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A local vector autoregressive framework and its
applications to multivariate time series monitoring
and forecasting

Ying Chen, Bo Li
∗
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Our proposed local vector autoregressive (LVAR) model
has time-varying parameters that allow it to be safely used
in both stationary and non-stationary situations. The esti-
mation is conducted over an interval of local homogeneity
where the parameters are approximately constant. The local
interval is identified in a sequential testing procedure. Nu-
merical analysis and real data applications are conducted to
illustrate the monitoring function and forecast performance
of the proposed model.
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1. INTRODUCTION

Non-stationarity or near non-stationarity is a stylized fact
of many macroeconomic and financial time series such as
annual GDP growth, inflation rate, interest rates and ex-
change rates, etc. Even though there is no permanent trend
in these series, a high degree of persistence is typical as often
detected visually or measured by a slowly decaying autocor-
relation function. This feature poses many challenges, not
only for theoretical modeling, making inferences and con-
ducting tests, but also for real time economic monitoring
and forecasting. Many structural macro or financial models
of multiple time series are also defeated by the persistence
feature. Although the structural models prescribe very few
lags of state variables, empirically, the vectors of a time se-
ries require more lags in order to fit the data. To address
the non-stationarity issue, the modeling approaches can be
broadly classified in two: the long memory approach ver-
sus the short memory approach. The long memory view
utilizes the data generating process as described by mod-
els with constant parameters and innovations with slowly
or non-decaying effects, such as the fractionally integrated
processes in Granger (1980); Granger and Joyeux (1980)
and Hosking (1981), etc. The short memory view consid-
ers persistence as spuriously generated by changes in basic
modeling parameters, such as heteroscedasticity, structural
breaks or regime switching, which are not directly observ-
able and might be inappropriately modeled, see discussions
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in Diebold and Inoue (2001) and Granger and Hyung (2004).
Technically, both the long memory view and the short mem-
ory view have merits in explaining persistence in the data.
However, the short memory view often has economic under-
pinnings to support the various changes corresponding to
policy shifts, regime transition, or varying features of ex-
ogenous shocks, etc. Conditional on the types of changes,
the underlying model can be simple and intuitive. Also, ap-
propriate modeling of the sources of changes per se can be
helpful in understanding and monitoring the evolution of
the fundamental economic or financial processes.

Recently, an adaptive approach with simple underlying
models has emerged from the short memory class, which can
incorporate the various sources of changes without explic-
itly assuming change types and timing. Specifically, the state
variables are described by some simple dynamic process such
as the autoregressive (AR) process or AR process with ex-
ogenous variables (ARX), and the parameters of the pro-
cesses are time-dependent without explicit functional form.
Under the conditions that most of the parameters are slowly
evolving with small variations, and that large variations or
breaks happen infrequently, the time series can be divided
into local intervals such that over each local interval the data
generating process can be well approximated by a local AR
(LAR) or a local ARX (LARX) model with constant param-
eters. This approach is particularly useful in real-time moni-
toring of changes and forecasting under the assumption that
the local model holds for the forecast horizon. Chen, Härdle
and Pigorsch (2010) propose the LAR detection and esti-
mation methodology and successfully apply it to forecasting
realized volatility in a financial time series. Chen and Niu
(2013) extend the method to an LARX model and apply it
to yield curve modeling and forecasting, where under a tra-
ditional dynamic Nelson-Siegel factor model Diebold and Li
(2006) each state yield factor is modeled as an LARX with
inflation as the exogenous variable. Chen and Niu (2013)
demonstrate that the data-driven LARX model brings clear
advantages in forecasting the whole yield curve, when com-
pared to a wide spectrum of traditional yield curve models
with rolling or recursive estimation strategies using prede-
termined estimation windows. Moreover, the detected local
intervals and the resultant parameter evolutions estimated
in real-time are of great help for monitoring the yield curve
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dynamics, understanding its changing relationship with the
inflation factor, and providing evidence on policy changes
and on changing interest rate behavior during the recent fi-
nancial crisis. This paper generalizes the univariate process
of LAR or LARX into a local vector autoregressive (LVAR)
framework. The general framework can be used in multivari-
ate structural models for effective modeling and real-time
applications in macroeconomics and finance.

Within the VAR modeling framework, our LVAR mod-
eling shares some similar background with the threshold
vector autoregressive (TVAR) model and the time-varying
VAR model, which feature coefficient changes conditional
on states and time, respectively. The threshold autoregres-
sive type model is more suitable for nonlinear time series;
see a thorough discussion by Tong (1983) and the devel-
opment and applications by Tong (1987); Tong and Lim
(1980) and Tsay (1989), among others. Tsay (1998) pro-
poses a TVAR model to generalize the model into multi-
variate settings. The model has been widely applied to busi-
ness cycle effects, policy regime and transmission mechanism
in developed economies, such as Atanasova (2003); Balke
(2000); Li and St-Amant (2010), and Afonso, Baxa, and
Slavik (2011), etc. The time-varying VAR models are more
flexible for studying the changing behaviors of economic sys-
tems, which are widely applied to model changes in macroe-
conomic policies, regimes and exogenuous shocks, such as
Cogley and Sargent (2001) and Cogley and Sargent (2005)
on a small scale macroeconomic VAR with time-varying
coefficients and stochastic volatility, respectively. Besides,
Primiceri (2005) studies the causes of the Great Moderation
with both time-varying coefficients and stochastic volatility.
However, the flexibility of TVAR and of time-varying VAR
is achieved at the cost of substantially increasing the di-
mension of parameter space. Furthermore, specific assump-
tions on the types and process of the parameter changes
are required. Also, the estimation is technically demanding
and time consuming. In contrast, the LVAR proposes much
simpler underlying models, without specific assumptions on
change types and processes, and the estimation is relatively
simple.

The rest of the paper is arranged as follows. In Section 2,
we discuss the method with modeling assumptions, the local
interval detection technique using an empirical testing pro-
cedure, and the applications of monitoring and forecasting
the vector of variables in a multivariate setting. In Section 3,
we demonstrate the properties of the testing procedure and
the forecast performance using a Monte Carlo study. Sec-
tion 4 provides the real data analysis, where we illustrate
the use of LVAR with applications to modeling and fore-
casting US yield curves. Finally, Section 5 concludes.

2. METHOD

In this section, we propose a local vector autoregressive
(LVAR) model to estimate the joint dynamics of a vec-
tor of variables. The LVAR model allows parameters to be

time dependent, without any particular assumptions on the
time variation. Time-varying parameters at each point in
time are, of course, too flexible to constitute an identifiable
dynamic model. We therefore employ a local homogeneity
assumption to balance between model flexibility and esti-
mation feasibility. Local homogeneity assumes that at any
particular time point there exists a past time interval, over
which the local sample can be well approximated by a VAR
model with constant parameters. A sequential testing pro-
cedure is used to find the longest interval that satisfies the
local homogeneity assumption. The identified interval that
defines the locally homogeneous sample is called the interval
of local homogeneity.

Instead of using all the available past information, as in
the recursive estimation approach, we conduct the estima-
tion utilizing the interval of local homogeneity in the adap-
tive approach; the interval satisfying local homogeneity is
time dependent and of possibly varying interval length. It
is also different from the conventional rolling window or re-
cursive window technique that adopts a fixed window size
or expands the window size throughout the estimation. The
fitted adaptive model is then used to monitor the model pa-
rameters and stable intervals, and to forecast the variables
if the model is sufficiently parsimonious and the average in-
tervals are sufficiently long to include efficient information
for accurate prediction.

2.1 Adaptive vector autoregressive model

Let Xt ∈ IRd denote d-dimensional autoregressive time
series variables, with t = 1, . . . , T . The adaptive vector au-
toregressive model is defined with time-varying parameters
as:

Xt = ct +A1tXt−1 + · · ·+AptXt−pt + εt, εt ∼ N(0,Σt),

where ct = (c1t, . . . , cdt)
� is the intercept vector at time

point t and Ajt is a d×dmatrix for j = 1, . . . , p. The stochas-
tic innovation εt is assumed to be Gaussian distributed sat-
isfying E(εt) = 0 and E(εtε

�
t ) = Σt. Moreover, we assume

that there is no serial correlation between any two inno-
vations across time, that is E(εtε

�
t−k) = 0 for k �= 0. The

LVAR model, with time-varying parameters, is appropriate
in a non-stationary situation where structural changes ex-
ist. It also works well in the homogeneous case by fixing
the parameters as constant. In either case, the estimation
is conducted under the local homogeneity assumption. That
is, the multivariate time series are approximated by a para-
metric model over an interval of local homogeneity.

Although the order of the LVAR model, denoted by p,
is allowed to be more than 1, we fix the lag order to 1 for
ease of elaboration. In addition, the adoption of the simplest
model structure is significantly motivated by tractability of
monitoring and good out-of-sample forecast performances.
In Section 3, we investigate the model misspecification is-
sue in a simulation study, where the true data generating
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process has a higher order than the recommended one. It
shows that the LVAR model of order 1 provides stable per-
formance.

The LVAR model of order 1, represented in matrix form,
is as follows:

Xt = ct +AtXt−1 + εt.

For notational simplicity, we denote the unknown parame-
ters by Θt = (ct, At,Σt).

2.2 Estimation under local homogeneity

Suppose that at time point t, the time series is homoge-
neous with Θt = Θ over an interval It = [t−mt + 1, t]. Pa-
rameter mt is the interval length, corresponding to the num-
ber of observations in the local sample. The local (quasi-)
log-likelihood function is defined as:

�(It,Θ) = −mt

2
ln |2πΣt| −

1

2

t∑
s=t−mt+1

ε�s Σ
−1
t εs

from which we obtain the local maximum likelihood estimate
(MLE):

Θ̃t = argmax �(It,Θ).

Now we relax the local homogeneity assumption such that
Θt ≈ Θ. Then the modeling bias of the parametric model
with constant parameter Θ and the local parametric model
with time dependent parameter Θt can be measured by:

Δt = |�(It,Θ)− �(It,Θt)|1/2

which should be small. Therefore, the local MLE, though
not unbiased in this situation, can be used.

In practice, the interval of local homogeneity is unknown.
The question is how to identify it or equivalently how to
select interval lengthmt at any particular time point t. With
too large a value, there is a high probability of having non-
trivial modeling bias, which violates the local homogeneity
assumption. On the contrary, a small value of mt though
satisfying a small modeling bias, unnecessarily discards too
many observations that are useful for estimation. The goal is
to select the longest interval that does not violate the local
homogeneity assumption.

Suppose there are K candidate intervals at time point t,
which contain the interval of local homogeneity It:

I
(1)
t =

[
t−m

(1)
t + 1, t

]
, . . . , I

(K)
t =

[
t−m

(K)
t + 1, t

]
with I

(1)
t ⊂ · · · ⊂ I

(K)
t . A sequential testing procedure helps

to select the longest interval that satisfies local homogeneity.
It is worth noting that beyond the selected interval, there is
a high probability of structural changes. The adaptive tech-
nique proceeds as follows. The procedure starts from the

shortest interval I
(1)
t , over which the local homogeneity as-

sumption probably holds. We accept the interval and denote

the accepted estimator by Θ̂
(1)
t = Θ̃

(1)
t . Iteratively, the pro-

cedure extends to the next interval I
(k)
t for k ≥ 2, where we

introduce the test statistic:

T
(k)
t =

∣∣�(I(k)t , Θ̃
(k)
t

)
− �

(
I
(k)
t , Θ̂

(k−1)
t

)∣∣1/2,
which measures the divergence of the hypothetical model
from the recently accepted local model. If the divergence
is significant, where the significance level is controlled by
a critical value ζk, it indicates that there is a significant
structure change larger than the one arising due to sam-
pling changes. In this case, we reject the null hypothesis
of local homogeneity and terminate the selection proce-
dure. The last accepted interval would be the final selec-

tion and we have Θ̂
(j)
t = Θ̂

(k−1)
t for j = k, . . . ,K. Here

j denotes the index of the candidate interval where the
procedure is terminated. Otherwise, we accept the longer

interval I
(k)
t , and update estimate Θ̂

(k)
t = Θ̃

(k)
t . The test

procedure is continued on the next interval until either
a change is detected or the longest candidate interval is
reached.

2.3 Calibrate critical values

The success of the adaptive selection procedure depends
on the critical values, which are calibrated in Monte Carlo
experiments. As the critical values control the significance
level under the local homogeneity assumption that requests
a small modeling bias, we generate samples with homogene-
ity and measure the modeling bias using an adaptive esti-
mation. The critical values are selected such that they are
capable of providing the prescribed performance of the test-
ing procedure.

The homogeneous VAR processes are generated with con-
stant parameters Θ∗ = (c∗, A∗,Σ∗), such that

Xt = c∗ +A∗Xt−1 + εt, εt ∼ N
(
0,Σ∗).

Each process includes T observations and the generation
is repeated N times. For each generated process Xn

1:T ,

n = 1, . . . , N , the same interval set I
(k)
t is used everywhere

for t = mK , . . . , T and k = 1, . . . ,K, where mK is the

longest interval length for interval I
(K)
t . In the following,

for ease of elaboration, we drop the series index n. Under
the assumption of homogeneity, the estimation error can be
measured by the fitted log-likelihood ratio over each inter-
val:

(1) Rk = EΘ∗
∣∣�(I(k), Θ̃(k)

t

)
− �

(
I(k),Θ∗)∣∣1/2,

where Rk can be computed numerically with knowledge
of Θ∗.

Once a set of critical values ζ1, . . . , ζK is given, one can
employ the adaptive procedure, by checking the significance

of the test statistic T
(k)
t , to obtain the adaptive estimate

Θ̂
(k)
t of the time-dependent parameter Θt. Given the MLE

Θ̃
(k)
t of the constant parameter Θ∗, the temporal realized
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modeling bias can be measured as:

δ
(k)
t =

∣∣�(I(k), Θ̃(k)
t

)
− �

(
I(k), Θ̂

(k)
t

)∣∣1/2.
The adaptive estimation should behave as well as the true
underlying characteristics under the null of time homogene-
ity, in the sense that the modeling bias is bounded by es-
timation error Rk, with knowledge of the true model, in
Equation (1):
(2)

EΘ∗
(
δ
(k)
t

)
= EΘ∗

∣∣�(I(k), Θ̃(k)
t

)
− �

(
I(k), Θ̂

(k)
t

)∣∣1/2 ≤ Rk.

Clearly, the critical values are the only unknown param-
eters in the above inequality Equation (2), which can be
calibrated.

The computation of critical values relies on two hyper-

parameters, the interval candidates (I
(1)
t , . . . , I

(K)
t ) and Θ∗.

In our study, at each point of time, we consider K = 19 in-
tervals for the adaptive estimation, starting with 12 months
and a continuous increment of M = 6 months between any
adjacent intervals, i.e., 120 months (10 years) is the maximal
sample size. Ideally, Θ∗ should be close to the true param-
eter underlying the real data series at each point of time,
which is actually the target of our estimation. In practice,
we approximate Θ∗ with the estimate from a sub-sample, for
example, the sub-sample before the forecast exercise starts.
We find that the adaptive technique is quite robust to the
selection of the hyperparameters, as is illustrated in Sec-
tion 3. There is no significant difference in terms of forecast
accuracy for different sets of interval candidates determined
by K and M as well as for possible misspecifications of Θ∗

with ±20% deviation from the true values.
In the following numerical analysis, we use the MLE of

the available real sample in the 1983:1–1997:12 period as
Θ∗, i.e., using information before the forecast exercise starts.
We then generate a homogeneous VAR series, and calibrate
the set of critical values as described above. The same set
of calibrated critical values is adopted for every time point
throughout the real-time estimation and forecast.

The adaptive estimation algorithm for any particular time
point t is as follows:

1. Calibrate critical values given a set of interval candi-

dates {I(k)t }Kk=1.

• Generate homogeneous VAR processes with con-
stant parameter Θ∗. We use the MLE for the time
point before the first forecast origin.

• Compute MLEs Θ̃
(k)
t and the risk bound Rk over

each interval candidate.

• Given an initial set of critical values, obtain the

adaptive estimator Θ̂
(k)
t . Compute the realized

modeling bias δ
(k)
t and check the risk bound, (2). If

it holds, reduce the critical values. Otherwise, in-
crease the critical values. Repeat until the cutting
point is found.

2. Given the calibrated critical values, for the data set of
interest to be investigated, conduct the sequential test-
ing procedure to identify the interval of local homo-
geneity and estimate the adaptive estimator over time.
Starting from an initial time t0, for t ≥ t0:

• Initialization: We accept the shortest interval

and set Θ̂
(1)
t = Θ̃

(1)
t .

• Loop: For k ≥ 2,

if T
(k)
t = |�(I(k)t , Θ̃

(k)
t ) − �(I

(k)
t , Θ̂

(k−1)
t )|1/2 ≤ ζk,

we accept the interval I
(k)
t and update the esti-

mate:

Θ̂
(k)
t = Θ̃

(k)
t .

Otherwise, terminate the procedure and we have:

Θ̂
(j)
t = Θ̂

(k−1)
t , j = k, . . . ,K.

• Final estimate: Θ̂t = Θ̂
(K)
t .

3. We assume that the interval of local homogeneity is
extendable over the forecasting horizon, denoted by
h. The fitted LVAR model is used for the prediction:
X̂t+h = ĉt + ÂtXt.

3. SIMULATION

In this section, we conduct a simulation study to demon-
strate the performance of the LVAR model. In particular,
we evaluate the forecast accuracy of the adaptive procedure,
compared to alternative methods with window length selec-
tion such as the rolling window technique. Furthermore, the
robustness of the forecast performance for the adaptive pro-
cedure is investigated with respect to the choice of hyperpa-
rameters (Θ∗, K, M). Moreover, we address the model mis-
specification issue of whether the simplest adaptive model
of order 1 is sufficient to handle autoregressive processes of
a higher order.

3.1 Simulation design

We consider two kinds of scenarios: a homogeneous sce-
nario with globally constant parameters, denoted as HOM,
and a heterogeneous scenario with time-varying parameters
shifting from one level to another, i.e., a regime switching
scenario, denoted as RS.

In the HOM scenario, we calibrate the VAR coefficients
from a three factor VAR(1) model constructed by Nelson-
Siegel yield factors with US yield curve data from 1983 to
1997. The Nelson-Siegel (NS) model is parameterized ac-
cording to Diebold and Li (2006), and the data set is a fifteen
yield series as used in Chen and Niu (2013). We denote the
underlying parameters as Θ0 = (c0, A0,Σ0) and keep them
constant throughout the whole sample. In the RS scenario,
we design two experiments and label them as: RS-A, where
A denotes the vector autoregressive coefficient matrix, and
RS-C, where C denotes the intercept vector.
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Table 1. Parameters in the simulation scenarios. HOM refers to the homogeneous scenario; RS refers to the regime-switching
(structural change) scenario. In each of the RS scenarios, only the labeled parameter is changed in Phase 2. The other

parameters remain the same as in the original set-up

Scenarios Parameters

HOM c0 =

⎛
⎜⎝

0.093

0.111

−0.314

⎞
⎟⎠ A0 =

⎛
⎜⎝

0.989 0.011 −0.005

−0.031 0.933 0.054

0.062 0.090 0.853

⎞
⎟⎠

RS Phase 1 Phase 2

t ∈ [1, 200] t ∈ [201, 400]

RS-A At =

⎛
⎜⎝

0.989 0.011 −0.005

−0.031 0.933 0.054

0.062 0.090 0.853

⎞
⎟⎠ At =

⎛
⎜⎝

0.493 −0.167 0.177

0.259 0.952 −0.082

0.523 0.511 0.462

⎞
⎟⎠

RS-C ct = (0.093, 0.111,−0.314)� ct = (2.789,−1.974,−3.503)�

In the RS scenarios, only the labeled parameters shift
from the original level to a new set of parameter values esti-
mated using a different subsample of the NS factors, during
the recent financial crisis from 2008 to 2010. The other pa-
rameters remain the same as in the original set up.

For each scenario and experiment we simulate 200 data
series, each with 400 observations. In the RS scenarios, each
of the regimes lasts for 200 time points. The details of the
scenario designs regarding timing and parameters are de-
scribed in Table 1.

We employ both the adaptive procedure and the rolling
window strategies to compute the one-step ahead forecasts
for the same forecasting period from t = 122 to 400 for each
of the simulated samples. In the adaptive case, the critical
values are calibrated using the true underlying parameters,
i.e., Θ∗ = Θ0. The candidate intervals start from 12 months
(1 year) and end at 120 months (10 years), with K = 19
and M = 6. The interval lengths are 12, 18, 24, 30, 36, 42,
48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120.

Figure 1 displays the resulting critical values that are
used in each scenario. At the same time, we consider 19
alternative window sizes in the prediction using the rolling
window technique, i.e., ranging from I1 (12 months) to IK

(10 years), which correspond to our interval candidates in
the adaptive procedure. Forecast accuracy is determined by
the forecast root mean squared error (RMSE) values.

3.2 Forecast accuracy

Table 2 presents the RMSE values of the adaptive tech-
nique and the alternatives. For ease of exposition we do not
report all forecasting results of the rolling windows. Instead,
we only list those window sizes yielding the best forecast ac-
curacy (with minimal RMSE values) and the worst accuracy
(with maximum RMSE values). The respective rolling win-
dow sizes are indicated in the parentheses. The number of
times that the LVAR is superior to the 19 alternative window
choices is highlighted in the column of “No. of Winning”.

The numerical results reveal that the adaptive approach
with varying local window sizes introduces more flexibility

Figure 1. Critical values. The hyperparameters are M = 6,
K = 19 and Θ∗ = Θ0.

into the procedure, leading to a comparable performance to
the optimal sample under the homogeneous scenario and a
generally better performance under the scenarios with struc-
tural changes. More specifically, in the homogeneous sce-
nario, the adaptive technique, though with a misspecified
assumption of time-varying coefficients, still provides rea-
sonable accuracy. In the structural change scenarios with
time-varying parameters, our technique is superior to all 19
alternative rolling window estimations.

The adaptive interval selection procedure contributes to
the improvement of forecast accuracy and simultaneously
provides stable performances. In the structural change sce-
narios with a parameter shift at t = 201, the average val-
ues of the selected intervals drop quickly after that point,
see Figure 2. As the sample following the new data gener-
ating process extends, the lengths of the selected intervals
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Table 2. Forecast accuracy. The rolling window adopts one of
the predetermined window lengths of k ×M , where

k = 1, . . . , 19, and M = 6, throughout the whole sample. The
adaptive technique adopts a selected time-varying window

length among the choices of the interval sets, at each point of
time. For the performance of the rolling windows, only the
best and worst results with the related window choices are
reported. We also report the number of wins of the adaptive
technique compared to the 19 rolling estimation alternatives

Rolling window (window size) Adaptive No. of
Scenario Best Worst Winning

HOM 0.336 (120) 0.424 (12) 0.340 13/19
NS1 RS-A 0.400 (78) 0.517 (12) 0.395 19/19

RS-C 0.501 (54) 0.606 (12) 0.489 19/19

HOM 0.370 (120) 0.474 (12) 0.374 14/19
NS2 RS-A 0.399 (120) 0.514 (12) 0.398 19/19

RS-C 0.472 (72) 0.588 (12) 0.465 19/19

HOM 0.816 (120) 1.049 (12) 0.826 13/19
NS3 RS-A 0.851 (120) 1.084 (12) 0.855 16/19

RS-C 0.953 (96) 1.195 (12) 0.954 16/19

Figure 2. The average value of the selected intervals from
time index 122 to 400 over the 200 generated processes in the

HOM and RS-A scenarios.

increase. The conventional rolling window technique with a
fixed window size, on the other hand, does not have such
flexibility. Moreover, in the homogeneous scenario where
there is no structural change, the optimal interval selec-
tion should be the longest one of 120 months. The average
values of the selected intervals are quite reasonable, with

values around 108 months (k = 17) for each time point.
A direct comparison confirms that the simple yet flexible
LVAR model can be safely applied to both stationary and
non-stationary situations.

3.3 Robustness check

The forecast accuracy of the adaptive model depends on
the critical values which themselves depend on the underly-
ing hyperparameters K, M and Θ∗. As an illustration, we
analyze the robustness of the hyperparameter choices under
the RS-A scenario. The default values are K = 19, M = 6
and Θ∗ = Θ0. We report the forecast accuracy with dif-
ferent hyperparameters and also analyze the impact on the
forecast performance when Θ∗ is misspecified.

We first consider four alternative interval sets: given
M = 6, taking fewer or more candidates with K = 10
or K = 30; given K = 19 with the first interval being
12 months, taking shorter or longer steps with M = 3 or
M = 12 between two adjacent intervals. With these alterna-
tive interval sets, the critical values are re-calibrated. In or-
der to match the longest possible interval length for I(K), the
initial forecasting points for cases with K = 10 and K = 30
are different, which are t = 122 and t = 188, respectively.

Moreover, we consider the cases where parameter Θ∗ is
misspecified. Instead of using the true underlying parame-
ter values, i.e.,Θ∗ = Θ0, we compute critical values under
each of the two misspecified hypothetical parameters, i.e.,
±20% deviation on the VAR coefficients. More specifically,
we decompose matrix A and shift its eigenvalues by 20%
to have 0.8 × EV and 1.2 × EV, and denote the scenarios
as mis08 and mis12, respectively. We use these parameter
sets to generate Monte Carlo experiments and to calibrate
the critical values, although the series actually follow the
VAR model with Θ0. A potential problem occurs in scenario
mis12, where stationarity is not valid even in the shortest
interval. To guarantee the existence of local homogeneity,
we artificially select a matrix that satisfies the stationarity
condition. The forecast accuracy of scenario RS-A with the
new parameters is computed and compared again with the
alternative rolling window forecasts.

Table 3 presents the forecast accuracy under the alter-
native or misspecified hyperparameters. The results confirm
the robustness of the adaptive technique, with RMSE values
very close to those in the default case where true parameter
values are used to calibrate the critical values.

3.4 Model misspecification

In the following experiment, we investigate the stability
of the proposed adaptive model in terms of model misspecifi-
cation. It is necessary to answer whether the adaptive model
of order 1 provides reasonable forecast accuracy, if the true
data generating process has a higher lag order. As an illus-
tration, we consider the true data generating process to be
a LVAR process with lag order 5. Among other scenarios,
we conduct the simulation under the RS-A scenario where
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Table 3. Robustness testing (scenario RS-A): RMSE values. We compare the default case of M = 6, K = 19 and Θ∗ = Θ0 to
several cases of alternative hyperparameters of M = 3 or 12, K = 10 or 30 and misspecified parameter Θ∗ in the critical value

calibration

default K = 10 K = 30∗1 M = 3 M = 12 default∗2 mis08∗2 mis12∗2

NS1 0.395 0.395 0.409 0.396 0.397 0.348 0.349 0.347

NS2 0.398 0.402 0.403 0.400 0.399 0.378 0.381 0.376

NS3 0.855 0.862 0.862 0.858 0.857 0.844 0.849 0.841
∗1 The first forecast is at time index 188 (instead of 122 as for others) relative to the longest
possible interval length
∗2 An artificial VAR coefficient matrix is used to guarantee the existence of local homogeneity
after being multiplied by 120% in the mis12 scenario

Table 4. Model misspecification with the true data generating
process of LVAR(5) and time-varying VAR parameters. In the
table, p = 1 and p = 5 refer to the misspecified and correct
lag orders in the adaptive estimation, respectively. Only the
best and worst results of all the rolling window approaches
(with the corresponding window sizes) are reported. The last
two columns contain the LVAR results and the number of

cases where LVAR is better than the rolling window
approaches in terms of RMSE values

Rolling window (window size) Adaptive No. of
Scenario Best Worst Winning

NS1 p = 1 0.385 (60) 0.406 (24) 0.378 17/17
p = 5 0.403 (120) 0.706 (24) 0.409 11/17

NS2 p = 1 0.388 (84) 0.412 (24) 0.383 17/17
p = 5 0.408 (120) 0.695 (24) 0.416 11/17

NS3 p = 1 0.822 (84) 0.878 (24) 0.814 17/17
p = 5 0.862 (120) 1.458 (24) 0.876 11/17

the VAR autoregressive coefficient matrix has regime shifts.
In the first regime, the underlying LVAR(5) parameter set
is again computed from a VAR(5) model using the three
NS factors extracted from the US yield curve from 1983
to 1997. The autoregressive coefficient matrix changes to a
new value estimated by using a different sample from 1983 to
2010. Forecasting is conducted using both a LVAR(5) model
and a misspecified model, the LVAR of order 1. The set of
interval candidates is the same as before, starting from 12
months and ending at 10 years.

Table 4 displays the forecast performance based on both
the correct and the misspecified models of LVAR(5) and
LVAR(1), respectively. The adaptive models are in most
cases superior to the alternatives using various rolling win-
dow approaches. Misspecified model LVAR(1) provides even
better accuracy with smaller RMSE values than LVAR(5).
This implies that the proposed LVAR(1) model is capable
of providing reasonable forecast accuracy even when it is
misspecified. The simple structure is beneficial for out-of-
sample forecasts.

4. REAL DATA ANALYSIS

In this section, the proposed LVAR model is fitted to
monitor and forecast the US Treasuries, spanning January

Figure 3. Time evolution of US yield curves.

1983 to September 2010. Each month has a curve for in-
terest rates of 15 maturities (3, 6, 9, 12, 18, 24, 30, 36,
48, 60, 72, 84, 96, 108 and 120 months). The short-term
yields on 3 and 6 months are converted from the 3- and
6-month Treasury Bill rates on a discount basis, available
from the Federal Reserve’s H.15 release of selected inter-
est rates. The remaining yields with maturities of inte-
ger years are taken from publicly available research data
of the Federal Reserve Board, as released by Gürkaynak,
Sack and Wright (2007). We add the 9-, 18-, and 30-month
yields interpolated according to the parameters provided in
their data file to emphasize the fit for medium-term yields.
The time evolution of the yield curves is displayed in Fig-
ure 3.

The three Nelson-Siegel (NS) factors are extracted in the
framework of Nelson and Siegel (1987):
(3)

yt(τ) = β1t+β2t

(
1− e−λτ

λτ

)
+β3t

(
1− e−λτ

λτ
−e−λτ

)
+εt(τ),

where εt(τ) ∼ N(0, σ2
ε ) and yt(τ) denotes the yield curve

with maturity τ (in months) at time t. We follow Diebold
and Li (2006) to set λ = 0.0609 which maximizes the curva-
ture loading at a medium maturity of 30 months. The three
factors, β1t, β2t and β3t, represent level, slope and curva-
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Figure 4. Time evolution of Nelson-Siegel factors extracted
from US yield curves.

ture, respectively. The three factors’ dynamics are displayed
in Figure 4.

Under the NS framework with a fixed value of λ, if there
exists any form of non-stationarity in the yield curves yt,
then it is solely attributed to changes in the sequences of the
state factors, denoted as Xt = [β1t, β2t, β3t]

′. The sample
autocorrelation and cross-correlation plots of the factors are
presented in Figure 5. It shows that the NS factors are cross-
dependent not only on its own lagged values but also on the
other factors. Moreover, these factors are persistent, with
slowly decaying and significant autocorrelations and cross-
correlations up to high lag orders, which cannot be easily
captured by a VAR with a low order. The persistency feature
provides motivation to employ the LVAR model to describe
and forecast the factors.

At any forecast time, we use the adaptive technique to
identify an interval of local homogeneity, over which we esti-
mate the parameters. The fitted model is then used to itera-
tively compute multistep ahead forecasts of the NS factors,
which are further used to obtain the forecast of interest rates
at various maturities in the NS framework. The first forecast
originates from December 1997, where we iteratively obtain
the 1-month to 12-month ahead forecasts for January 1998
to December 1998. We then move to the next period to
identify the interval of local homogeneity and fit the LVAR
model for another set of forecasts up to a 12-month ahead

forecast. This estimation and interval selection exercise is
executed until September 2009 for the last set of forecasts
between October 2009 and September 2010. A total of 142
forecasts are generated for each forecast horizon.

The identified intervals of local homogeneity from De-
cember 1997 to September 2009 are shown in Figure 6. The
plot shows that as the estimation moves forward, there are
some commonly identified ending periods of homogenous
intervals, such as 1990, 1993 and 2000–2001, of which the
timing of 1990 and 2001 coincide with US economic reces-
sions.

In addition, the forecast results of LVAR are compared
with the alternative forecasts using the rolling window tech-
nique and the recursive approach. The rolling window tech-
nique adopts a fixed window size, 60-month and 120-month
in our study, while the recursive approach uses all the past
available information. Table 5 summarizes the forecast per-
formance of the three models for NS factors NS1, NS2 and
NS3. Table 6 shows the multi-step ahead forecast results of
the US yields at 3-month, 12-month, 36-month, 60-month
and 120-month maturities. Similar interpretations could be
drawn from the two forecast results tables. In several cases,
LVAR performs better than the rolling window technique
with fixed window size of 60 months, showing smaller RMSE
values. However, generally speaking, further improvement of
the LVAR model is needed to beat the rolling window with
120-month maturity and the recursive approach.

In fact, as a specific case of this general setting, Chen and
Niu (2013) show that restricting the state dynamics to an
AR(1) model for each NS factor greatly improves forecast
accuracy, and that the resulting performance beats the al-
ternative rolling or recursive forecast uniformly. The reason
may be due to the off-diagonal elements in the VAR autore-
gressive coefficient matrix being typically sparse and close
to zeros, which does not contribute much to the improve-
ment of forecast accuracy, but deteriorates the information
efficiency. However, as a general illustration of LVAR appli-
cation, we believe that this example provides a good scenario
for monitoring and forecasting economic and financial time
series.

5. CONCLUSION

We have proposed a local vector autoregressive (LVAR)
model that is capable of providing reasonable forecast accu-
racy under both homogeneity and structural changes. Com-
pared to the conventional dynamic time series models using
either a rolling window with a globally fixed window size or
a recursive technique using all past information, the adap-
tive procedure carefully selects an interval of local homo-
geneity at any particular time point. With this flexibility
on interval selection, the LVAR model provides stable per-
formance both in a simulated homogeneous situation and
under regime shift scenarios.

The real data analysis provides an example of real-time
monitoring and forecasting of the yield curves. The selected
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Figure 5. Sample autocorrelations and cross-correlations of the three NS factors.

Figure 6. Selected intervals of local homogeneity from
December 1997 to September 2009, over which the

parameters are estimated and the fitted model is used to
obtain the iterative forecasts. The vertical axis represents the
time when the estimation is made. The selected interval is
marked horizontally as a light yellow line. The dark blue line
represents the interval during which the most recent break is

detected.

Table 5. RMSE values of the iterative forecasts for NS factors
NS1, NS2 and NS3. Three types of models are employed: the

LVAR model with a time-dependent interval of local
homogeneity, a VAR rolling model with window sizes of 60

months and 120 months, and a recursive VAR model

NS1 h=1 h=3 h=6 h=12

LVAR 0.337 0.487 0.680 0.932

VAR Rolling 60m 0.337 0.475 0.636 0.783
VAR Rolling 120m 0.332 0.461 0.641 0.884
VAR Recursive 0.331 0.437 0.573 0.731

NS2 h=1 h=3 h=6 h=12

LVAR 0.416 0.717 1.178 2.294

VAR Rolling 60m 0.427 0.742 1.219 2.257
VAR Rolling 120m 0.417 0.687 1.069 1.844
VAR Recursive 0.412 0.662 1.003 1.747

NS3 h=1 h=3 h=6 h=12

LVAR 0.976 1.720 2.476 3.832

VAR Rolling 60m 0.927 1.635 2.375 3.288
VAR Rolling 120m 0.886 1.511 2.160 2.864
VAR Recursive 0.875 1.453 2.013 2.638
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Table 6. RMSE values of the iterative forecasts for yields at
3-month, 12-month, 36-month, 60-month and 120-month
maturities. Three types of models are employed: the LVAR
model with a time-dependent interval of local homogeneity,
the VAR rolling model with window sizes of 60 months and

120 months, and the recursive VAR model

y(3) h=1 h=3 h=6 h=12

LVAR 0.285 0.588 1.033 2.061

VAR Rolling 60m 0.281 0.586 1.044 1.896
VAR Rolling 120m 0.273 0.531 0.900 1.613
VAR Recursive 0.268 0.512 0.858 1.545

y(12) h=1 h=3 h=6 h=12

LVAR 0.286 0.660 1.153 2.147

VAR Rolling 60m 0.276 0.631 1.103 1.882
VAR Rolling 120m 0.261 0.578 0.987 1.665
VAR Recursive 0.262 0.562 0.930 1.559

y(36) h=1 h=3 h=6 h=12

LVAR 0.344 0.707 1.115 1.861

VAR Rolling 60m 0.326 0.664 1.031 1.557
VAR Rolling 120m 0.322 0.644 0.998 1.509
VAR Recursive 0.318 0.615 0.916 1.351

y(60) h=1 h=3 h=6 h=12

LVAR 0.350 0.650 0.977 1.510

VAR Rolling 60m 0.336 0.609 0.888 1.240
VAR Rolling 120m 0.333 0.605 0.901 1.302
VAR Recursive 0.326 0.570 0.814 1.132

y(120) h=1 h=3 h=6 h=12

LVAR 0.302 0.486 0.706 0.994

VAR Rolling 60m 0.299 0.460 0.626 0.769
VAR Rolling 120m 0.297 0.455 0.652 0.910
VAR Recursive 0.304 0.446 0.601 0.778

intervals indicate that there are some underlying economic
interpretations behind the detection results, thus LVAR is
useful for monitoring purposes. Although the forecast results
are not satisfying, which may be due to frequent changes
that are not easily detected by a high-dimensional model
setting without penalizing parameter uncertainty, we know
from existing work that imposing specification structures
could improve predictability. We relegate discussion of fur-
ther improvement within the general LVAR framework to
future work.
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