
Statistics and Its Interface Volume 6 (2013) 477–485

Statistical methods for large portfolio risk
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Portfolio allocation is one of the most important problems
in financial risk management. It involves dividing an invest-
ment portfolio among different assets based on the volatili-
ties of the asset returns. In the recent decades, it gains popu-
larity to estimate volatilities of asset returns based on high-
frequency data in financial economics. In this article, we fo-
cus on the portfolio allocation problem using high-frequency
financial data. The paper starts with a review on portfo-
lio allocation and high-frequency financial time series. Then
we introduce a new methodology to carry out efficient as-
set allocations using regularization on estimated integrated
volatility via intra-day high-frequency data. We illustrate
the methodology by comparing the results of both low-
frequency and high-frequency price data on stocks traded
in the New York Stock Exchange in 2011. The numerical re-
sults show that portfolios constructed using high-frequency
approach generally perform well by pooling together the
strengths of regularization and estimation from a risk man-
agement perspective.

1. INTRODUCTION

In financial risk management, the question of how to al-
locate assets in a large portfolio is of utmost interest to
most investors. It is necessary to understand the returns to
expect from the portfolio, in addition to the volatility the
portfolio can experience about that expectation. The ques-
tion was first explored in a seminal paper Markowitz [18],
which was the original milestone for modern portfolio theory
on the mean-variance analysis by solving an unconstrained
quadratic optimization problem. This approach has had a
profound impact on financial economics. But this model,
while appealing in its simplicity, fails to capture some im-
portant characteristics of the capital markets. In particular,
it assumes that asset expected returns, variances, and co-
variances remain constant and known. Empirically, this as-
sumption runs counter to the evidence of time-varying ex-
pectations, variances, and covariances. For example, asset
volatilities and correlations both increase during periods of
market stress, and global asset correlations have increased
in the recent decades as global capital markets have become
increasingly integrated.
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The drawback of requiring constant known parameters

for this model has led to great interest in novel methods of

modeling these parameters and analysis of financial time se-

ries. More recently, motivated by wide availability and the

extra amount of information contained in the high-frequency

asset price data, researchers are able to develop more ac-

curate estimators for the volatility matrix. The volatility

matrix of daily asset returns is a key input in portfolio allo-

cation, option pricing and risk management. However, the

main challenge is that when the number of assets is large,

the volatility matrix cannot be estimated accurately. To ad-

dress this problem, several innovative approaches for volatil-

ity matrix estimation were proposed in the past decade. Es-

timation methods for the univariate case include realized

volatility (RV)(Andersen et al. [1]), bi-power realized varia-

tion (BPRV)(Barndorff-Nielsen and Shephard [3]), two-time

scale realized volatility (TSRV)(Zhang et al. [24]), wavelet

realized volatility (WRV)(Fan and Wang [9]), kernel realized

volatility (KRV)(Barndorff-Nielsen et al. [2]), and Fourier

realized volatility (FRV)(Mancino and Sanfelici [17]). For

multiple assets, we face a non-synchronization issue, which is

referred to as high-frequency price data that are not aligned

properly for different assets, hence are recorded at various

mismatched time points. For a pair of assets, Hayashi and

Yoshida [13] and Zhang et al. [24] have developed methods

based on overlap intervals and previous ticks to estimate

co-integrated volatility of the two assets. The development

of these new estimators has, in turn, led to investigations

into their practical benefits in investment decisions. Fleming

et al. [11] use a volatility timing approach to test the ben-

efit of high-frequency data on portfolio allocation decisions.

Specifically, they yield a 50- to 200- basis point benefit rela-

tive to a covariance matrix estimation using a special case of

the BEKK multivariate GARCH model (Engle and Kroner

[5]). Liu [16] finds that the benefits of high-frequency data in

portfolio allocation exist only when the investor rebalances

daily or the volatility estimation window is fewer than six

months.

From a financial risk management perspective, Jagan-

nathan and Ma [14] analyzed the impact of weight con-

straints in a large portfolio allocation. They show that solv-

ing the global minimum variance portfolio problem with

some constraints on weights is equivalent to use a shrink-
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age estimate of the covariance matrix. Fan et al. [7] studied
portfolio allocation with gross-exposure constraint combin-
ing vast volatility matrix estimation using different sampling
schemes. However, there exists an interesting question as
of when and how an investor will benefit from using high-
frequency financial data in his/her portfolio allocation deci-
sions. This paper aims to perform a comparative study on
the performance of portfolios constructed using both low-
frequency and high-frequency financial data. Therefore, we
hope to shed some light on the benefits of high-frequency
data in risk management.

Pertinent to the high dimensionality issues, penalized
likelihood methods such as LASSO have been extensively
studied for high dimensional variable selection and a con-
siderable amount of research was dedicated recently to de-
velopment of methods of risk management based on regular-
ization(See e.g., Fan and Lv [8], Tibshirani [20]). Although
the LASSO estimator can discover the correct sparse repre-
sentation of the model (Donoho and Huo [4]), it is in general
a biased estimator especially when the true coefficients are
relatively large. Several remedies, including the smoothly
clipped absolute deviation (SCAD) (Fan and Li [6]) and the
adaptive LASSO (ALASSO) (Zou [25]) have been proposed
to discover the sparsity of the true models, while produc-
ing consistent estimates for nonzero regression coefficients.
Yuan and Lin [22] and Levina et al. [15] proposed estimators
of the precision matrix via graphical models. Guo et al. [12]
extended this methodology to multiple graphical models. In
this paper, we adopt the idea of LASSO/LARS to come up
with a regularized version of the estimated ARVM estima-
tor (Wang and Zou [21]) for the daily volatility matrix. Zou
and Wu [26] developed a similar approach using a different
regularization method.

The data that motivated this research comprise the
transaction-by-transaction stock prices from the 30 DJIA
composite constituents traded in the New York Stock Ex-
change(NYSE). The data set is huge with ultra high-
frequency observations since these stocks are highly liquid
with a vast trading volume. These high-frequency financial
data also possess unique features such as price discreteness,
unequally spaced time intervals, and nonsynchronized trad-
ing (see e.g., Wang and Zou [21] for some illustrations of
these issues). The normal trading hours of the NYSE are
from 09:30 until 16:00. Thus, for simplicity, we discarded
any transactions beyond these hours from our analysis.

The rest of this paper is structured as follows. Section 2
elaborates the framework of our methodology of portfolio al-
location for high-frequency data. Section 3 presents numer-
ical evidence on the performance comparison of our method
under both low- and high-frequency scenarios. Section 4 con-
cludes this paper.

2. METHODS

Suppose that a portfolio consists of p assets and their
log price process Xt = (X1t, . . . , Xpt)

T obeys an Itô process
governed by

(1) dXt = μt dt+ σt dWt, t ∈ [0, L],

where Wt is a p-dimensional standard Brownian motion, μt

is a drift taking values in Rp, and σt is a diffusion variance of
p× p matrix. Both μt and σt are assumed to be continuous
in t.

For the portfolio with allocation vector w (i.e., percent-
age of each asset in the portfolio) and a holding period
T , the variance (risk) of the portfolio return is given by
R(w,Σ) = wTΣw. However, it is well known that the esti-
mation error in the mean vector μt could severely affect the
portfolio weights and produce suboptimal portfolios. This
motivates us to adopt another popular portfolio strategy:
the global minimum variance portfolio, which is the min-
imum risk portfolio with weights that sum to one. These
weights are usually estimated proportional to the inverse
covariance matrix, i.e., w ∝ Σ−1. Following Jagannathan
and Ma [14] and [10], we consider the following risk opti-
mization with two different constraints:

(2) minwTΣw, s.t. ‖w‖1 ≤ c and wT1 = 1

where c is the gross exposure parameter which specifies the
total exposure allowed in the portfolio, and ‖ · ‖1 is the
standard vector l1 norm. The summation to one constraint
ensures weight percentages sum to 100%, inducing a full
investment. An additional common requirement is no short
selling (e.g., 401k, IRAs, and mutual funds), which adds
the nonnegative optimization constraint. This corresponds
to the case c = 1 as in Jagannathan and Ma [14]. The second
optimization case is the global minimum risk portfolio where
the gross exposure constraint c = ∞. Note that we only
consider these two cases for simplification of the problem.
Other cases with varying c can be easily generalized in our
methodology.

2.1 Average realized volatility matrix
for high-frequency financial data

The average realized volatility matrix (ARVM) estimator
computed from the high-frequency data on the prices of the
p assets is used to estimate the integrated volatility over a
given period of time. Let’s take a day as a unit time. The
integrated volatility for the �-th day is a matrix defined to
be

(3) Σx(�) =

∫ �

�−1

σsσ
†
sds, � = 1, . . . , L.

We first consider estimation of Σx(1) on day one. For i =
1, . . . , p, suppose that the high-frequency data for the i-th
asset on day one are observed at times tij , j = 1, . . . , ni, and
we denote by Yi(tij) the observed log price of the i-th asset
at time tij . Because transactions may be made at distinct
times for different assets, the high-frequency price data for p-
assets are often recorded at various mismatched time points.
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This is referred to as a non-synchronized problem in high-
frequency financial data.

Another complication in high-frequency financial data is
that due to microstructure noise, the observed log price
Yi(tij) of the i-th asset is a noisy version of its true log
price Xi(tij) and is usually assumed to obey an additive
noise model

(4) Yi(tij) = Xi(tij) + εi(tij),

where εi(tij) are assumed to be i.i.d. noise with mean zero
and finite fourth moments and independent of Xi(t).

We consider the average realized volatility matrix
(ARVM) estimator based on previous-tick times. Let n =
n1 + · · · + np and assume that ni/n are bounded away
from zero. Take a predetermined sampling frequency τk, k =
1, . . . ,m. One such example is to select τi be a regular grid.
For each k = 1, . . . ,m, we choose the corresponding obser-
vation time for the i-th asset by

τik = max{tij ≤ τk, j = 1, . . . , ni}, i = 1, . . . , p.

The realized co-volatility is defined to be a p × p matrix
Σ̂y(1) whose (i1, i2) element is given by

Σ̂y(1)[i1, i2]

=

m∑
k=1

[
Yi1(τi1,k)− Yi1(τi1,k−1)

] [
Yi2(τi2,k)− Yi2(τi2,k−1)

]
.

We estimate Σx(1) by Σ̂y(1). Zhang [23] proved that with
i.i.d. microstructure noise and m ∼ n2/3,

Σ̂y(1)− Σx(1) = OP

(
n−1/4

)
.

We apply the method in Wang and Zou [21] to the price
observations on the �-th day and obtain the average real-
ized volatility matrix estimator Σ̃y(�) of integrated volatil-
ity Σx(�) on the �-th day. For the purpose of estimation of
daily volatility, we have

(5) Σ̃y(�)− Σx(�) = OP

(
n−η

)
, � = 1, . . . , L,

where rates of convergence can be as slow as (optimal) n
exponent η is equal to 1/4 for i.i.d. noise and 1/2 for no noise
in the price data. However, since there are other sources of
randomness in the data, such as price discreteness and non-
synchronization errors, Wang and Zou [21] showed that the
rate η is on the order of 1/6. Subsequently, [19] established
the optimal minimax risk for estimating a large volatility
matrix under the subgaussian tail assumption.

3. NUMERICAL STUDIES

3.1 Portfolio optimization with low
frequency data

First, we applied our methodology to the daily closing
prices of Dow 30 stocks in the year 2011. The data are pub-

licly available in many online search engines such as Yahoo
Finance.

Since the number of stocks we considered here is 30, we
calculated the minimal variance portfolio consisting from 2
stocks to 30 stocks. The main challenge here is the possi-
ble portfolio combination increases exponentially when the
number of stocks increases. If considering all the possibili-
ties, the total case would be on the order of 230. This would
be prohibitive to do in real applications. Hence we resort to
a sampling method to get around this issue. For a fixed num-
ber of stocks, we randomly generate 10,000 samples from the
30 stocks and then performed the calculation of yield and
variance based on each subsample. We recorded the global
minimal variance portfolio and the corresponding sharp ra-
tio, which is defined as

(6) S =
E[R−Rf ]

σ
=

E[R−Rf ]√
var[Ra −Rb]

.

with Rf being the risk free rate. It is a measure of the excess
return (or risk premium) per unit of deviation in an invest-
ment asset, typically referred to as risk (and is a deviation
risk measure).

In most cases, the maximum sharp ratio first increases
when we include more stock but decreases when the number
of stock exceeds a certain threshold (Figure 1a). For each
day, the cusp point is different, ranging from two to seven
visually. If we take the transaction fees into consideration, it
may even support the preference of choosing those portfolios
consisting of a small number of stocks. The maximum sharp
ratio across trading days can vary a lot (Figure 1b) and its
volatility is highly correlated with the market performance
(Figure 1c).

To check how the number of sampling could affect the
possibility of capturing the maximum sharp ratio, we run
another experiment with 100,000 sampling and the com-
parison is shown in Figure 2. With the increased number
of sampling, the distribution of maximum sharp ratio does
shift right a little. Overall the difference is not significant.
Considering the big increase of computational cost when in-
creasing the sampling from 10,000 to 100,000, we kept the
sampling to 10,000 in the following experiments.

3.2 Portfolio optimization
with high-frequency data

In this section, we focus on the portfolio allocation prob-
lem using high-frequency financial data. High-frequency fi-
nancial data usually refer to intra-day observations. The
economic value of analyzing high-frequency financial data
is now obvious, both in the academic and financial world. It
is the basis of intra-day and daily risk monitoring and fore-
casting, an input to the portfolio allocation process, and also
for the increasingly popular high-frequency trading among
investment banks and hedge funds. The high-frequency trad-
ing data for this study are downloaded from the Whar-
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(a) Relationship between maximum sharp ratio and number of stocks

(b) Dynamics of maximum sharp ratio across the whole year

(c) The high volatility region in Figure 1b corresponding to the high

volatility of the whole market

Figure 1.

Figure 2. The distribution of maximum sharp ratio if
sampling 10,000 compared with that with 100,000 sampling.

ton Research Data Service (WRDS) Database, which con-
tains transaction-by-transaction stock prices from the 30
DJIA composite constituents traded in New York Stock Ex-
change(NYSE) in 2011. For this high-frequency data set, we
estimated the volatility matrix between the Dow 30 stocks
for each day by adopting the methodology in Section 2.1.

We found that the high-frequency data possess some
unique features such as price discreteness, unequally spaced
time intervals, non-synchronized trading, and leverage ef-
fect. To demonstrate the features of the realized volatility,
we select the most traded stock, Bank of America (BAC),
as an example.

The synchronous order of the price is dealt in this way:
for every 5 min start 9:30 to 16:00, the last price at each 5-
min interval is recorded as the price for the 5-min interval.
Let yt represent the 5-min interval prices and the return is
expressed as log(yt) − log(yt−1). Then the daily integrated
volatility is defined as

IVi =

∫ Ti

Ti−1

σ2
t dt, where Ti − Ti−1 = 1 day

and the realized volatility estimate for a univariate case is

RVi =

N∑
j=1

r2t−j,Δ , where Δ = 1day/N

where N = 78 for a five-minute return interval. For illus-
trative purposes, we found that BAC has a mean price of
$ 9.9 while the lowest daily trading volume is 6.3× 106 and
the highest trading volume is 8.6×108. The realized volatil-
ities (RV) are plotted in Figure 3 and its ACF and PACF
plots are shown in Figure 4. We can see that there are some
highly volatile days between the period of Day 150 to Day
200, which corresponds to the high volatility period dur-
ing the first half of August in 2011 as shown in Figure 1c.
The high-frequency data also exhibit some leverage effect as
mentioned in the following section.
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Figure 3. Daily Volatility of BAC.

Figure 4. The ACF Plot for the integrated volatility of BAC.

Leverage effect

The leverage effect refers to the negative correlation be-
tween the daily returns and changes of the integrated daily
volatility. Figure 5 shows that the daily returns of BAC and
the changes of daily volatility are closely related to each
other. In particular, the plot illustrates that the return and

Figure 5. Leverage Effect of BAC year 2011.

Figure 6. CCF for returns and changes of volatility of BAC.

change of volatility have a negative correlation. For exam-
ple, at the highest peak where the date is around 150, there
is a large return drop while the volatilities increase dramat-
ically. Following the leverage effect plot, we also computed
the cross correlation functions (CCF) between the returns
and changes of volatilities, as shown in the Figure 6. A neg-
ative lag trend is also implied and confirming the existence
of the leverage effect in the high-frequency data setting.
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(a) Relationship between maximum sharp ratio and number of stocks

(b) Dynamics of maximum sharp ratio across the whole year

Figure 7.

Then we performed a similar permutation approach for
portfolio selection as before. The relationship between the
maximum sharp ratio and the number of stocks shown in
the low frequency data still holds (Figure 7a), although the
maximum sharp ratio patterns vary depending on the num-
ber of stocks in the portfolio.

The maximum sharp ratio across trading days (Figure 7b)
also varies a lot since the co-volatilities between stocks are
more dynamic. Figure 7b also shows volatility clustering,
leverage effects and the non-stationary process of the stock
price movement. The portfolio based on high-frequency data
can achieve a much higher sharp ratio during the high
volatility range of the whole market when compared with
Figure 1b. This relatively strong performance is universal
for the global minimum variance portfolio consisting from 2
stocks to 30 stocks (Figure 7a). From the comparison of the
distribution of those larger than zero maximum sharp ratios
between high-frequency data and low-frequency data (Fig-
ure 8), we could see that sharp ratios from high frequency
data have a more disperse range and right shift towards
higher values than those from low frequency data. It at-
tributes to the fact that high frequency data could capture
the true co-volatilities between stocks.

We also checked the composite of the maximum sharp
ratio portfolio. Figure 9 shows an example of the maximum

Figure 8. The distribution of maximal sharp ratios from high
and low frequency data.

Figure 9. The composite of the maximum sharp ratio
portfolio of five stocks: from left to right is the trading day at
2011 and from top to bottom lists the Dow30 stocks. The
value of the heat map is scaled value based on the weight of

each stock in the portfolio.

sharp ratio portfolio of five stocks. The composite changes
across trading days, indicating rebalance is needed to keep
maximum sharp ratio. Nevertheless, some interesting pat-
terns conform to our existing knowledge. For example for
the technical stocks, GE, CSCO, INTC, and T closely clus-
tered together. Also PG and JNJ, BA and UTX form a
cluster implying their similarity in the underlying sector.

3.3 LASSO approximation for risk
minimization problem

As we pointed out before, when the number of assets
are large, the permutation approach applied in the previous
section is not feasible as the complexity of the optimization
problem grows exponentially. Recently, Fan et al. [10] pro-
posed that the risk minimization problem (2) for portfolio
selection can be approximately transformed into a regression
model with certain constraints.
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Figure 10. Lasso Fitting Results for Dow30 Industry Stocks.

var
(
wTR

)
= min

b
E

(
wTR− b

)2(7)

= min
b

E(Y − w1X1 − · · · − wp−1Xp−1 − b)2(8)

≈ min
b,‖w‖1≤d

E
(
Y −wTX − b

)2
(9)

where R is the n ∗ p return matrix, Y = Rp, Xj = Rp −
Rj , j = 1, . . . , p− 1, and w is the weight vector.

We adopt the methodology to the Dow 30 portfolio allo-
cation problem. The solution is given in Figure 10 with l1
norm constraint d increasing from 1.5 to 4.0. As the con-
straint becomes larger, more stocks are selected into the
model and when it comes to 2.2, almost all stocks are cov-
ered. As the constraint increases and more stocks are allowed
to enter the portfolio, the risk decreases and eventually falls
close to 0. Note that the LASSO optimized portfolio covari-
ance matrix can be calculated with the following product:

cov
(
wTR

)
= diag(w)TΣdiag(w)

where R is the n ∗ p return matrix and w is the weight
vector.

The LASSO solution path plot in Figure 11 gives informa-
tion about the order of the variable which enters the solution

Figure 11. Lasso Solution Path.

and its values. The vertical lines convey the order of enter-
ing, and the right panel marks the index of the variables.The
x-axis marks the fraction of the sum of the entered weights
to the total weight. The left y-axis is the value of the coef-
ficients. Here we applied LASSO risk minimization method
to the Dow 30 data with BAC returns as the response. For
example, the pink curve at the vertical line marked as 1 rep-
resents the index 23, which is PFE, enters the solution at
the first place. Then following stock with index 16, which is
JPM, enters the solution path at the second place.

4. DISCUSSION AND CONCLUSIONS

The portfolio optimization under the Markowitz’s frame-
work has been applied widely over the years among practi-
tioners. While appealing in its simplicity, Markowitz’s port-
folio fails to capture some important characteristics of the
capital markets, especially concerning wide availability of
high-frequency financial data nowadays. This paper pro-
posed an innovative methodology to perform asset alloca-
tion using high-frequency data. The empirical comparison
between portfolios using low-frequency and high-frequency
illustrated the efficiency of this method. The penalization
based portfolio selection strategy that we proposed offers
several advantages. It can significantly reduce the accumu-
lation of small component-wise estimation errors which in
turn leads to a larger overall portfolio risk. This helps answer
questions about performance and risk as part of a broader
investment decision-making process. Moreover, our frame-
work can easily accommodate different positions such as
short sale constraints. We illustrate the methodology with
the high-frequency price data on stocks traded in New York
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Table 1. Dow 30 Company Index

Company Index

1 AA
2 AXP
3 BA
4 BAC
5 CAT
6 CSCO
7 CVX
8 DD
9 DIS

10 GE
11 HD
12 HPQ
13 IBM
14 INTC
15 JNJ
16 JPM
17 MDLZ
18 KO
19 MCD
20 MMM
21 MRK
22 MSFT
23 PFE
24 PG
25 T
26 TRV
27 UTX
28 VZ
29 WMT
30 XOM

Stock Exchange in 2011. The numerical results show that
our approach performs well in portfolio allocation while
pooling together the strengths of regularization and estima-
tion from a high-frequency finance perspective. The benefits
of applying the regularization approach is that we avoided
looking at all possible combinations as in the permutation
approach, which is computationally more attractive in prac-
tice. Furthermore, the whole solution path of the optimal
portfolio gives insights on the order of dependence of dif-
ferent assets on the whole portfolio with respect to return
and risk. This information may be valuable to practitioners
when evaluating different hedging strategies. Further work
could be done involving out-of-sample comparisons of the
performances of the different allocations derived from dif-
ferent statistical methods of asset allocation strategies.
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