. (1989), Ichimura (1993), Xia et al.
(2002) and many others. For the purpose of identifiability,
it is commonly assumed that the index direction has a unit
norm, namely 870 = 1. Consequently the domain of @ is
the unit sphere, and the components of 8 cannot change
freely. Due to this unit-norm constraint, the coordinate de-
scent algorithm is not directly applicable to the estimation of
0 in the single-index model. Motivated by the single-index
model, we propose a coordinate great circle descent algo-
rithm, which targets at optimization problems with a unit-
norm constraint. Under some mild conditions, we show that
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the coordinate great circle descent algorithm converges to a
stationary point.

The rest of the article is organized as follows. Section 2
presents the coordinate great circle descent algorithm. Its
convergence analysis is provided in Section 3. Some imple-
mentation issues are discussed in Section 4 for the special
case of a quadratic loss. Section 5 demonstrates our new al-
gorithms using some simulation examples and one real data
example. We conclude with Section 6.

2. COORDINATE GREAT CIRCLE DESCENT
ALGORITHM
Consider the following optimization problem

p

Q(B) = L(B) +>_p(18;]:A5)

j=1

(2)

min
B
. Ta

subject to B 8 =1,

where £(+) is a smooth loss function and p(-; \) is a penalty
function defined on [0, 00) depending on a nonnegative tun-
ing parameter . The coordinate descent algorithm does not
apply directly to (2) due to the unit-norm constraint. In the
following, we propose an extension of the coordinate descent
algorithm to solve (2) and prove that the new algorithm con-
verges to a stationary point under some mild conditions.

Notice that the coordinate descent algorithm is essen-
tially a special case of line search. At each iteration, it
updates the solution by minimizing the objective function
along a carefully chosen direction. Here, we want to adopt
this general idea, and search along curves on which all points
satisfy the unit-norm constraint. A good choice of such
curves are great circles on the unit sphere. Denote e; to
be the p x 1 vector with one in its jth component and zero
otherwise. When 8 # *e;, the great circle passing B and
e; is given by

C(ﬂ,e]) = {Cej + V 1-— CQﬂ(_j) :—1 S Cc S 1},

where B_; = (B—8j€;)/\/ > 14 3%, which is obtained by
setting the jth component of 3 as zero and then rescaling it
to unit length. It is easy to verify that all points in C(83, ;)
satisfy the unit-norm constraint. ~ ~ R

Suppose that the current solution is B = (Bi,...,5,).
We minimize the objective function over the great circle
C(B, ej) and update the current solution by the correspond-
ing optimizer. This step is repeated by cycling through
j = 1,2,...,p until two consecutive solutions are close
enough. Note that while searching over the great circle,
the sub-optimization problem is univariate. It is in general
very easy to solve these univariate sub-optimization prob-
lems even though an explicit solution may not be available.
Note that C(83,e;) is well defined only when 3 # +e;. If
B = *e;, the updating at j may be skipped and we con-
tinue to the next one.
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To start the coordinate great circle descent algorithm,
we need to choose an initial solution. There are many ways
to choose an appropriate initial value for 3. For example,
we may randomly choose one point on the unit sphere, or
rescale the minimizer of the corresponding unconstrained
problem to unit length.

3. CONVERGENCE ANALYSIS

Next we study properties of the proposed coordinate
great circle descent algorithm in terms of its convergence.
A point, say 3%, is called a coordinate minimum point of
Q(-) if it satisfies

3) Q(B") < Q(B)
if ,6* 7é :|:6j

The following theorem asserts that the great circle coordi-
nate descent algorithm converges to a coordinate minimum
point under mild conditions.

for any B € C(B", e;)
forj=1,...,p.

Theorem 1. If Q(8) has at most one minimum over
C(B,e;), namely the great circle passing B and e;, for any
j=1,2,...,p and any B # *e;, then the great circle coordi-
nate descent algorithm converges to a coordinate minimum

point of Q(B).

Proof of Theorem 1. The proof is a straight forward exten-
sion of the proof for the convergence of the coordinate de-
scent algorithm (Luenberger and Ye, 2008, p. 253). Note
that the algorithm map of the great circle descent algorithm
is the following composition of 2p maps

SC,SCp 1 -+ SCy,

where C;(8) = C(B8,e;) and S denotes the great circle
search algorithm with the convention that SC;(e;) = e;.
It is obvious that map C; is continuous and S is closed
since the search is over the great circle which is closed and
bounded. Consequently the above algorithm map is closed.
Then the convergence of the coordinate great circle descent
algorithms follows directly as a search over the great circle
along any coordinate direction either decreases the objective
function or it cannot change the current solution due to the
uniqueness assumption. This completes the proof. O

Because the domain is the unit sphere instead of a Eu-
clidean space, we need to modify the calculus of Euclidean
space to make it appropriate for this particular manifold.
Define the first-order spherical directional derivative of f(3)
at a point B on the unit sphere along a direction a (of length
one) by

(8 a) — Tim 1L (B0 N _
(B ) —lgg;(s{f(nméall) 18},
where the subscript s means “spherical” and || - || is the

usual Euclidean norm of a vector. It is a direct generaliza-
tion of the directional derivative in a Euclidean space with



a restriction that points remain on the unit sphere when
approaching 8. If f(3) is differentiable, then the spherical
directional derivative can be calculated by

fiBsa) = a’(I - ﬁﬂ%%@,
B

where 0f(3)/03 is the gradient of f at 3 and I is the iden-
tity matrix. This spherical directional derivative can be un-
derstood as follows. The gradient of f can be decomposed as
the sum of two components: one is orthogonal to 3 and the
other parallel to 3. The former is exactly the projection of
the gradient onto the linear space tangent to the unit sphere
at B, which is the rate of change of f with the unit-norm
constraint. The latter characterizes the tendency of moving
away from the unit sphere and hence does not contribute to
fi(B; ).

Note that in terms of directional derivative, a coordinate
minimum point 3" satisfies
(4)

Qs(B";e;) > 0 and Q((B";—e;) >0 forj=1,2,...,p

whenever these spherical directional derivatives exist. Next
we prove that as long as the loss function part of the ob-
jective function is smooth enough, the directional derivative
along any direction is nonnegative at the coordinate mini-
mum point.

We call 8% a stationary point of Q(-) if it satisfies

(5) Q.(B",a) >0

for any p x 1 vector « satisfying ||a| = 1.

Theorem 2. If {(-) is differentiable and p(-; \) is differen-
tiable on (0,00), and p(; A) is right-differentiable at 0, every
coordinate minimum point of the coordinate great circle de-
scent algorithm for (2) is a stationary point.

Proof. We work on the loss function part (¢) and penalty
part function (p) separately. For the loss function,

7 (B:a) = aT(I, — ") 248

(6 ==

where 0¢(8)/08 is the gradient of ¢.
For the penalty function part, we have if 5 # 0

.o 1B + dou| B )
515(1)1 d {P <W’ )\k> P(|Brl; )\k)}
= sign(By) (. — BT aBi)p'(|Bkl; M),

where sign(-) is the sign function and p’(; A\g) is the deriva-

tive of p(; Ag), and if B = 0,
. _ +46
lim 6! {p (M'/\k> p(wk;)\k)}

50+ | B+ da ||’
= |a|p' (073 \p),

where p’'(07; \;) is the right-derivative of p at 0. Conse-
quently we have

NN Bk + ok
51—1>I{)1+5 kZ:1 {P (m§)\k> —p(|ﬁk|?)‘k)}
=a"(I-BB")d+ > |owlp'(07; ),
k:Br=0
where d is a p x 1 vector whose kth element is

I 3, +0)sign(Br)p'(|Bk]; Ak). Here In denotes the indicator
function such that I, = 1 if A is true and 0 otherwise.

As the coordinate great circle descent algorithm con-
verges to a coordinate minimum point 3, we have

(7)

for every j =1,2,...

Q.(B;ej) >0 and Q.(B;—e;) >0

,p- It further implies that

DF = el(I- ﬁﬁT)%ﬁ(ﬁ) LT (T - ")
+ > TP (075 0)
k:Br=0
>0

and
0
Dj = —ef (I~ B8") 5 =08) —ef (I - BB")d
+ > Tyt (075 M)
k:ﬂk:O

>0

for j =1,2,...,p. Consequently we have

Q(Bia) = a (1 - A7) 5 0(B) + o (I - p")a
+ ) ol (075 0)
k:Br=0
=( >, D)+ (Y (—a;)D;) >0
Jia; >0 jia; <0

for any a satisfying ||a|| = 1. This implies that 3 is a sta-
tionary point. O

4. IMPLEMENTATION ISSUES FOR
QUADRATIC LOSS FUNCTION

In general, at each step of the coordinate great circle de-
scent algorithm, the search over the coordinate great circle
does not have a closed-form solution. However if the loss
function is quadratic, a closed-form solution is possible. In
this section, we consider an important special case of (2)
with a quadratic loss function and a weighted lasso penalty
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function. In this case, the optimization problem (2) can be
rewritten as

mn Q)= 50750~ +TB+ 3 Ml

k=1

(8)
subject to BTﬁ =1,

where S is a p X p nonnegative definite matrix, r isa p x 1
vector, B is a p x 1 vector of parameters, and A\, > 0 are
tuning parameters.

Suppose that 3* is a vector on the unit sphere, and we
derive the algorithm to find the vector 3 that minimizes
Q(B) along the great circle C(8", e;). Notice that any vector
in C(B", e;) can be expressed as

B=cej+V1-c2B_; or B=ce; —V1-cP_,

for ¢ € [—1,1]. Hence the objective function can be written
as

1
Qj(c) = 562(63T5€j ~BL)SBy)

+teyvl-— chjTSﬂ(_j) + e(Xsign(c) — ejTT)

+ V1= 20 MlBjy
=y

T 1 T
F BT + 58-»SB-j)

where ;) i denotes the kth element of 3_ ;). The function
Q;(c) is differentiable on (—1,0) U (0,1) and the only non-
differentiable point is ¢ = 0. Therefore, the minimum of
Q;(c) is achieved either at the end points ¢ = £1, at the non-
differentiable point ¢ = 0, or at a stationary point satisfying
Qj(c) = 0, where @(c) is the first order derivative when
c € (—1,0) or c € (0,1). Note that Q’(c) has different forms
for c € (—=1,0) and c € (0,1).

Let us discuss how to find the stationary point of Q;(c)
satisfying Q’;(c) = 0. For ease of presentation, we consider
a generic form of Q;(c). Denote

g(x) = ax® + bx\/1 — 22 + cx + d\/1 — 22

for x € (—1,0) or z € (0,1). It is clear that Q;(c) exactly
has the form of g(c¢). The first-order derivative of g(z) is

dxr +b
"(2) = 2az + 20/ 1 — 22 — —— +c.
g Vi

Set ¢'(x) = 0 and we obtain
(9) (2az + ¢)V'1 — 22 = 2bx? 4 dx — b.

Squaring the above equation on both side yields a fourth-
order polynomial

10) 4(b* + a®)z* + 4(bd + ac)z® + (d? — 4b* — 4a® + *)x?
(10)
—(4ac + 2bd)x + (b* — ¢*) = 0.
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There exists an explicit formula for the roots of a fourth-
order polynomial. Equation (10) has up to four real roots,
but some roots of (10) may not be the roots of (9), because
(10) also implies (2ax + ¢)v1 — 22 = —(2bz? + dz — b). We
need to check whether a root of (10) is indeed a root of (9).

The stationary point of g(x) can also be a maximizer or a
saddle point instead of a minimizer. Hence we need to check
the second-order derivative to make sure it is a minimizer.
Some calculation yields the second-order derivative of g(z),

2bx br +d
Vi—er (- a2

A sufficient condition for the stationary point being a min-
imizer is ¢g”(x) > 0. In practice, we can simply compare
the values of the objective function at ¢ = —1,0,1 and all
stationary points.

Recall that Theorem 1 and Theorem 2 only guarantee
that the proposed coordinate great circle descent algorithm
converges to a stationary point. It is unclear whether this
stationary point is a local minimizer. Next we use a simula-
tion example to check this issue.

g"(z) = 2a —

Example 1. Let p = 10. We first randomly generate a 100 x
10 matrix X, whose entries are independently simulated from
uniform(—2, 2), and a 10 x 1 vector b, whose components are
independently sampled from uniform(—2, 2). Then calculate
y = XB3+0.5¢, where ¢ is a 100 x 1 vector whose components
are independently sampled from N(0, 1). Then we calculate
S =XTJX and r = XTJy, where J = I —n~'117 where
1 denotes a vector of ones. We also randomly generate A
from uniform(0, 200). The above procedure is repeated for
1,000 times and we obtain {(S;,r;,\;),i =1,...,1,000}.
For each triplet (S;,7;, \;), we apply the proposed coordi-
nate great circle descent algorithm to find ﬁl that minimizes

P
QB) = 28788 -rTB+ Y |5

2
k=1

subject to BT3B = 1. The initial value is set to be
(1,0,...,0)T. We use the following procedure to check if
B3, is a local minimizer. Denote 3 = (55,..., Bz)T, where
B is obtained by rounding the kth component of ,@Z to the

nearest 0.01. We consider all the possible points in the set
of

A={(Bf +0.0L%ny,...,8; +0.01xn,)",
yp = 737 *23 71707 13273}-

Nyy...
For each point in A, we first scale it to unit length and
then calculate the corresponding objective function value

and compare it with Q(8,). If Q(3;) is less than the objec-
tive function value for all points in A, it is verified that BZ
is indeed a local minimizer.

In all 1,000 repetitions, BZ is indeed a local minimizer.
The quartiles of the number iteration cycles to reach the



local minimizer is 2 (5%), 8 (25%), 9 (50%), and 9 (75%),
11 (95%). The algorithm converges in a small number of
iterations on average.

The above simulation example provides some encouraging
numerical evidence that the coordinate great circle descent
algorithm can possibly identify a local minimizer although
Theorem 1 and Theorem 2 only guarantee that the algo-
rithm stops at a stationary point. In practice, to make sure
the algorithm indeed stops at a local minimum, we can also
check the second-order derivative. For the objective function
Q(B) in (8), simple calculation yields the spherical direc-
tional derivative as

Q.(B;d)=d"(I-BB")(SB—r+s),

where s = (s1,...,5,)T and
sp = Slgn(ﬂk) )‘ka ﬁk 7& 0)
sign(di) Ak, Br = 0.

The second-order spherical directional derivative is the
spherical directional derivative of the first-order spherical
directional derivative, namely

Q:(B;d) = d" Md,
where M = (N + N7T)/2 with

N=(I-p88")[SI-pB")-B"(SB—r+s)I
—(SB—r+s)8"].

A sufficient condition to guarantee that 3 is a local mini-

mizer is that Q7(8;d) > 0 for any d. Because M and N

still depend on d via s, it is difficult to verify this condition.
Define s’ as s’ = (s},...,s},)", where

o {sign(m Moo B A0,

7o, B, = 0.

Similarly we can define M’ and N’ as M and N with s
replaced by s’. Simple calculation yields that M’ = M and
N’ = N. Additionally M’ and N’ do not depend on d.
Therefore, a sufficient condition to guarantee that 3 is a
local minimizer is that M’ is positive definite. Although it
may be difficult to know when M’ is positive definite for
general S, r and ), we can always verify whether M’ is
positive definite when S, r, and A are given.

5. APPLICATION TO SINGLE INDEX
MODEL

As aforementioned in the introduction, a single-index
model assumes that F(Y|X) = m(X7*8) for unknown link
function m(-) and index vector 8 with a unit norm. Many

methods have been proposed for fitting single-index mod-
els, for example Héardle and Stoker (1989) and Xia (2006).
Recently, Zeng et al. (2012) proposed a method, called sim-
lasso, for simultaneous estimation and variable selection by
combining local linear smoothing with a lasso-type penalty
function. Based on a dataset {(x;,v:),s = 1,2,...,n}, the
estimate 6 is obtained from the following minimization prob-
lem

(yi — a; — ;0" (x; — x;)) wy;
1

(11) ming 50 Y

j=11i=
n p
DI
k=1

j=1
subject to 870 =1,

where w;; = Ku(0" (x; — x;))/ >, Kn(0" (x, — z;)) and
K}, (+) is a kernel function with bandwidth h. The original al-
gorithm proposed in Zeng et al. (2012) is to alternately up-
date {a;,b;,7 =1,...,n} and 6 until convergence. Because
of the scaling invariance property, the unit-norm constraint
is ignored when updating 6 from {a;,b;,j =1,...,n}, and
0 is then scaled to unit length. Although it works, a poten-
tial pitfall is that when X is large, the solution of 8 is 0 and
in this case it is not possible to scale 8 to unit length.

Notice that when updating 6 for given {a;,b;,j
1,...,n}, the problem (11) simplifies to a special case of
(8). Therefore, we may apply the proposed coordinate great
circle descent algorithm to update 8. With this adjustment,
sim-lasso is free of pitfalls.

In implementation, we need the value of bandwidth h and
tuning parameter A in (11). The bandwidth h is selected by
the rule-of-thumb hg = s[4/(2p + 1)n =]/ P+4) (Silverman,
1986), where s is ideally the standard deviation of X To.
Because 6 is unknown, we approximate s by the median
of the standard deviations of the components of X. The
tuning parameter A is chosen using cross-validation based
on the sum of squared prediction errors. The initial value of
sim-lasso is selected using OPG-lasso. See Zeng et al. (2012)
for detailed discussions.

We use a simulation example and a real data example to
demonstrate the performance of sim-lasso coupled with the
coordinate great circle descent algorithm.

5.1 Simulation examples

In this simulation example, we assume that the true un-
derlying model is

Y =4/|18TX +1|+ 87X +¢,

where 8 = (1,-1,2,-0.5,0,...)T, the components of X are
independently sampled from uniform(—2, 2), and ¢ is inde-
pendent of X and is sampled from N(0,1). It is clear that
0 = 3/||B||- The sample size is n = 100 and the dimension
of X varies from p = 10 to p = 120.

Coordinate great circle descent algorithm 515
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Figure 1. The average angle between estimates and truth.

To demonstrate the advantage of using the penalization
approach, we compare the performance of sim-lasso for two
possible choices of A\, namely, A = 0 and A chosen from 10-
fold cross-validation. Note that A = 0 means that there is
no penalization added. For a fair comparison, the bandwidth
and the initial value are the same for these two scenarios,
where the bandwidth is chosen by rule-of-thumb and the
initial value is by OPG-lasso. The performance of an es-
timate of @ is measured by the angle (in degree) between
this estimate and the true 6. Here a zero angle indicates
a perfect estimate while 90 means that two directions are
orthogonal.

Figure 1 shows how the average angle between estimates
and true 6 changes as the dimension of X increases, based
on 200 replicates. It is observed that the performance for
A = 0 deteriorates quickly as p increases. When p > 100, the
performance levels off because it is close to the worst pos-
sibility of 90. As a contrast, the performance corresponding
to the optimal A deteriorate very slowly as p increases. It
performs very well even when p > n.

5.2 A real data example

Consider the Boston housing data collected by
Harrison and Rubinfeld (1978). The objective of this study
is to understand which factors influence the median value
of owner-occupied homes. The dataset contains 506 obser-
vations. The response is the logarithm of the median value
of owner-occupied homes in $1,000’s (y). There are 13 pre-
dictors, including crime rate (per capita by town; x1), pro-
portion of residential land zoned for lots over 25,000 square
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feet (x3), proportion of non-retail business acres per town
(z3), Charles River dummy variable (=1 if tract bounds
river and 0 otherwise; z4), nitric oxides concentration (parts
per 10 million; x5), average number of rooms per dwelling
(x6), proportion of owner-occupied units built prior to 1940
(27), weighted distances to five Boston employment cen-
ters (), index of accessibility to radial highways (zg), full-
value property-tax rate per $10,000 (z19), pupil-teacher ra-
tio by town (z11), proportion of blacks by town (transform
to 1,000(By, — 0.63)%; x12) lower status of the population
(z13). The predictors are standardized to have zero mean
and one standard deviation before analysis.

The bandwidth is h = 0.6197 using the rule-of-thumb.
The solution path of the estimated index 6 is displayed in
Figure 2, where the vertical lines indicate the positions of
optimal A\ for estimation and for variable selection, respec-
tively, as explained next. A 20-fold cross validation selec-
tion A = 0.0025 for the optimal tuning parameter for es-
timation. Usually, this tuning parameter leads to overse-
lection of the variables and a larger tuning parameter is
preferred for variable selection purpose. An empirical rule
is to use the largest A\ within one standard deviation of the
minimum cross-validation score; see Hastie et al. (2001) and
Zeng et al. (2012). Based on this rule, the optimal tuning
parameter for variable selection is A = 0.01. The estimated
value for 0 is & = (—0.251, 0.000, 0.000, 0.075, —0.134,
0.237, 0.000, -0.193, 0.116, —0.114, —0.207, 0.159, —0.852)T".
The scatter plot of y against 0Tz is displayed in Figure 2.
The predictor x5, x3, v7 does not explain extra variability
of house values after controlling other predictors. The low
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Figure 2. Solution path for the estimated 6 and scatter plot of y against 0 .

status of the population (x13) is the leading factor that is
associated with low house values. The average number of
rooms per dwelling is the leading factor that is associated
with high house values.

6. DISCUSSIONS

Another potential application of (8) is principal compo-
nent analysis. The proposed coordinate great circle descent
algorithm can be readily used to estimate a sparse first prin-
cipal component direction. However, it is not clear how to
extend it to estimate the remaining principal component
directions, because the principal component directions are
usually assumed to be orthogonal to each other. The or-
thogonality is essentially linear equality constraints, which
cannot be accommodated by the current algorithm. Another
possible application is the shape-constrained problem as in
Cule et al. (2010). The major difficulty is that our theoret-
ical results are not directly applicable to such cases. This
will be a potential future research project.
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