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Bayes estimation via filtering equation through
implicit recursive algorithms for financial

ultra-high frequency data

BRENT BUNDICK, NOAH RHEE AND YONG ZENG®!

We review a recently proposed general partially-observed
framework of Markov processes with marked point pro-
cess observations for financial ultra-high frequency (UHF)
data, and the related Bayes estimation via filtering equa-
tion (BEFE), a stochastic PDE approach. In this paper,
we show how the BEFE through explicit recursive algo-
rithms becomes bottlenecked when the tick size is reduced
from $1/8 to $1/100, and we develop the BEFE through
implicit recursive algorithms, greatly improving the compu-
tational efficiency. We demonstrate the substantial compu-
tation gained in implementing real-time BEFE for an illus-
trating but practical model using simulated data. The new
implicit recursive algorithm is applied to a real stock price
UHF data set, and is capable of producing real time Bayes
parameter estimates of the model.
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1. INTRODUCTION

Transactions data in financial markets have become
widely available in recent years. Such time-stamped (“tick”)
data, containing the most detailed information for price evo-
lution and quote revisions, are referred to as ultra-high fre-
quency (UHF) data in [11]. The direct modeling and anal-
ysis of these data, which make full use of the information
(including timing) at one’s disposal, is essential for insight
concerning market microstructure theory.

UHF data contains all transaction prices arrived at irreg-
ular and random times and can be represented by two kinds
of random variables. One is transaction time, T;, and the
other is a random element, Y;, describing such as the ob-
served price and/or the trading volume. Hence, UHF data
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are naturally modeled as a Marked Point Process (MPP),
® = {(T;,Y;)}i>1, which consists of a point process, {T;},
describing an increasing sequence of transaction times, and
marks, {Y;}, representing, as mentioned, prices and volumes
associated with the trades.

There are two different views on how to treat the observa-
tions, leading to the different formulations of the statistical
foundation for analyzing UHF data. Focused on modeling
random arrival times and from the viewpoint of time series,
econometricians naturally treat UHF data as an irregularly-
spaced time series and this view is well expressed in [11].
UHF data has a second stylized fact, namely, UHF data
contains microstructure (or trading) noise due to price dis-
creteness, price clustering, bid-ask bounce and other market
microstructure issues. To accommodate the second stylized
fact and from the standpoint of stochastic process, the sec-
ond view normally perceived by probabilitists is to treat the
transaction observations as an observed sample path of MPP
from a partially observed Markov process. This view was ad-
vocated in [33], where the data is treated as a collection of
counting processes, a special case of MPP observations.

In this paper, we first review a general partially-observed
model for financial UHF data recently proposed in [20] to
unify the two different views and merge their strengths.
The model connects to five literatures: (1) state-space mod-
els; (2) hidden Markov models; (3) Vector AutoRegressive
(VAR) structural models in market microstructure theory
surveyed in [18]; (4) estimating Markov processes sampled at
discrete or random times via the operator approach in [17],
[1], [9], [3] and [7] among others; and (5) realized volatility
with microstructure noise in [38], [4], [37], [15], [25], and [5]
among many others. The model is presented in two equiv-
alent representations in the sense that they have the same
probability law. Then, we review the corresponding Bayes
estimation via filtering equation (BEFE). Namely, we re-
view the normalized filtering equation to characterize the
evolution of the posterior measure-valued process, review a
weak convergence theorem and the blueprint for construct-
ing consistent, easily-parallelizable, recursive algorithms to
calculate the joint posteriors and the related Bayes estimates
for streaming UHF data.

One key step in constructing recursive algorithms is to ap-
proximate the time integral by explicit methods such as an
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Euler scheme. BEFE through explicit recursive algorithms
has found successes of real-time Bayes estimation in mod-
els such as geometric Brownian motion (GBM) and jump-
ing stochastic volatility among others for UHF stock prices
when the tick size was 1/8 or 1/16 (that is, before the year of
2000). See, for example, [36], [34], [22], [35], and [30]. How-
ever, explicit recursive algorithms from BEFE suffer two
curses when the tick size was reduced to 1/100 after the
year of 2,000. One is the curse of grid size, which further in-
creases exponentially as the number of parameter increases.
The other is the curse of time-step size, which shrinks dra-
matically (even over one hundred folds) as the tick size is
reduced to $1/100 and the volatility keeps high, such as 30%
annually for higher.

In this paper, we propose two strategies, each as a cure
to one of the two curses. The first curse of grid size can be
solved by a well-designed parallel computing according to
each parameter set. And the second curse of time-step size
can cured by developing BEFE through implicit methods in-
stead of explicit methods. Based on these two strategies, we
develop BEFE through implicit recursive algorithms, a gen-
eral approach to constructing consistent, easily-parallelized,
efficient recursive algorithms for real time Bayes estimation
of the model.

Using a partially-observed geometric Brownian motion
(GBM) sampled at random times with trading noises, we
show the computation challenge of real time Bayes estima-
tion through explicit methods when the tick size is in cent.
A key for valid posterior approximation computed by the
explicit recursive algorithm is to keep the approximate prob-
ability masses positive over time. To achieve this, however,
the time-step size has to shrink greatly when the tick size
becomes $1/100. We explain how implicit methods can im-
prove the computation efficiently and show the nonnegativ-
ity of probability masses computed in the implicit recursive
algorithm. We demonstrate the substantial speed gained in
implementing real-time BEFE using simulated data when
the volatility is high. The new implicit recursive algorithm
is applied to a real stock price UHF data set, and is ca-
pable of producing reasonable real time Bayes parameter
estimates of the model.

The rest of this paper goes as follows: Section 2 presents
the general model in two equivalent forms and reviews the
BEFE. Section 3 develops BEFE through implicit recursive
algorithms with parallel computing for the general model.
Section 4 presents a specific GBM model sampled at random
times with trading noises at tick size of $1/100, presents the
old recursive algorithm constructed via the explicit Euler
scheme, and develops the new implicit recursive algorithm.
Moreover, we prove the nonnegativity for the implicit recur-
sive algorithm, demonstrate the tremendous computational
gain using simulation data and apply the implicit recursive
algorithm to a real stock transactions price data. Section 5
concludes.
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2. THE MODEL AND BAYES ESTIMATION
VIA FILTERING EQUATION

We review the partially-observed model and the corre-
sponding BEFE in [20].

2.1 The model

We present the model in two equivalent forms and briefly
discuss its generality.

2.1.1 Representation |: Random arrival time state-space
model

This representation has the similar components: state
process, observation times, observations and noise. How-
ever, there are two significant differences from the usual
state-space models: random arrival times and continuous-
time state process.

State process

The extended state process (8, X), allowing 6 to potentially
change in continuous time, satisfies a mild Markov assump-
tion.

Assumption 2.1. (,X) is a p + m-dimension vector
Markov process that is the solution of a martingale prob-
lem for a generator A, such that

My (t) = £(0(t), X () - / AL f(0(s), X (s))ds

; 0,X : 0,X,V .
is a 77V martingale, where F2**V is the o-algebra gen-

erated by (0(s), X(s),V(s))o<s<t, and f is in the domain
of A,.

Here, V', which can be a vector process, represents other
observable economic or market factors. V' can influence X,
which can be interpreted as an intrinsic value vector pro-
cess for m assets, through the generator, A,. The generator
and martingale problem approach (see, for example, [14])
furnishes a powerful tool for the characterization of Markov

processes.
Observation times
T1,Ts,...,T;,. .., are allowed to be a general point process,

specified by a nonnegative F;-predictable stochastic (or con-
ditional) intensity in the following form: \(t) = A\(8(t), X (¢),
V= &'~ ) where V! = V(- At) denotes the sample path of
V up to time t and similarly ®'~ = {(T},Y;) : T; < t}.
Observations

Taking a value in mark space Y, the noisy observation at
event time T;, Y(T;), is modeled by Y (7;) = F(X(T;)). Note
that F'(-) in y = F(z) is a random transformation from z
to y, specified by a transition probability p(y|z), which is
Fi-predictable.

2.1.2 Representation II: Filtering with MPP observations

Under this representation, (6, X) becomes the Markov
signal, which is partially observed through a MPP, & =



{T;,Y;}i>1. An auxiliary predictable process V' is incorpo-
rated in both the signal and MPP, and (6, X, ®, V) is framed
as a filtering model with MPP observations.

Let (Y,),u) be a measure space for Y, the mark space
of observations with a finite measure p (u(Y) < o00). An
MPP can alternatively be described by a random counting
measure, (¢, B), recording the cumulative number of marks
in aset B €Y up to time t. Let ®(¢, B) fOfB (dt, dy)
where ®(dt, dy) is given by

(1) O (dt, dy)

= byt y)didy

i>1

with ®({0} x Y) = 0 and d;7, y;3(¢,y) is the Dirac delta-
function on R™ x Y.

The assumption below ensures that this representation is
equivalent with the previous one:

Assumption 2.2. Under P, the stochastic intensity kernel
of & = {(T},,Yn) }n>1 is given by

Alt, dy) = A(t dy; 0(t), X (1), V'™, @, 1)
(2) A(O(t), X (8), V'™, @, t-)
X p(dy‘X(t) ( )7Vt77(bt77t_)'

In the next assumption, we assume the existence of a
simple unit Poisson random measure as a reference measure
with a key independence property.

Assumption 2.3. There exists a reference measure @,

P << @ so that under @, (6,X) and V are independent

of ® = {(T,,Yn)}n>1 and the compensator of MPP & is
Y)

To(d(t,y)) = pldy)dt.

We use EQ[X] or EF[X] to indicate that the expectation
is taken with respect to a specific probability measure. The
next mild assumption ensures that such a reference measure
Q exists. Let the ratio of the mark distributions under P and

Q be
T(y) = T(y; e(t)7 X(t)v Vt_’ cbt_’ t_)

p(dy|X(t), e(t)v Vt77 (I)t77 t_)
p(dy) '

3)

and the ratio of the compensators under P and @Q be

_ ’VP(d(tvy)) _ )‘(ta dy)
)= Sy~ uldy)
@ = XO(), X (1), VP, 8 1)
x r(y;0(t), X (t), V™, 0 t—).

Let L(t) =
below with more explanation in [21].

g—g(t) be the Radon-Nikodym derivative given

L(#)

— L(0) exp{ / t / log C(s—,9)®(d(s, ))
- /0 t /Y (5= - 1]u<dy>ds}.

Clearly, ((t,y) determines L(t).

Assumption 2.4. The ((¢,y) defined in (4) satisfies the
condition that EQ[L(T)] = 1 for all T' > 0.

The final assumption is a technical condition that ensures
that {T;} is non-explosive and that the filtering equation is
well-defined.

Assumption 2.5. fot EF[\(s)]ds < oo, for t > 0.

In summary, this rich framework subsumes two classes
of existing models: Class I contains models that lack a
continuous-time latent X, while Class II contains models
that incorporate continuous-time latent X, but do not in-
clude confounding, observable factors V. For surveys on
Class I, see [27] and [13]. As an alternative, Class II con-
tains many classical filtering problems with MPP observa-
tions (see for example, [10] and references therein) and the
model of [33] and its multivariate generalization ([28] and
[29]), and filtering models that estimate market volatility
from UHF data such as [16] and [8].

Moreover, the proposed model provides a new class of
interesting models whose new key element is V| containing
observable factors. One example is provided in Section 4 of
[20], where V includes two variables incorporated into the
volatility of a GBM intrinsic value process X. Moreover,
the flexibility of the model allows for the marks {Y;} to
represent trade price, volume, bid-ask quotes, or some com-
bination and to be influenced by V. Brought together, these
characteristics provide new possibilities in empirical studies
of market microstructure theory.

2.2 Bayes estimation via filtering equation

We review the normalized filtering equation for the poste-
rior process, a weak convergence theorem, and the blueprint
for constructing recursive algorithms.

2.2.1 The Continuous-time posterior of (6(t), X (t)) and its
filtering equation

We first define the conditional distribution.

Definition 2.1. Let m; be the conditional distribution of
(0(t), X (t)) given FV and (6(0), X(0)), and let

n(f,t) = EP[F(0(1), X ()| Y]
:/f(ﬁ,x)m(dﬁ,dx).

When (6(0), X(0)) has a prior distribution in a Bayesian
paradigm, 7; is the continuous-time posterior distribution.
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The collection of 7(f,t) for all continuous and bounded f
specifies 7;. The posterior is the key for Bayesian point and
interval estimation.

For each t > 0, m; is a probability distribution, which is a
measure. Hence, {7 };>¢ is a measure-valued process, which
is of infinite dimension and is uniquely characterized by the
following normalized filtering equation, a stochastic partial
differential equation (SPDE).

Theorem 2.1. Suppose that (0, X, D, V) satisfies Assump-
tions 2.1 — 2.5. Then, m; is the unique measure-valued solu-
tion of the SPDE under P, the normalized filtering equation,

w(f,t) =x(f,0) —|—/0 (A, f,s)ds

// L) ah,s-)]

(®(d(s y)) (C() s)p(dy)ds).

Moreover, when the stochastic intensity \(t) is ff’v—
predictable, the normalized filtering equation is simplified as

w(f.t) = 7(£,0) + / T(Auf, )ds

of Ll

wherer(y) = r(y; 0(s), X(s), 5,V s—

w(f,s=)] @(d(s. ),

) is defined in (3).

The case that {T}}’s stochastic intensity A(¢) is Fi" -
predictable is general and includes Cox model and the more
general proportional hazard formulations, Autoregressive
Conditional Duration (ACD) model proposed in [12] and its
variants, and the Hawkes process (see, for example [24] and
[2] for recent applications in finance). In that case, Equation
(5) is reduced to (6), significantly reducing the computation.
Further note that the stochastic intensity disappears in the
simplified filter. Hence, the Bayes estimates of (0(t), X (¢))
are model-free of the assumptions on event times. The exam-
ple in Section 4 makes use of such advantages. The tradeoff
is that the relationship between event times and the state
(0, X) is ignored.

We focus on the recursive filter (6), which can be sepa-
rated into the propagation equation between trading times
ti and ti-l—l_:

() w(ftiaa) = w(fots) + / T (AL s)ds

i

and the updating equation at time t;11:

(8) 7(f,tiv1) =

)

m(r)f,tis1—-)
(y

m(r(y); tiv1—)

where the mark at time ¢, is assumed to be y.
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2.2.2 A weak convergence theorem

To compute the infinite dimensional posterior measure-
valued process characterized in Theorem 2.1, we need to
approximate the infinite dimensional problem by a finite di-
mensional problem and to develop a recursive algorithm.
One fundamental requirement for any algorithm is consis-
tency, namely, the approximate posterior measure-valued
process converges to the true one. The following weak
convergence theorem provides a blueprint for constructing
consistent recursive algorithms through Kushner’s Markov
chain approximation methods ([23]).

Following the literature of weak convergence, we use the
notation, X, = X, to mean X, converges weakly to X in
the Skorohod topology as € — 0. Let (., X) be an approx-
imation of the signal, (6, X) and let the observations for an
approximate signal (6, X.) be ®. = {(T}¢,Yic)}i>1-

Theorem 2.2. Suppose that (0, X,®, V) on (Q,F, P) sat-
isfies Assumptions 2.1 — 2.5. Suppose that for any e > 0,
(0, X, @, V) on (Qe, Fe, P.) also satisfies Assumptions
2.1 - 2.5 If (0,X:) = (0,X) as € — 0, then, for any
bounded continuous functions, f,

(1) ®. = ® under the physical measure P; and

(2) ne(f,-) = n(f,"), as e = 0.

This theorem states that if the approximate signal con-
verges to the true signal in distribution, then, (1) the ob-
servation of an approximate model converges to that of the
true model in distribution, and more importantly, (2) the
posterior measure-valued process of the approximate model
converges to that of the true one in distribution.

2.2.3 A blueprint for developing recursive algorithms

Based on Theorem 2.2, we present a three-step blueprint
for developing consistent recursive algorithms using Markov
chain approximation method to compute the current joint
posterior distribution and the Bayes estimates. After respec-
tively discretizing the state and the mark spaces into two
grids, the blueprint has three steps in developing a recursive
algorithm. In Step 1, we construct (6., X.), a Markov chain
approximation to (f, X), and approximate r(y) = r(y|6, x)
by rc(y) = 7(ye|0e, xc), where (0., z.) and y, are respectively
confined to the grids of (6., X.) and Y. In Step 2, we apply
Theorem 2.1 to get the approximate filter for 7 (f,t) cor-
responding to (0., X, Y, r.), which can also be separated
into:

tit1—
(9) We(f, ti-‘rl*) = 7re(fa ti) +/ WE(Av,efvs)dS
t

K

and with the assumption that a mark at y;; happens at
time ti+1:

Te(fre(Yiz1), tiy1—)

(10) Te(re(Yiv1), tig1—)

Te(fitit1) =




In Step 3, we turn Equations (9) and (10) to a recursive
algorithm for the state grid and in discrete times via two
substeps: (a) turn 7 (-,t) into a finite array with the com-
ponents being 7. (f,t) for lattice-point indicators f and (b)
approaches the time integral in (9) with a numerical scheme.

3. CONSISTENT IMPLICIT PARALLEL
RECURSIVE ALGORITHMS

We construct well-designed recursive algorithms to pro-
duce real-time joint posterior and Bayes estimates. For no-
tation simplicity, we exclude V', the other observable factors,
in this section.

We separate 6(t) into time-invariant and time-variant
parameters, namely, set 0(t) = (0,v(t)) where 6 and
v(t) can be vectors. This natural way to separate 6(t)
has the advantage in computing parallelism and mem-
ory management as shown later. The goal is to compute
7, the joint posterior distribution of (6, v(t), X(t)) given
F® = o((T},Y;) : T; < t), the observations up to time t.
Suitable priors such as uninformative priors can be cho-
sen as in [33] Then, 7(f,t) = EF[f(0,v(t), X (t))|FE] =
J f(0,v,2)m(d(0,v,x)). Just as we approximate a continu-
ous dlstrlbutlon by a histogram, we approximate m; by 7.,
a discretized approximation. The corresponding 7 (f,t) is
defined by 7 (f,t) = > 5, . f(0,v,2)7m +(0,v,x) where the
sum is over the state grid described below.

In preparation for constructing the recursive algorithm,
we discretize the state space of (6, v(t), X (t)) as a state grid,
G. The total number of grid point in G is Ny X N, X N,
where Ny is the number of grid point for the time-invariant
parameter space of 6 and similarly for N, and N,. For a
time-invariant parameter space such as @, the discretized pa-
rameter space is a natural approximation. However, Markov
chain is a natural approximation for stochastic processes
(v(t), X ().

We can order the parameter grid points in the grid of 6 in
some way and let 6; be a parameter lattice point. For each
fixed 6;, let G; be the corresponding grid of (v ( ) X(1)).
Then, we can partition G by G;, namely, G = U °.G;. Of
course, if there is no time-variant parameter, (v(t), X(t)) is
reduced to X (¢) only.

3.1 Recursive algorithms

Below, we follow the three steps in Section 2.2.3.

Step 1: Construct (6, ve(t), Xe(t)), a Markov chain ap-
proximation to (0,v(t), X (¢)). This can be transformed to
construct a Markov chain generator, A, such that A, — A
pointwise as € — 0. Then, Corollary 4.8.5 on page 230 of
[14] implies (0, ve(t), Xc(t)) = (0,v(t), X (t)). We give three
typical examples, diffusion, jump-diffusion and stochastic
volatility, on how to construct approximate Markov chain
generators.

Example 3.1. GBM Model This is the example used in
Section 4. X; follows a SDE:

dX

7: = pdt + odBy,
where B, is a standard Brownian motion. Let 6 = (u, o, p).
The generator associated with the martingale problem in
Assumption 2.1 for X is

of o2 f
G m)+_ o

The generator has the first and second order derivatives.
Hence, we employ finite difference method, namely, the cen-
tral difference approximation to the first and second order
differentials so as to construct the approximate generator as
below:

Aq1f(0,2) = pr == (0, )

Al’gf(H, ZC)
(f(9, Tt er) -

A 2¢
+10'2$2 (f(9,1‘+6m)+f(97$—6$)—Qf(e,x))
2

f0,2 — e)
(1) )

2
€z

= a$(97 x) (f(@,l‘ + 635) - f(ea :I:))
+b:(0,2) (f(0,2 — €2) — f(0, 7))
where
. 2,.2
az(aax) - % </:$ €2 > ’
and

1 pxr  o’x?
Example 3.2. Jump-GBM Model popularized by [26].
X(t) follows

aX(t) = pdt + odB(t) +

X0 (N — 1)dN(1),

where N(t) is a Poisson process independent of B(t) and
has intensity A. Representing the jump magnitudes, {J;}
are i.i.d. lognormal, namely, log J; are i.i.d. N(uy,07). The
generator is

Aof(6,2) = AL f(62) + A / [ (@2) — F@)las(x)dz,

where A; is given in Example 3.1, ¢;(2) is the lognormal
density and @ includes (u,0, g, 07). The generator further
contains integration, which can be approximated by proper
summation. The approximate Markov chain generator is
given by

Ay f(0,2) = A1 f(0,)
+AY [F(0,2) = f(0,2))4s (2, 2),
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where A1 . f(6, ) is given in (11), the summation is over all
grid points of X, and §;(z,2) = P{J € [(# — 0.5¢3)/x, (= +
0.5¢;)/x)}.

Example 3.3. Heston Stochastic Volatility Model
proposed in [19] contains time variant stochastic volatility
v(t) = a%(t). (v(t), X(t)) follows

dX,
—t = udt + od By

X
— v)dt + /v dWy

dvy = k(a
where (B;, W;) are independent standard Brownian mo-
tions. Let 6 including (u, s, «,v) be a vector of the pa-
rameters in the model. The corresponding generator A in
Assumption (2.1) is given by

(12)

Asf(0,v,x) = 3f(9 v, ) Jrl 222(9 v, )
" o7 2,
+/<;(a—v)8 (0,v,z) + yvaz(e,v,x)

The generator can similarly be approximated by finite cen-
tral difference.

As . f(0,v,x)
(

:aw(é? v,z) (f(0,v,2+€:) — f(0,0,2))
(14) b (0,v,2) (f(0,v,2 —€;) — f(O,v,))
+av(9 v,z) (f(0,v+ €, x) — f(0,v,x))
U(07Uax) (f(0 v = 671733) - f(@,v,x))
where
(0,v,x) % (g + g) ,
b (0,v,x) % (—5—: + g) )
and
ay(0,v,z) = % (H(ae_ v) + ;) )

bo(0,0,2) = % (_M

Step 2: Obtain the filtering equation for m¢(f,t), which
are (9) and (10). Note that 7¢(yi+1) = pe(yit1|X (tiv1);0),
the approximate transition probability in Representation I.
Note that p(y|z) specifies the noise, which may include ad-
ditive, rounding and biasing noise.

Step 3: Convert Equations (9) and (10) to recursive algo-
rithms with two more substeps. A recursive algorithm com-
putes the approximate posterior masses at all grid points.
Let the approximate posterior mass at grid point (6}, vy, ;)
be

p&‘(ejavm7xl; t)
=Pl = 0;,vc(t) = v, Xc(t) = |.7-"tq>}.
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In the first substep, we take f as the following indicator
function.
(15) I{Qj,vm,a:l}(967 Ve (t)7 Xe (t»
which takes value one only when (6. = 6;,v.(t) =
Um, Xe(t) = ;) and zero otherwise. Then, the follow-
ing facts emerge: w.(L(6;,vm,21),t) = pe(0, Um, x5 t),
7Te(:[(eja Uy T1)Te, T) pe(eja U, 15 O)Te(Yil 203 ej)a and
Te (rea t) Zj',m/J/ Pe (9]'/ y Um/, T3 t)re (yi|xl’; ej’)a where
the summation is over the whole state grid.

Hence, the propagation Equation (9) becomes,

p€(9j7vm?xl; ti+1_) :p€(9j7vm7xl; t’L)

tit1—
+/ me (AL s)ds,
t

i

(16)

where 7. (AL, s) depends on A I, which is a linear combina-
tion of some indicator functions according to the three given
examples. Therefore, m.(A.L s) is a linear combination of
Pe(0j,+,+; s). We assume the posteriors are zero outside the
state grid.

The updating Equation (10) can be written as,

p5(6j7vm,xl; ti+1)
_ P05, vm, w15 tipa —)re(Yiga |, 05)
Z]‘/,m/,l/ pﬁ(ej'avm’a x5 O)re(Yiyr [T 9;")

(17)

The second substep is to approximate the time integral
in (16) via a numerical method. This is where the explicit
and implicit recursive algorithms differ.

3.1.1 Explicit recursive algorithms

Explicit Euler scheme is the most straightforward one.
We can choose LL, a controller of time-step size. If t; 1 —t; <
LL, then an explicit algorithm approximate (16) by

(18) Pe(05, Vi, w15 tiv1 =) = pe(0, v, 215 )
+ WE(AEI, ti)(ti+1 - tl)

It is clear that pc(8;, vm, 21; t;y1—) at time ¢;41— is directly
computed by a linear combination of pc(0;, v,z t;) at
time t;. Then, it can roll over to the next time step.

If t;y1 — t; > LL, then we can choose a fine
partition {ti,O = ti, ti,l; ey ti—l—l} of [ti, ti+1]
such that max;|t; j41 — t;;] < LL and approximate
De (05, Um, 15 tiy1—) by repeatedly applying the recursive al-
gorithm given by Equation (18) from ¢; o to ¢; 1, then ¢; o,

. until ti,n = ti+1.

Equations (17) and (18) constitute the explicit recursive
algorithm for calculating the posterior over time. The ex-
plicit recursive works well in previous studies ([33] and [34])
which the tick size of stock price was $1/8 or § 1/16. How-
ever, when the tick size of a stock price becomes 0.01 dollar
and the volatility is high (say, 30% annually), the explicit

ti,n =



recursive algorithms can become very inefficient as demon-
strated in the next section. The reason is that the positivity
constraint on pe(6;, vm,, x;) causes the shrinkage of the time
step to zero. This is the curse of time-step size.

3.1.2 Implicit recursive algorithms

In order to cure this curse, we adopt the implicit method
to approximate (16) and develop implicit recursive algo-
rithms in this paper.

For t;41 — t; < LL, we instead approximate (16) by

(19) Pe(0, Vs 15 tiv1—) = pe(0, vm, 15 )
+ WE(AEI, ti+17)(ti+1 — tz)

Now, for each fixed 0;, we treat (19) as a N, x N, lin-
ear system with N, x N, unknown p.(0;,vm,zi; tix1—),
given pc(0;,vm, x5 t;). Through various matrix itera-
tive techniques depending on the generator, we solve
Pe(0, Um, x5 tiy1—) from the linear system. Moreover, the
coeflicient structure usually ensures the positivity of the so-
lutions as demonstrated in the example of the next section.

Equations (17) and (19) constitute a class of implicit re-
cursive algorithms to calculate the posterior.

3.2 Memory management and computing
parallelism

We observe from (16) that the propagation can be car-
ried out for each fixed 6, in either explicit or implicit re-
cursive algorithms. Namely, we can parallelize the propaga-
tion in a way that each CPU can propagate p.(0;,-,-;t) on
(v(t), X (t)) for each 6;. Only in computing the denomina-
tor in the updating equation (17), we need to aggregate all
Pe(0j7, Uy, T U)pe(Yiza|zy; 057) from all CPUs. After ob-
taining the grand total, we can parallelize the updating in a
way that each CPU updates its share of the joint posterior
distribution of (8, v(¢), X (¢)). Then repeat the procedure as
new observations flow in.

To achieve such parallel computing, we, at the beginning,
partition the joint prior distribution of (6, v.(0), X(0)) on
the whole state grid according to each 0;. Namely, we choose
Ny CPUs, each CPU’s memory stores N, x N, number of
pe(0j,-,+;0) of G; corresponding to 6,. Hence, with proper
memory management, the recursive algorithms’ parallelism
can be carried out nicely.

3.3 Consistency

Two approximations are employed in the construction of
the above recursive algorithms. One is the approximation of
the time integral in (16) by an explicit or implicit method,
whose convergence is well-established. The other more im-
portant one is the approximation of the filtering equation
in (7) and (8) of the true model by that in (9) and (10)
for the approximated model. The weak convergence result
(2) of Theorem 2.2 warrants the consistency of the second
approximation.

Corresponding to a recursive algorithm, let

P05, vm, 715 t)
=m{0 € Ny, ,v(t) € Ny,,, X(t) € Ny, },
where Ny, N, and N, are appropriate neighborhoods.
For example, N, = (z, — %ez,xw — %ex) Then, Theo-
rem 2.2 implies that p.(0;, Um, 1; -) = p(0;, Um, 2; -) for all
(0, vm,x;) in the state grid as ¢ — 0.

Both explicit and implicit recursive algorithms are con-
sistent and parallelizable with proper memory management.
The computational advantage of the implicit recursive algo-
rithms is demonstrated by an illustrating example in the
next section.

4. AN UHF STOCK PRICE EXAMPLE

We construct a partially-observed GBM model with tick
size $1/100, and develop explicit and implicit recursive al-
gorithms. We identify the cause for the deficiency of the
explicit recursive algorithm and prove the nonnegativity of
the implicit algorithm. We use simulated data to demon-
strate the efficiency of the implicit algorithm and apply it
to a real stock transaction price data set.

4.1 The GBM model sampled at random
times with trading noise

The model for UHF stock price at tick size $1/100 is
presented in Representation I as it is intuitive. The state
process becomes the intrinsic value process of a stock.

We assume the intrinsic value process follows a GBM
given in Example 3.1. We assume the trade durations follow
an exponential ACD or Wiebull ACD model. Because such
an ACD model has an ]-'t(I> ’V—predictable stochastic intensity,
we can use the simplified version of the normalized filtering
equation, (7) and (8).

Trading noise enters into price at trading times. Follow-
ing [33], we consider three sources of noise: non-clustering
noise, price discreteness and clustering noise. To accommo-
date price discreteness, the mark space becomes a discrete
space Y = {&tl af2 - atmy where M = 100 is set by
market convention for stock. In addition, market trades tend
to occur on coarse ticks such as 5 or 10 cents leading to price
clustering. Finally, we assume that nonclustering noise in-
cludes all other unspecified noise in the market.

At trade time ¢;, let = = X(t;), vy = Y (&), and
y = Y'(t;) = R[X(t;) + Ui, 7], where U; is the non-
clustering noise. We develop a random transformation
y = F(x) in three steps and point out a way to calculate
the corresponding transition probability p(y|z).

Step (a): Add non-clustering noise U; 2’ = x4+ U, where
U is the non-clustering noise at trade i. We assume {U;} are
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independent of X (t), i.i.d., with a doubly geometric distri-
bution:

P{U—u}—{ ifu=0

i — 41l 42
ifu==+5,%£5,--

(1-p)
5 (1 — p)phl

Step (b): Accommodate discrete noise by rounding off
a2’ to its closest tick, ¥ = R[z', 77]-

Step (c): Accommodate clustering noise by biasing 3’
through a random biasing function b;(-) at trade 7. {b;(-)} is
assumed conditionally independent given {y;}. To be coher-
ent with the stock price data analyzed, we develop a sim-
ple random biasing function for the tick of cent or $1/100.
The data to be studied possesses the clustering occurrence:
multiples of ten cents are most likely; odd multiples of five
cents are the second most likely; the others are least likely
and each one has about the same frequencies.

To accommodate such clustering, a biasing function b(-) is
developed according to these biasing rules: if the fractional
part of ¢ is a multiple of five cents, then y stays on 3’
with probability one; if the fractional part of 3y’ is not a
multiple of five cents, then y stays on y’ with probability
1 — a — B; y moves to the closest odd multiple of five cents
with probability «, and moves to the closest multiple of ten
cents with probability 5.

In short, for coherence with market convention in a stock
market, we develop a random transformation F for ticks
with M = 100:

where F' is specified by p(y|z), which can be calculated
using the above construction and the formula, p(y|z) =
>, Py )p(y'|z). And the parameters related to cluster-
ing noise (a,3) can be estimated through the method of
relative frequency.

4.2 An explicit recursive algorithm, its
deficiency and the cause

The model above has time-varying v(¢) and 6§ becomes
(1, 0,p). Let N, be the number of the grid for the pa-
rameter space of y and similarly for N, and N,. Then,
Ny = N, x Ny x N,. We assign uniform priors for (i, o, p)
and set P{X(0) = Y (¢1)} = 1 where Y (¢;) is the first ob-
served price. Then, a reasonable prior is given below:

L if ; =Y (t1) for all 6;

0. 21 0) = d NaNoN,
p(6;, 25 0) { 0 otherwise

Following the general approach in Section 3, for 6; (a
parameter grid point), the approximate generator is given
by (11). Taking f(0c, Xc(t)) = Itg, 2,3 (0, Xc(t)), me (AL 1)
becomes

me (AL )
(20) = az(0;,21) (pe(0;, z1-15t) — pe(0;, 243 t))
+ bﬂ?(oj’ Jil)(pﬁ(ej, Tip1;t) — pe(ajv Ty t))
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Then, when At = t,41 — t; < LL, the explicit recursive
algorithm for the model becomes

pe(ejv X3 tz’—&-l*)
R pe(0j, x5 ti) + [%(93‘, x1)pe(05, x1-1;5t;)

(21)
— (az (05, 1) + ba (05, 21))pe (05, 315 1)
+ s (05, 21)pe (05, 21415 ti)} At,
and
pe(ejaxl; t’i+1)
(22) Pe(0;, 215 tig1—)p(Yit1|x1, 05)

N Zj’,l’ pe(ej’ , Lty ti+1_)pe(yi+1 |ml’; ej’) .
4.2.1 The deficiency and the cause

Probabilities must be positive. From (21), one necessary
condition to keep positive probabilities is that for all §; and
Xy,

(ax(Gj,xl) + bm(ﬂj,xl))At <1,
or equivalently,

At < !
max y
- 9]',:81 ax(9],$1)+bz(eg7xl)

where the maximum is taken over the whole state grid.

When the tick size is 1/8, a,(0;,x;) and b,(0;,x;) are
small and At can be reasonably large. For example, using
commonly seen values from the stock market, we take z =
105, expected growth 10% annually, or u = 0.1/(252 x 6.5 x
60 x 60) = 1.696e — 8 in second assuming 252 business days
per year with 6.5 trading hours (9:30am — 4pm) per day, and
volatility 60% annually, or o = 0.6/4/252 x 6.5 x 60 x 60 =
2.471e — 4. Then, we can compute a,(6,z) = 0.345 and
At < 1/(2a5(0,z)) = 1.45 seconds. Setting LL = 1, the
explicit method has no nonnegativity issue and the com-
puter program works fast enough to produce real time
Bayes estimates. However, when tick size becomes 1/100,
az(0;,x;) = 53.85 and At < 1/(2a,(6,z)) = 0.00929. In the
simulation study presented later, we assume o to be 30%
annually. However, we don’t know the true value and we
can guess the maximum of o to be as large as 60%, double
the true value. When we experiment the size of LL with
our computer program, we find that LL needs to be set at
0.005 to avoid nonnegativity issue. This imposes a too severe
shrinkage to the size of At and the explicit recursive algo-
rithm requires too many steps (beyond real time) to com-
pute the joint posterior before next trade. This is the cause
of deficiency of the explicit recursive algorithm. The implicit
recursive algorithm developed below can resolve such a com-
putation deficiency.




4.3 The implicit recursive algorithm, its
nonnegativity and efficiency

Using (20), (19) becomes

Pe(bj, 15 ti1—)

~ pe(0, x5 ti) + [Gm(9j7$l)pe(9j7$l—1; tit1—)
— (az (05, 1) + bz (05, 21))pe (05, x5 tip1—)

+ b;r (Q]a l‘l)pg (977 Ti4+1; ti+1_):| At7

(23)

where the boundary probability masses are set as zeroes,
namely, pe(6;, zo;tk) = pe(8;, Tn,+1;tk) = 0, for k =4,14+1.
For fixed 6;, denote p(0;,i) = (pe(ﬁj,:cl;ti), ce,
/ .
pe(oj;xNz§ti)) , p(0j,i + 1) = (pe(ajvl'ﬁ tig1—)se s
/
pe(0;,2n,;ti+1—)) , and

d1 €1
Co d2 €9
c3 d3  e3
B =
CN,—1 dN,—1 €N -1
L CN,, de
where ¢ = —ag(6;,z)At, for | = 2,3,...,N,; d =
1+ (az(é)j,xl) + bz(Gj,:cl))At, for I = 1,2,...,N,; and

er = —by(0;,21)At, for I = 1,2,...,N,
nonsingular and B~! exists.

We are given p(6;, i) and the goal is to solve for p(6;,i+1).
The system (23) can be written in matrix form as

— 1. Clearly, B is

Bp(ajvl + 1) = p(gjvi)a
and
p(0;,i+1) = B~ 'p(6;,1).

This is a tridiagonal system, which can be explicitly and
efficiently solved by a version of the Thomas algorithm (see,
for example, [31]) below.

Algorithm 1 Thomas Algorithm in the Implicit Recursive
Algorithm
Atl=1
d/l = d1 and b/1 = pe(aj,l‘l;ti).
for | =2,3,-, N, do

dj = di — g"~ei—1 and b = pe(0;, 21;t:) — 77 bio1.
end for
Atl= N,

pe(0j, 2,5 tiv1—) = by, /dn, -
for (=N, —1,N, —2,-,1do
pe(b;, x5 tizi—) = (b — ewe(05, xi; tiy1—)) /d;
end for

The above Thomas algorithm plus the updating equation
(22) consist of the implicit recursive algorithm.

4.3.1 The nonnegativity

Since the normalized p(f;,i + 1) becomes a probability
distribution, it is important to ensure that p(6;,7 + 1) is
nonnegative. We call this the nonnegativity of the implicit
method, which is guaranteed by the following proposition
with the proof and a related matrix concept given in the
Appendix.

Proposition 4.1. For a fized 6;, if p(6;,7) > 0 then p(0;, i+
1) > 0 regardless the size of At.

The proposition warrants the nonnegativity for any time-
step size At. This provides a solid foundation for the effi-
ciency of the implicit recursive algorithm, which is shown in
the simulation study presented next.

4.4 A simulation demonstration

We simulate 28900 observations (same amount of data in
the real data example) with the setups below, which are
quite common scenarios in the stock market. The initial
value is X (0) = 100, and the expected growth is 10% an-
nually, or g = 0.1/(252 x 6.5 x 60 x 60) = 1.696e — 8 in
second assuming 252 business days per year with 6.5 trad-
ing hours (9:30am — 4pm) per day. The annual volatilities
are assumed to be 10%, 20%, and 30%, which are 4.118e—5,
8.236e — 5, and 1.235e — 4 per second. Since we do not know
the true value when we do the estimation, we assume that
the maximum of o selected is about double the true o. Trad-
ing times are assumed to follow a Poisson process. We fur-
ther assume parameters for trading noise as p = 0.2, « = 0.2
and 8 = 0.3.

We develop Fortran programs for explicit and implicit
recursive algorithms for the tick size of $1/8 and of cent,
$1/100. The programs compute, at each trading time ¢;, the
joint posterior of (u, o, p, X), their marginal posteriors, their
Bayes estimates and their standard errors, respectively. All
computer programs are validated according to the procedure
used in Section 5.3.2 of [33] and are able to produce those
similar consistent results.

The simulation study presented here is to compare the
computational efficiency of the explicit and implicit recur-
sive algorithms.

In Table 1, we present the time-step controller, LL, (in
second) and the time (in second) to complete the running of
the explicit and implicit recursive algorithms for two cases.
One case has 100 data, but the other 1,000. We can see the
run times for 1,000 data is about 10 times of that for 100
data. For the explicit one, when volatility increases from
10% to 30%, in order to keep the probabilities positive, we
have to shrink LL from .05 to 0.005 second. Namely, for one
second propagation, we have to increase from 20 runs of (21)
to 200 runs. This implies that the time to run 30% volatility
is about 10 times to run 10% volatility using the explicit
algorithm. However, for the implicit algorithm, we can keep
LL = 1 second for all volatility without any nonnegativity
issue and their run times are about the same. The speed
gain of the implicit algorithm against the explicit algorithm
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Table 1. Time Comparison of the Explicit and Implicit Recursive Algorithms

NDATA = 100 NDATA = 1,000
Explicit Implicit Explicit Implicit
Volatility LL Time | LL | Time LL Time LL | Time
10% .05s 353s 1s 199s .05s 4,503s 1s | 2,310s
20% .0ls | 1,979s | 1s 187s .0ls | 19,787s | 1s | 2,228s
30% .005s | 3,858s | 1s 191s | .005s | 41,440s | 1s | 1,939s

Table 2. Summary Statistics for AA Stock Prices, 11/07/2005 — 11/10/2005

# trades
28900

Min
25.33

Max

AA stock 26.75

Median
26.12

Std
0.3393

Kurtosis
2.1652

Skewness
—0.1387

Mean
26.086

Table 3. Final Marginal Posterior of i, o, and p for AA Stock

I p(1) o
“4.0e-7  0.0070 | 7.8e-5
-2.0e-7  0.0405 | 7.9e-5

0.0  0.1349 | 8.0e-5
2.0e-7  0.2589 | 8.1e-5
4.0e-7  0.2877 | 8.2e-5
6.0e-7  0.1851 | 8.3¢-5
8.0e-7  0.0690 | 8.40e-5
10.0e-7  0.0149 | 8.5e-5
12.0e-7  0.0019 | 8.6e-5
14.0e-7  0.0001 | 8.7e-5

p(o) p p(p)
1.1e6 | 0.1100 1.2¢-8
0.0002 | 0.1125  7.2e-6
0.0095 | 0.1150  0.0009
0.1158 | 0.1175  0.0289
0.3881 | 0.1200 0.2252
0.3716 | 0.1225  0.4555
0.1053 | 0.1250 0.2493
0.0091 | 0.1275 0.0382
0.0002 | 0.1300 0.0017
2.2¢-6 | 0.1325 2.2¢-5

E(p) =3.395¢ — 7 and SE(u) = 2.693e — 7, or annually, 200.20% with SE 158.80%;
E(c) =8.247¢ — 5 and SE(0) = 8.996e — 7, or annually, 20.03% with SE 0.22%;
E(p) = 0.1226 and SE(p) = 0.0022

is clear, and can be over 20 times when the volatility is as
high as 30%, which is not uncommon in stock market.

4.5 A real data application

We use the implicit recursive algorithm to examine tick
transaction data for the AA stock for the period of Novem-
ber 7-10, 2005. The data was from the TAQ database is-
sued by NYSE. Table 2 reports summary statistics for the
complete set of 28,900 trades in our data. Based on the
relative frequencies for observed tick values and recorded
trades, the estimated clustering parameters are a = .0113
and 8 = 0.0353.

Even though the tick size is $1/100, the algorithm is fast
enough to provide real-time estimates. The final posteriors
of u, o, and p are presented in Table 3. All the final marginal
posteriors are unimodal and bell-shaped. The Bayes esti-
mates and their standard errors are given below the table.
Because the AA stock price began at $ 25.49 on November 7,
2005 and ended at $26.31 at the end of November 10, 2005,
the Bayes estimates of u is large (200.20%). But we also
note that the standard error of p is also large (158.80%),
which implies that the expected return is not statistically
different from zero. The standard error of p is much larger
than those of ¢ and p (comparing to the Bayes estimates)
and this makes sense because p is a trend parameter, and its
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estimation accuracy depends on the length of time covered
by the data (4 days); but the accuracy of o and p estimates
may increase as the frequency of sampling increases.

5. CONCLUSIONS

For a general nonlinear filtering framework for UHF data
that uses MPP observations with confounding observable
factors, we develop implicit recursive algorithms for the
Bayes estimation via filtering equation. The implicit recur-
sive algorithms mitigates the curse of time-step shrinkage
in explicit recursive algorithms. This is demonstrated in a
partially-observed GBM model, where the nonnegativity of
the implicit recursive algorithm is proven. The algorithm is
applied to a real stock transactions price data set to produce
real-time Bayes estimates.

The consistent implicit parallel recursive algorithms pro-
posed here can possibly harness the newly available green
low-cost GPU supercomputing power, and be used for more
complicated and important benchmark models of Stochastic
Volatility (SV) models so as to produce real-time stochas-
tic volatility estimates. This is under investigation and [6]
is one work in this direction. The real time Bayes estima-
tion of another important class of models, exponential Lévy
models, can be studied also.



APPENDIX A. RELATED RESULTS AND
THE PROOF OF
NONNEGATIVITY

Before we prove the nonnegativity result in Proposi-
tion 4.1, we present two related concepts and three propo-
sitions, whose proofs can be found in [32]. Then, we prove
one theorem, implying Proposition 4.1.

Definition A.1. M-matrices are real nonsingular matrices
C such that ¢;; < 0 for all i # j and C~! > 0 (each entry
of C~1 is nonnegative).

Proposition A.1. Let C be a real square matriz. Then the
eigenvalues of C are the same as the eigenvalues of CT .

Proposition A.2. (Gerschgorin) Let C be an n X n real
matriz, and let
T, = Z?:17j¢i|cij|’ 1 S ) S n.
Then, all the eigenvalues of A of C' lie in the union of the n
Gerschgorin disks
|Z—Cii‘§’l“i, 1§2§n
Proposition A.3. All matrices with nonpositive off-

diagonal entries whose spectrums are in the right-hand half-
plane are M-matrices.

Theorem A.l1. The matriz B is an M-matriz, and hence
B~t>o0.

Proof. Note that regardless the size of At, the off-diagonal
entries of B are nonpositive. Furthermore, the set of the
union of all the Gerschgorin discs of BT are in the right-
hand halfplane, in fact, in the set {z = x + iy : @ > 1}.
So by Propositions A.1, A.2, and A.3, we see that B is an
M-matrix, and hence B~! > 0. O

Remark A.1. Since B~ > 0 and p(6;,i) > 0, p(6;,i + 1)
= B7'p(0;,i) implies p(f;,i + 1) > 0, which is exactly
Proposition 4.1.
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