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A state space model approach to integrated
covariance matrix estimation with high frequency

data*

CHENG Liu AND CHENG YONG TanGf

We consider a state space model approach for
high frequency financial data analysis. An expectation-
maximization (EM) algorithm is developed for estimating
the integrated covariance matrix of the assets. The state
space model with the EM algorithm can handle noisy finan-
cial data with correlated microstructure noises. Difficulty
due to asynchronous and irregularly spaced trading data of
multiple assets can be naturally overcome by considering
the problem in a scenario with missing data. Since the state
space model approach requires no data synchronization, no
record in the financial data is deleted so that it efficiently
incorporates information from all observations. Empirical
data analysis supports the general specification of the state
space model, and simulations confirm the efficiency gain and
the benefit of the state space model approach.
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data, Integrated covariance matrix, Kalman Filter, Mi-
crostructure mnoise, Missing data, Quasi-maximum likeli-
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1. INTRODUCTION

Since the seminal work of Engle (1982), investigating
variations and covariations among multivariate time series
of assets prices has been a central focus of both quantita-
tive and empirical financial studies; see Andersen, Boller-
slev, Diebold, and Lays (2003), Andersen, Bollerslev, and
Diebold (2008), Barndorff-Nielsen and Shephard (2007) and
reference therein for comprehensive overviews. In the past
two decades, high frequency financial trading data have be-
come increasingly available, and there are surging research
interests covering both volatility estimation for univariate
return series, and covariations estimation among assets;
see, for example, Barndorfl-Nielsen and Shephard (2004),

* We thank Professor Yazhen Wang for insightful suggestions that
have improved the presentation of the paper. The main work of this
paper was done when Liu was a graduate student at the Department
of Statistics and Applied Probability, National University of Singa-
pore. Research support from the National University of Singapore is
gratefully acknowledged. Tang acknowledges research support from the
Business School, University of Colorado Denver.

fCorresponding author.

Ait-Sahalia, Mykland, and Zhang (2005), Zhang, Mykland,
and Ait-Sahalia (2005), Hansen and Lunde (2006), Fan
and Wang (2007), Barndorff-Nielsen, Hansen, Lunde, and
Shepard (2008,2011), Ait-Sahalia, Fan, and Xiu (2010), and
Christensen, Kinnebrock, and Podolskij (2010).

The abundance of high frequency financial data has
blessed the investigations of volatilities and covariations for
the underlying price processes over a short period of time
to more precisely reflect the current market dynamics. Thus
it can be viewed as more advantageous compared with tra-
ditional volatility and covariations modeling and forecast-
ing approaches that require observations over a longer pe-
riod of time. On the other hand, however, features of high
frequency financial data also pose new challenges and dif-
ficulties. First of all, it is common that observed financial
trading data are contaminated by the so-called market mi-
crostructure noises. The impact of data contamination on
the volatilities and covariations estimations for the unob-
servable underlying price processes is very substantial, es-
pecially in studies using high frequency data for summariz-
ing market dynamics over a short period of time; see, for
example, Hansen and Lunde (2006) for an overview. Addi-
tional difficulty arises from practical features of the finan-
cial trading data including the so-called asynchronous and
irregularly time spaced observations; see, for example, dis-
cussions in Barndorff-Nielsen, Hansen, Lunde, and Shepard
(2011), and Ait-Sahalia, Fan, and Xiu (2010). The last but
not the least challenge is due to the large number of assets
of interest so that the problem of volatility and covariations
estimation belongs to the well known family of difficult prob-
lems of estimating a huge covariance matrix; see Wang and
Zhou (2011), Tao, Wang, Yao and Zou (2011) among others.

Estimating univariate realized volatility from high fre-
quency trading data is influenced by the main difficulty
due to contaminated data; see Hansen and Lunde (2006)
and Ait-Sahalia, Mykland, and Zhang (2005) among oth-
ers. Various methods have been developed to deal with
contaminated data and are demonstrated effective for es-
timating the integrated volatility. These include the real-
ized kernel approach (Barndorff-Nielsen, Hansen, Lunde,
and Shepard, 2008), the two and multiple time scale ap-
proach (Zhang, Mykland, and Ait-Sahalia, 2005; Zhang,
2006; Ait-Sahalia and Mykland, 2009), pre-averaging ap-
proach (Jacod, Li, Mykland, Podolskij, and Vetter, 2009),
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and the quasi-maximum likelihood approach (Ait-Sahalia,
Mykland, and Zhang, 2005; Xiu, 2010).

Dealing with multivariate assets requires extra effort
when estimating covariations because the observations of
trading prices are generally asynchronous among the as-
sets. A class of methods in this scenario is pre-processing
the data set by applying a variety of synchronizing schemes
such as the previous tick approach (Zhang, 2011), the
fresh time scheme (Barndorfl-Nielsen, Hansen, Lunde, and
Shepard, 2011) and the MINSPAN (Harris, McInish, Shoe-
smith, and Wood, 1995), and the Generalized Synchro-
nization method (Alt-Sahalia, Fan, and Xiu, 2010). Subse-
quently, methods developed for synchronized high frequency
data can be applied; see, for example, the realized ker-
nel approach (Barndorff-Nielsen, Hansen, Lunde, and Shep-
ard, 2011), the pre-averaging approach (Christensen, Kin-
nebrock, and Podolskij, 2010), the two time scale method
(Zhang, 2011), the threshold average realized volatility ma-
trix method (Wang and Zou, 2010), and the quasi-maximum
likelihood approach (Ait-Sahalia, Fan, and Xiu, 2010; Liu
and Tang, 2012). Tt is clear that those data synchronizing
methods inevitably delete a portion of the observations, and
thus efficiency loss may incur in the estimators. Another
class of methods dealing with asynchronous data is by in-
serting pseudo-data into the original data set by some inter-
polations before applying the aforementioned methods; see,
for example, Hoshikawa, Kanatani, Nagai and Nishiyama
(2008), Peluso, Corsi, and Mira, 2012, and Malliavin and
Mancino (2002, 2009). Inserting data may induce bias in
the estimators because there is no guarantee that a data in-
terpolation method can accurately reflect the properties of
the unknown data model.

In this paper, we consider a state space model approach
for studying multivariate contaminated high frequency
financial data that can be observed asynchronously over
irregularly spaced times. By considering asynchronous trad-
ing data in the scenario of missing data with incomplete
observations, an expectation maximization (EM) algorithm
(Dempster, Laird, and Rubin, 1977) is developed to jointly
estimate the volatilities and covariations of the underlying
asset prices in a covariance matrix. Our study of high
frequency financial data analysis using a state space model
adapts and generalizes the multivariate quasi-maximum
likelihood approach of Liu and Tang (2012) for more
conveniently dealing with general asynchronous and irreg-
ularly spaced data. Instead of using data synchronization
methods for pre-processing asynchronous data, the state
space model approach is able to handle the original data
directly. The state space model approach shares the same
data model with the one in the quasi-maximum likelihood
approach, and they are equivalent if all data are observed
synchronously. We show the state space model approach is
convenient for practical implementations, and is capable of
efficiently incorporating data information without manip-
ulating the original data by deleting or inserting records.
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Our simulation studies demonstrate the efficiency gain by
using the proposed approach.

We note two independent studies, Shepard and Xiu
(2012) and Crosi, Peluso, and Audrino (2012), on high fre-
quency financial data analysis using the EM algorithm. In
both Shepard and Xiu (2012) and Crosi Peluso, and Audrino
(2012), the microstructure noises are considered as uncorre-
lated between different assets. As detailed in Section 2, we
develop a more general EM algorithm for the state space
model approach that allows the correlations among the mi-
crostructure noises to take a general form. As shown in our
simulation studies, there is a substantial impact on the esti-
mation of the integrated covariance matrix if the structure
covariance matrix of the microstructure noise is misspeci-
fied. Our empirical financial data analysis also reveals that
it is more reasonable to consider the covariance matrix of the
microstructure noise to be a general positive definite matrix.

The rest of this paper is structured as follows. We describe
the proposed state space model approach in Section 2. Sim-
ulations and an example of high frequency financial data
analysis are presented in Section 3, and Section 4 concludes
the paper.

2. THE STATE SPACE MODEL APPROACH

Let us introduce some notations first. We denote by
Y: = (Y14, Yot ..., Yy) the observed log-prices of d assets
at time ¢ over a fixed interval [0,7]. Without loss of gener-
ality, we take T' = 1 for simplicity hereinafter. Suppose that
each Y (i = 1,...,d) contains the true log-price X;; and mi-
crostructure noise U;; with the additive form Y;; = X;;: +Uj;.

The true log-price process X; = (Xiy,..., Xat) are as-
sumed to satisfy:

(1)

where the drift process p, is assumed to be locally bounded
and spot volatility process o is positive and locally bounded
Ité6 semimartingale matrix, W; = (Wyy,...,Wg)' is an
independent d dimensional Brownian motion, (pgit)r =
(w) 1<k,<d is a positive definite correlation matrix.

For high frequency financial data analysis, the impact due
to the mean p, is asymptotically negligible when sampling
interval lengths shrink to zero if u, is locally bounded (Myk-
land and Zhang, 2010). Thus we consider for simplicity that
p, = 0. Our target is to estimate the integrated covariance
matrix (ICM) of the log-price X;:

1 1
EI = / O'ta'idt = / Etdt
0 0

The d-dimensional noises U; = (Uyy,...,Uq)’ contami-
nated in different observations of Y, are typically assumed
to be independent and identically distributed with mean 0,
positive definite covariance matrix Ay and finite fourth mo-
ment; see, for example, Ait-Sahalia, Fan, and Xiu (2010) and

dXt = [J/tdt + O'td\A/-t7



Liu and Tang (2012). In addition, U; and X; are assumed
to be mutually independent to ensure the identifiability of
the ICM X1 and Ag. For discussions about the impact of
serially-correlated noises, we refer to Ait-Sahalia and Myk-
land (2009) and Ait-Sahalia, Mykland, and Zhang (2011).

In our study, the observations of the assets price pro-
cesses are allowed to be asynchronous and irregularly spaced
over [0,1]. Therefore, we denote the collection of data by
{Yie,;i = 1,...,d;5 = 1,...,n;} where Yy, denotes the
observation for the ith asset at time ¢;; for j = 1,...,n;
with ¢;; and n,; being asset specific.

When t;; are synchronous for all assets and equally
spaced with interval A over [0, 1] for all assets, Liu and Tang
(2012) analyze the properties of a quasi maximum likelihood
approach that imposes two not necessarily correct assump-
tions that a) oy = o in (1) so that 3; = ¥ is time invariate,
and b) Uy is a normally distributed random vector and in-
dependent of X;. They show that the estimators of ¥ and
A of the quasi-maximum likelihood approach are consistent
to the ICM X1 and Ay as A — 0. Moreover, the estimator
of the quasi-maximum likelihood (QML) approach achieves
the optimal rate of convergence in the sense of Gloter and
Jacod (2001).

To extend the quasi-maximum likelihood approach by re-
laxing the requirement on synchronous data, we consider the
following state space model. We firstly write the union of all
observation time points ¢;;s (i =1,...,d;5=1,...,n;) of d
assets as

Ti,J=1,...,m,

where n is the total number of distinct time points that each
one has observations of at least one asset price, and 7;s are
those observations times such that 0 < 7 < ™ < -+ <
Tj < - <1, < 1. We follow the settings in Liu and Tang
(2012) and impose the aforementioned two not necessarily
correct assumptions a) and b). By ignoring the impact of u,
in (1) and since hypothetically the underlying process can
be observed at any time, we have

X, — X, , =0(W,, - W, )~ N(0,4,),
Y., Y, =X, -X,, ,+U, -U, |
~ N(0,SA; 4 2A),

Tj—1
where A; = 7; —7;_1. This inspires us to consider the follow-
ing state space model for the latent process X; and observed
process Y, as follows:

(2)

where Vs are independent, and normally distributed with
mean zero and covariance XA;. Here for simplicity in
notations, we suppress the time 7 by treating Y, =
(Yirys -, Yar,) as Y; = (Y15,...,Yy) ' when no confusion
arises, and the same convention applies for X, and U.,.
When applying model (2) to observed high frequency
data, we treat the components with no observation at time

Yj:Xj+Uj, Xj:Xj,1+Vj,

7; as missing, and assume that there are d; (d; > 1) ob-
. . . B("
servations at time 7; for j = 1,...,n. Let B; = (B{2>) be a

- J
permutation matrix such that Y; = B;(Y1,,Ys;,...,Yy) =

(Y§1)l,Y§2)/)’ where YV € R collects the observed asset

J
prices, and YJ(-Q) € R% % is the missing component. Hence
the role of B; is such that the first d; components in Yj are
observed. Then the state space model (2) can be written as

(3)

where Uj is the reordered d dimensional random vector with
mean zero and variance A; = B;AB/.

?j:Bij-Fﬁj, Xj :Xj71 +Vj7

If all Y; and X; are observable, it is clear that under
the assumption that the initial state Xo ~ N(p,, X.) and
ignore constant part, the log-likelihood function is given by

(4)
—2InL(8) = In| S| + (Xo — p,)' =7 (Xo — p.) + nln| S|

Y AKX~ X)X - X)
J=1

+ A+ ({B;. (Y, - B,X;)}/A~!

j=1

{B}(Y, ~B,X,)}).

where we denote by 0 the vector of parameters containing all
elements of {p,, 3., X, A}. Then by taking the derivatives
of parameters, we have the maximum likelihood estimators
are A =n~1 Y {B}(Y, ~B,X,)H{B(Y, - B,X,)}’ and
S=n! > ATHX; = X;-1)(X; — X;_1)’ respectively.

However, in practice one can only observe data y, =
{Ygl)7 . ,Y,(ll)}. To estimate the parameters, we apply
the EM algorithm (Dempster, Laird, and Rubin, 1977).
We first specify an initial value to 6 denoted by 0 =
(uﬁo),2£0)72(0),A(0)), where the ith element of uio) can
simply be specified as the first observation of ith asset,
A can be taken as the realized covariance divided by 2n
(Zhang, Mykland and Ait-Sahalia, 2005), X, and ¥ can be
initialized by the subsample based realized covariance ma-
trix or the QML estimator (Ait-Sahalia, Fan, and Xiu, 2010;
Liu and Tang, 2012). Let

X! = E(X[y) and

(5) P} = B{(X; — X})(Xnm

— XL},

be the conditional expection and covariance given the data
y={Y{", ..., YV}, and denote by P, = P when m =
7 the conditional variance.

The conditional exception of the log-likelihood func-
tion (4) given y, and o1 requires evaluating the con-
ditional expectations of (X; — X;_1)(X; — X;_1)" and
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(Y; — B;X;)(Y; — B,X;)". Specifically,

E{(X; —X;-1)(X; — X-1)yn}
=F (XjX/ X X; 1 Xj 1X/- + Xj,lX;;l\yn)
= (XjX}'+Pj) — (XjXG "+ P}, )

= (XJLXJ + P ) + (X XG )+ P
Evaluating
E({B}(Y; — B;X;){Bj(Y; — B;X;)Y[y,, 0" ")

is not more involved since Yj contains two parts—the ob-
served components and missing components. By (3), we have

v B(l)X

- (
Y; - B;X; = ( Yj(z) B(Q)X
J

>~N(O7Aj).

By decomposing A; into blocks according to the compo-

nents in Yj as (2;? igi), we have Y;2)|Xj, Y;l) follows
J J

normal distribution with mean B;Z)Xj + Aglj(Auj)_l X

(Yj(l) — B§1)X7) and variance A22j — Aglj (Allj)_lAlgj.
Hence
2 2
E (Y]( ) B! >Xj\yn)
2 2 n n
= {B (Y - BPX;[yn, X; = X} ) 1X; = X} |

— 1 1 n
= Aij(Any) ! (Y - BOXM).
And by the law of total variance, we have that
Var (Yj@) — B§»2)Xj |yn)
=Var { (Y - B Xy, X; ) }

B;-Z)ijn, X])} .

+FE {Var (Y§2) —

Therefore,

; ,
X k—1 k—1)\ ! 1 D~n
Aglj : (Aglj )> (YJ( - Bg )Xj)
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!’

-1
Al2€1j1 (Agu ))

)

where Ej,_1 and Vari_; means the expectation and variance
are taken under 1)

Let M(k) = Ek—l{(?j - BJX])(?] - Bij)/|yn}- Then
the E-step of EM algorithm at kth iteration is

(7)

0 0
+ k—1 k—1 k—1 k—1
0 A§2] ) Aéu )<A§1j )) Agz; )

Q(016")

—E (—21an(0)|yn,9<’“*1))

= In| S| + tr (B {Pg + (X — p10) (X — 119)'})
+nln|2| +tI‘{E Sll —Slo—slo+800)}
+ nln|A| + tr (A—lB;.M<k>Bj) 7

where

Sii= > ATHPI+XIXY),
j=1
Soo = ZAfl(

SlO_ZA

P7_, +X?—1X;'l—1/)a
Xan 1 —Q—PJJ 1)

Then by solving the first order condition, we complete the
M-step and update the estimators of ¥ and A by

(k

s® n~ 1 (S11 + Soo — S10 — Shp)
n

=n"' Y BMHB;,

j=1

and update p, and X, by

9) a® =xr and £ =
Then the final estimator for ¥ and A are obtained by re-
peating the E-step and M-step until convergence.

We note that the conditional expectations in (5) can be
conveniently evaluated by the Kalman filtering method; see,
for example, Shumway and Stoffer (2006). Since our state
space model is constructed from a quasi-maximum likeli-
hood approach, we call it the QKF approach. For complete-
ness of the framework, we present the results for applying
the Kalman filtering in the Appendix.

We make the following remarks on the state space model

approach.

P,



Remark 1. When A is a diagonal matrix, i.e. components
in U, are uncorrelated. The E-step is simplified by observing
that

M® = B, {(?j - B,;X;)(Y; - Bij)’Iyn}
= (Y; - B;X})(Y,; - B,X}) + B,P}B]

N ( 0 0 )
k—1 ;
0 A;Qj )

o YD N
with Y; = ( A ) and B; = ( A ) This is actually the case
considered in Shepard and Xiu (2012) and Crosi, Peluso, and
Audrino (2012). A closer look at (6) reveals that when A
is not a diagonal matrix, information in the observed com-

ponents Y;l) is incorporated when taking the conditional

expectation of Y§2). This fact may provide an opportunity
for efficiency gain. In addition, if the matrix A is misspec-
ified as a diagonal matrix, it is likely a bias may incur in
the estimator ﬁ]; see our simulation studies for more de-
tail.

Remark 2. Theory of the EM algorithm (Wu, 1983) en-
sures the convergence of the estimator to the maximizer
of the so-called complete data likelihood function which is
constructed based on y,. Thus, the estimator based on the
state space model approach is consistent as long as the com-
plete data likelihood based estimator is consistent. To our
best knowledge, there is no general theory ensuring the con-
sistency of the estimators using the EM algorithm. Most
likely this is because the theoretical analysis of the estima-
tor with missing data depends on the specific mechanism
of the data missingness. Nevertheless, in the high frequency
financial data case, data missingness from how transactions
are triggered is an interesting and challenging problem; see,
for example, Engle and Russell (1998). On the other hand,
as shown in Liu and Tang (2012), the maximum likelihood
approach with appropriately synchronized data is consistent
under some conditions on the data asynchronicity. Since a
data synchronization scheme only incorporates a portion of
the data information contained in the complete data, we
may reasonably conjecture that the estimator based on the
state space model approach is also consistent because it in-
corporates more data information.

Remark 3. A family of methods with multivariate high
frequency financial data is applying data pre-precessing
with synchronization; see, for example, Barndorff-Nielsen,
Hansen, Lunde, and Shepard (2011), Zhang (2011), Liu and
Tang (2012). Inevitably, a portion of data is deleted and
thus information loss may incur. As shown in our simula-
tion studies, the efficiency gain is substantial by using the
state space model approach with EM algorithm as compared
with the approach using data synchronization.

Remark 4. When all components in Y are observed with
equally spaced data, it can be shown that the state space

model approach is equivalent to the quasi-maximum likeli-
hood approach in Liu and Tang (2012). Let

?j:ijYj_l:Xj7Xj_1+Uj*Uj_1 (jzl,...,n)

be the log-returns of d assets and ?_: (?/1,?/27 e
Then the log-likelihood function of Y is

(10) —2nLy(S,A) =In Q|+ Y QY

where
Q=1,®(BA+2A) — (L, + L) ® A,

where ® denotes the Kronecker product, I, is the n-
dimensional identity matrix, L, = (Lg) (k,l = 1,...,n)
is an n-dimensional one-lag sub-diagonal matrix with
Lp_1, =1 (k=2,...,n) and all other elements being 0.
Hence, by results in Liu and Tang (2012), the state space
model approach for synchronous data is also consistent in
this special case, and also achieves the optimal rate of con-
vergence n'/4 in the sense of Gloter and Jacod (2001).

Remark 5. The estimators of ¥ and A are positive semi-
definite by observing that in the explicit forms (8), the up-
dates in each M-step are all positive semi-definite.

Remark 6. In developing the EM algorithm for estimat-
ing the ICM, it is assumed that the true log returns and
the microstructure noise respectively follow normal distribu-
tions. In literature, the normal distribution is conventionally
used in studying financial returns (Black and Scholes, 1973)
mainly because of its convenience for more tractable anal-
ysis. In our study, the main role of the normal assumption
is to ensure explicit forms in the EM algorithm by using
Kalman filtering. We note that the validity of the QML ap-
proach for estimating the ICM does not require the distri-
butional assumption to be true; see also Xiu (2010) and Liu
and Tang (2012). As shown in our simulations, the state
space model approach works very well even when returns
do not follow normal distributions.

3. NUMERICAL EXAMPLES

3.1 Simulations

We demonstrate the mertis of the state space model ap-
proach (QKF) by extensive simulations. We compare the
state space model approach to the quasi-maximum likeli-
hood approach (QML) of Liu and Tang (2012), and the ap-
proach of Ait-Sahalia, Fan, and Xiu (2010) that utilizes a
polarization identity and so is denoted by POL. The num-
ber of replications in simulations is 1,000 for call cases. The
QML approach estimate 3 and A by maximizing the quasi-
log-likelihod function (10); see Liu and Tang (2012) for ef-
ficient algorithm for numerical implementations. The POL
approach estimates the ICM element by element. Specifi-
cally, the integrated covariation of latent processes Xj; and
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Table 1. Values for the model parameters in the simulations

Asset ki 8i 57 A i 0; a; pi

1 6 0.5 0.25 12 0.8 -5 0.005 —0.3
2 4 0.3 0.16 36 1.2 —6 0.003 —0.2
3 5 0.4 0.09 24 0.1 -7 0.004 —0.15

Xt in the two asset log-price processes Yi; and Yy, and the
covariance of noises Uy; and Uy contaminated in the obser-
vations of Yi; and Y}, are estimated by using the polarization
identity for random variables:

cov(Zi, Zi) = {var(vZi + (1 — 7) Z1)
+var(yZ, — (L =20}/ {4v(1 =)}

where v can be chosen as var(Z;)/{var(Zx) + var(Z;)} or
other values in practice, var(vyZ; + (1 — 7)Z;) is the one
dimensional QML estimator (Ait-Sahalia, Mykland, and
Zhang, 2005; Xiu, 2010) of the integrated variances of la-
tent process in the new series vZy; + (1 — ) Z;; respectively.
We note that both QML approach and the POL approach
require synchronized data so that some data synchroniza-
tion scheme is required if handing experiments with asyn-
chronous data.

We consider in the first experiment the performances of
three estimators in estimating the ICM for equally spaced
synchronous data. We generate data of the log-price process
from the Heston Model,

dXy = opdWy, (1=1,2,3)
0%)dt + s;044dByy + 05— JY ANy,

daft = Kji(ﬁf —
where E(de 'dBjt) = (5Z'jpidt, (Sij =1fori= j; 67;j =0 for
i # j and E(dW; - dWj) = p;jdt. The first observation of
volatility process 2 is sampled from a Gamma distribution
[(k;52/s2, 52 /2k;). The jump size J}, in volatility equals to
exp(z;), where z; ~ N(0;,p;), and N;; is a Poisson Process
independent of other processes with intensity A;. The pa-
rameters are respectively specified by values in Table 1. The
noises {U;}}—; are independent and identically distributed
with distribution N(0,A), where A;; = a;a;p;; with a; for
i =1,2,3 are given in Table 1 and p12 = —0.2, p13 = —0.15
and po3 = 0.1. We calculate the bias and root mean square
error (RMSE) for the three approaches, and also compute
the relative efficiency (RE) to compare three approaches
where REQ is the ratio of the RMSE of QML and QKF and
REP is the ration of RMSE of POL and QKF. Therefore a
relative efficiency with value greater than 1 indicates a bet-
ter performance of the QKF approach. We consider d = 2 by
only using the first two log-price processes generated, and
d = 3 by considering all three processes. We vary the cor-
relation between two latent log-return processes to compare
the performances of estimators when d = 2. When d = 3, we
set the correlations as p12 = 0.3, p13 = 0.6, p23 = 0.9. Re-
sults for the two dimensional case are reported in Table 2,
and results for the three dimensional case are reported in
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Table 2. Biases and root mean square errors (RMSE, values
in brackets) (x10%) of the bivariate cases for elements of ICM
[53117 212, 222] when data are synchronous and equally spaced

with time interval between two consecutive observations
equals to A and correlation between two log-price processes

equals to p
Syn Y Yoo Y12 Y11 Yoo Y12
A=2s A =12s
=0.3 p=203
POL 0.03 0.03 0.05 0.01 0.01 0.01
(0.80) (0.51) (0.46) | (1.65) (1.04) (0.97)
QLE 0.02 0.03 0.06 0.01 0.01 0.01
(0.76) (0.49) (0.37) | (1.58) (0.98) (0.62)
QKF 0.01 0.04 0.04 0.01 0.01 0.01
(0.75) (0.50) (0.35) | (1.57) (0.93) (0.60)
REP 1.05 1.04 1.20 1.05 1.12 1.62
REQ 1.01 0.98 1.06 1.01 1.05 1.03
p=20.6 p=20.6
POL 0.02 0.00 0.03 0.04 0.05 0.05
(0.84) (0.48) (0.50) | (1.62) (1.03) (1.01)
QML 0.02 0.00 0.02 0.04 0.04 0.04
(0.74) (0.43) (0.41) | (1.39) (0.87) (0.66)
QKF 0.02 0.01 0.03 0.03 0.05 0.05
(0.75) (0.44) (0.40) | (1.40) (0.88) (0.65)
REP 1.12 1.11 1.18 1.16 1.17 1.55
REQ 0.99 0.98 1.03 0.99 0.99 1.02
p=0.9 p=0.9
POL 0.03 0.03 0.02 0.01 0.00 0.00
(0.83) (0.50) (0.57) | (1.63) (1.04) (1.17)
QML 0.02 0.02 0.02 0.04 0.02 0.03
(0.66) (0.40) (0.44) | (1.10) (0.74) (0.73)
QKF 0.01 0.01 0.03 0.03 0.02 0.05
(0.67) (0.39) (0.45) | (1.13) (0.74) (0.73)
REP 1.21 1.20 1.23 1.44 1.41 1.60
REQ 0.99 1.03 0.95 0.97 1.00 1.00
Note: The left 3 columns and right 3 columns are results obtained

by using data which is generated with time interval A = 2s and A =
12s respectively. QKF is our new estimator obtained by combining
the QML approach and Kalman filter together. QML is the estimator
developed in Liu and Tang (2012) and POL is the estimator derived
in Ait-Sahalia, Fan, and Xiu (2010). REP is the ratio of the RMSEs of
POL and RMSE of QKF and REQ is the ratio of the RMSEs of QLE
and RMSE of QKF.

the upper part of Table 3. We can see that those results
are consistent with our expectations. First, the QML and
QKF approach perform similarly while both have better
performance than the POL approach especially when the
correlation level between processes is higher and the sam-
pling interval is smaller. This demonstrates the advantage
of the approaches that utilizes information from the quasi-
likelihood function. In this experiment, we also note that
the QKF and QML approaches have close performance to
each other, which is also expected.

We conduct the second experiment to assess the perfor-
mance of the methods with asynchronous data. We firstly
generate original equally spaced synchronous log-prices data



Table 3. Bias and root mean square errors (RMSE, values in
brackets) (x 102) of the three processes case for elements of
ICM [%;;] (4,7 = 1,2,3) when data are synchronous and

Table 4. Bias and root mean square errors (RMSE, values in
brackets) (x 102 ) of the two processes case for elements of
ICM [X11, 212, X92] when data are asynchronous

asynchronous

Asyn X Yoo Y12 Y11 Y12 Y

Synchronous Data A =2s A =12s

A =12s 211 222 233 212 213 223 p = 0.3 pP = 0.3
POL 0.01 0.09 0.01 0.01 0.18 0.17 POL 0.08 0.08 0.00 0.08 0.01 0.01
(1.56) (1.05) (0.63) (0.96) (0.80) (0.71) (1.13) (0.69) (0.62) (2.21) (1.40) (1.27)
QML 0.01 0.09 0.02 0.18 0.17 0.01 QLE 0.02 0.03 0.06 0.01 0.01 0.01
(1.47) (0.93) (0.49) (0.84) (0.69) (0.59) (1.10) (0.68) (0.48) (2.19) (1.35) (1.20)
QKF 0.01 0.03 0.02 0.12 0.25 0.25 QKF 0.04 0.03 0.07 0.01 0.01 0.01
(1.46) (0.90) (0.52) (0.84) (0.70) (0.60) (0.99) (0.54) (0.45) (1.90) (1.01) (0.85)
REP 1.07 1.17 1.21 1.14 1.14 1.18 REP 1.14 1.28 1.38 1.16 1.39 1.49
REQ 1.01 1.03 0.95 1.00 0.98 0.98 REQ 1.11 1.26 1.07 1.15 1.34 1.41

Asynchronous Data p=0.6 p=0.6
A =6s S Soo P33 Sia Sis Sos POL | 0.02 0.00 0.03 | 0.04 0.05 0.05
POL 0.12 0.01 0.07 0.15 0.29 0.28 (1.15) (0.72) (0.71) (2.16) (1.43) (1.35)
(1.80) (1.15) (0.75) (1.10) (0.87) (0.80) QML 0.02 0.00 0.02 0.04 0.04 0.04
QML 0.20 0.08 0.09 0.21 0.34 0.31 (1.03) (0.65) (0.53) (2.29) (1.35) (1.28)
(1.72)  (1.10) (0.71) (1.02) (0.81) (0.77) QKF 0.02 0.00 0.03 0.04 0.05 0.05
QKF 0.21 0.04 0.05 0.17 0.31 0.27 (0.94) (0.52) (0.48) (1.76) (0.96) (0.87)
(1.24) (0.75) (0.53) (0.68) (0.57) (0.52) REP 1.22 1.38 1.48 1.23 1.49 1.55
REP 1.45 1.53 1.42 1.62 1.53 1.54 REQ 1.10 1.25 1.10 1.30 1.41 1.47

REQ 1.39 1.47 1.34 1.50 1.42 1.48 p=09 p=09
Note: The upper part are the results for equally spaced synchronous POL 0.03 0.03 0.02 0.01 0.00 0.00
data with time interval between two consecutive observations equals (1.10) (0.70) (0.77) | (2.16) (1.35) (1.44)
to A = 12s, and the bottom part are the results for asynchronous QML 0.02 0.02 0.02 0.04 0.02 0.03
data generated through Bernoulli trials with success probabilities (0.87) (0.56) (0.57) | (2.00) (1.20) (1.30)
0.6,0.8,0.5 for three assets from original equally spaced synchronous QKF 0.02 0.02 0.02 0.04 0.02 0.03
data with time interval between two consecutive observations equals (0.78) (0.45) (0.52) (1.42) (0.87) (0.89)
to A = 6s. QKF is our new estimator obtained by combining the REP 1.41 1.56 1.48 1.52 1.55 1.62
QML approach and Kalman filter together. QML is the estimator de- REQ 1.12 1.24 1.10 1.41 1.38 1.46

veloped in Liu and Tang (2012) and POL is the estimator derived in
Ait-Sahalia, Fan, and Xiu (2010). REP is the ratio of the RMSEs of
POL and RMSE of QKF and REQ is the ratio of the RMSEs of QLE
and RMSE of QKF.

for three assets processes by choosing the time interval
A = 2s or A = 12s in the same way as that in the first
case, and then we use Bernoulli trials with success probabil-
ities p1, po, p3 to randomly select observations from original
data for three log-price processes respectively. We then use
refresh time scheme (Barndorff-Nielsen, Hansen, Lunde, and
Shepard, 2011) to synchronize them for the QML and POL
approaches. Table 4 reports the results comparing the three
approaches under different correlation pi;o and the same
(p1,p2). Table 5 reports the results comparing the three
approaches under different (p1,p2) and the same correla-
tion p12. The lower part of Table 3 reports the results of
the three approaches for 3 dimensional ICM when data are
asynchronous. This experiment confirms the promising per-
formance of the QKF approach especially when d = 3 (Ta-
ble 3) and data with higher level asynchronicity (Table 5).
Therefore, we clearly see the improvement of the state space
model approach without requiring data synchronization so
that data information is most efficiently incorporated.

Note: The left 3 columns and right 3 columns are results obtained by
using the asynchronous data generated through Bernoulli trials with
success probabilities p1 = 0.5 for the first asset and p2 = 0.8 for the
second asset from original data, which are synchronous and equally
spaced with time interval between two consecutive observations equals
to A = 2s and A = 12s respectively, and the correlation between two
log-price processes equals to p. QKF is our new estimator obtained by
combining the QML approach and Kalman filter together. QML is the
estimator developed in Liu and Tang (2012) and POL is the estimator
derived in Ait-Sahalia, Fan, and Xiu (2010). REP is the ratio of the
RMSEs of POL and RMSE of QKF and REQ is the ratio of the RMSEs
of QLE and RMSE of QKF.

In the third experiment, we investigate the impact of the
specification of the covariance matrix A of the microstruc-
ture noises for the QKF and QML approaches. For such a
purpose, we generate data with a non-diagonal matrix Ay,
while in the estimation methods A is specified as diagonal.
In this experiment, data are generated in the same way as
that in the second experiment, except that the correlation
between the noises in observations of two assets is specified
as p = —0.5 and the correlation between the two latent log-
returns process is fixed as p = 0.6. Results for this experi-
ment are reported in Table 6. The remarkable finding is that
if A is misspecified, the performances of the QML and QKF
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Table 5. Bias and root mean square errors (RMSE, values in
brackets) (x 102 ) of the two processes case for elements of
ICM [X11, Y12, Yio2| when data are asynchronous

Asyn Y Yoo Y2 Y Y2 Y2
A =2s p=06
p1=0.5 p2 = 0.8
POL 0.02 0.00 0.03 0.04 0.05 0.05
(1.30)  (0.78)  (0.67) | (2.16)  (1.43)  (1.35)
QML 0.02 0.00 0.02 0.04 0.04 0.04
(1.25)  (0.79)  (0.66) | (2.29) (1.35)  (1.28)
QKF 0.02 0.00 0.03 0.04 0.05 0.05
(0.73)  (0.33)  (0.26) | (3.94) (1.58)  (1.51)
REP 1.22 1.38 1.48 1.23 1.49 1.55
REQ 1.10 1.25 1.10 1.30 1.41 1.47
p1 = 0.8 p2 = 0.3
POL 0.03 0.03 0.02 0.01 0.00 0.00
(1.39)  (0.86)  (0.88) | (2.86)  (1.68)  (1.73)
QML 0.02 0.02 0.02 0.04 0.02 0.03
(1.37)  (0.86)  (0.87) | (2.74)  (1.63)  (1.68)
QKF 0.02 0.02 0.02 0.04 0.02 0.03
QKF | (0.86) (0.56)  (0.60) | (1.62)  (1.09)  (1.23)
REP 1.62 1.54 1.47 1.77 1.54 1.41
REQ 1.59 1.54 1.45 1.69 1.50 1.37

Note: The left 3 columns and right 3 columns are results obtained by
using the asynchronous data generated through Bernoulli trials with
success probabilities p; for the first asset and ps for the second asset
from original data, which are synchronous and equally spaced with
time interval between two consecutive observations equals to A = 2s
and A = 12s respectively, and the correlation between two log-price
processes equals to p.

Table 6. Ratios (x100) of biases and true values, and ratios
(x100) of root mean square errors and true values for
elements of ICM [X11, ¥12, Xa2] when data are asynchronous

Parameters Y1 P Y12

A=12s POL | 0.23(9.30) 0.52(8.66)  3.58(10.4)
p=-05 QML | 7.40(11.1)  6.98(10.4)  15.8(17.7)
p =05 QKF, | 5.31(8.60)  3.14(5.99)  12.3(14.0)
p2=0.8 QKF, | 0.62(6.16)  0.58(4.71)  1.75(7.25)
A=14s POL | 0.19(5.74)  0.00(5.64)  1.51(7.48)
p=—05 QML | 10.6(11.7)  9.83(11.0)  25.0(25.6)
p1 =05 QKF, | 857(9.50)  6.05(6.92)  22.2(22.7)
p2=0.8 QKF, | 0.23(3.84)  0.17(3.08)  1.51(4.62)

Note: Results are 100 times the actual values, and obtained by using
the asynchronous data generated through Bernoulli trials with success
probabilities p1 and p2 for the first and second assets respectively from
original data, which are synchronous and equally spaced with time
interval between two consecutive observations equals to A, p is the
correlation between the noise in two assets. POL, QML, and QKF;
are obtained by assuming the covariance matrix of noises is a diagonal
matrix, and QKF, is obtained by assuming the covariance matrix of
noises is a general covariance matrix.

approaches become worse when the sampling interval gets
smaller. Since smaller sampling time interval means larger
sample size, results in Table 6 clearly indicate a systematic
bias due to the misspecification of A. In contrast, we can
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Table 7. Correlation matrix of ICM for 10 assets log-return
process (values with stars at right head are minus)

1 0.62* 0.45 0.34* 0.26 0.20* 0.16 0.13* 0.10 0.08*
1 0.72* 0.54 0.42* 0.33 0.26* 0.20 0.16* 0.13
1 0.75* 0.58 0.46* 0.36 0.29* 0.23 0.18*
1 0.77* 0.61 0.48* 0.38 0.30* 0.24
1 0.78* 0.62 0.49* 0.39 0.31*
1 0.79* 0.63 0.50* 0.40
1 0.79* 0.63 0.50*
1 0.80* 0.63
1 0.80*
1

Table 8. Ratios of root mean square errors of the POL
approach and the QKF approach for elements of ICM when
data are synchronous and equally spaced with time interval

between two consecutive data equals to 12s

1.09 113 115 120 121 1.20 1.19 1.19 1.18 1.17
1.16 1.21 1.24 1.26 1.25 1.25 1.24 1.22 1.22
1.21 130 135 132 131 1.29 1.27 1.26

1.29 137 137 138 1.35 1.32 1.28

1.37 139 1.42 1.41 1.38 1.33

1.33 137 137 136 1.32

1.33 138 1.38 1.36

1.33 134 1.34

1.31 1.33

1.26

see a better performance of the QKF approach that is with
improved results with smaller A.

In the last experiment, we conduct a simulation for
d = 10. In this case, it is shown that the POL approach
actually outperforms the QML approach (Liu and Tang,
2012) due to the large portion of data deleted in the data
synchronization for the QML approach. Therefore, we only
compare the performance between the POL approach and
the QKF approach. We construct the 20 x 20 dimensional

correlation matrix of (dW’,dB’)’ as (g;g(p)dialgl((f’ )), where

Cyw is given in Table 7, and p = (p1,...,p10)" and other
parameters in the Heston model are specified by setting 3,
to be (Zle Bi/3)(1 + |7 — 5]0.01) for the jth asset with f;
representing £, S;, 6?, Aiy iy 05, a;, p; whose values are given
in Table 1. We generate the synchronous data the same as
in the first experiment and the asynchronous data the same
as in the second experiment. Since the biases of the POL ap-
proach and the QKF approach are all small which are less
than 5% of true values, we only report the relative efficiency
(RE) of the QKF approach which is ratio of the RMSE of
the QKF estimator and the POL estimator. Table 8 dis-
plays the REs for equally spaced synchronous data with
time interval A = 12 seconds. Table 9 are the relative effi-
ciencies for asynchronous data which are generated through
Bernoulli trials with success probability for the ith asset to
be 0.6(1 + |i — 5[0.02) (i = 1,...,10) from original equally
spaced synchronous data with time interval A = 6 seconds.
Refresh time scheme is then applied to synchronize the asyn-
chronous data. We find that both Tables 8 and 9 confirm the



Table 9. Ratios of root mean square errors of the POL
approach and the QKF approach for elements of ICM with
asynchronous data generated through Bernoulli trials with
success probability equal to 0.6(1 + |i — 5|0.02) for the ith

asset from original equally spaced synchronous data with time
interval between two consecutive observations equals to 6s

144 148 151 156 1.55 1.55 1.60 1.64 1.66 1.56
149 153 159 166 1.64 1.68 1.68 1.68 1.62
1.65 161 168 1.69 1.77 1.80 1.71 1.68

1.75 1.63 166 1.81 1.87 1.84 1.81

1.93 164 1.82 1.86 1.82 1.87

1.82 168 1.76 1.73 1.78

1.76 1.76 1.75 1.75

1.81 1.69 1.73

1.85 1.74

1.75

promising performance of the QKF approach that substan-
tially improves the POL approach which requires minimal
amount of data synchronization. This demonstrates the ad-
vantage and efficiency gain of the QKF approach without
requiring data synchronization so that it utilizes all infor-
mation for the observations.

3.2 Financial data analysis

We now illustrate the state space model approach in a
financial trading data set with three stocks: IBM, Dell, and
Microsoft. The data are obtained from the TAQ database
where the first two trading days of 2007—January 4th and
5th—are considered. We organize three processes as Y=
(IBM, Dell, Microsoft)’, so 311 is the estimator of integrated
volatility of IBM, and so on, f]ij and p;; (4,5 = 1,2,3)
are the estimates of the corresponding covariance and cor-
relation. We conduct the same cleaning procedure as in
Barndorff-Nielsen, Hansen, Lunde, and Shepard (2011) be-
fore applying the methods. For comparison purposes, we
also implement the method of in Ait-Sahalia, Fan, and Xiu
(2010) which is denoted by POL since it utilizes a polariza-
tion identity. We also compare the proposed approach to the
quasi-maximum likelihood approach of Liu and Tang (2012)
which is denoted by QML. We note that both the POL and
QML approaches require data synchronization, but the for-
mer only needs synchronized pairs. The refresh time scheme
of (Barndorff-Nielsen, Hansen, Lunde, and Shepard, 2011)
is applied for pre-processing the data for approaches that
require synchronized data. Results are reported in Table 10
where the estimates of the ICM are multiplied by 252 for
annualizing the volatilities and covariations.

From Table 10, we can see the three approaches estimate
the volatilities and covariations with different values. On
both days, the state space model approach estimates the
volatilities with larger values while the estimates on Jan-
uary 5 for DELL is substantially higher than methods using
synchronized data. This is the remarkable difference between
methods because portion of data is deleted in the synchro-
nization procedure. In the original data set, the number of

Table 10. Estimators for the elements of ICM [3;] x 252 and
the correlations py; (i,j = 1,2,3) of IBM, DELL and MFT
for empirical study in Section 3.2

04/01/2007 Y Y22 Y33 p12 P13 P23
POL 3.03 7.04 3.26 0.24 0.22 0.37
QML, 3.02 7.13 3.15 0.20 0.19 0.36
QML, 3.00 7.04 3.10 0.16 0.10 0.35
QKF, 3.89 7.86 3.81 0.20 0.21 0.33
QKF, 3.88 7.81 3.76 0.18 0.15 0.33
05/01/2007 Y11 pL Y33 P12 P13 P23
POL 2.73 9.79 3.70 0.29 0.44 0.34
QML, 2.73 9.38 3.45 0.17 0.32 0.30
QML, 2.72 9.43 3.41 0.14 0.27 0.32
QKF, 3.22 14.22 5.50 0.13 0.27 0.28
QKF, 3.21 14.20 5.47 0.13 0.26 0.28

Note:  Values above for 3;; (i = 1,2,3) are 100 times the actual
values, 04/01/2007 means January 4th, 2007, similar for 05/01/2007.
Original data are synchronized by refresh time scheme for the POL and
QML approaches. QKF is our new estimator obtained by combining
the QML approach and Kalman filter together. QML is the estimator
developed in Liu and Tang (2012) and POL is the estimator derived
in Alt-Sahalia, Fan, and Xiu (2010). QML,, and QKF; are obtained
by assuming the covariance matrix of noises is a general covariance
matrix. QML,, and QKF, are obtained by assuming the covariance
matrix of noises is a diagonal covariance matrix.

trading records at different time points of IBM, DELL and
Microsoft are 10,043, 10,884, and 12,316 respectively on Jan-
uary 4th, and are 9,832, 10,935, and 11,939 respectively on
January 5th. After synchronization, the sample size of syn-
chronized data is 6,536 on January 4th and 6,142 on Jan-
uary 5th. The differences between methods may be due to
the fact that the data synchronization has “smoothed” the
price process, which may have bi-fold impacts—it may have
reduced the effect from the jump of the prices or it simply
has eliminated some informative dynamics. It is worthwhile
to further investigate on the impact due to data synchro-
nization.

In addition, we also see that the QML approach and the
QKF approach obtain different estimates by treating the
covariance matrix A of the microstructure noise differently,
especially for the correlation estimates. For example, the
correlation between IBM and MFT is estimated as 0.19 and
0.21 respectively by the QML and QKL approaches if A is
considered as a general covariance matrix. While the esti-
mates become 0.10 and 0.15 if A is considered as diagonal.
Table 11 reports the estimated covariance and correlations
of the microstructure noises. Though in general, correlations
in Table 11 are small, some correlations take moderate val-
ues. As shown in our simulations, if the matrix A is mis-
specified, there can be a bias incurring in the integrated
covariance matrix estimation.

4. CONCLUSION

We consider a state space model for high frequency finan-
cial trading data. The state space model can naturally han-
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Table 11. Estimators for the elements of the covariance
matrix of noises contaminated in observations of IBM, DELL
and MFT [A;] times 107 and the correlations j;

(i,j = 1,2,3) for empirical study in Section 3.2

04/01/2007 | Ann Asx  Asz Pz 28 P33

POL 0.06 3.50 1.28 0.08* 0.17* 0.01"
QML, 0.06 3.50 1.30 0.05" 0.15* 0.01™
QKF, 0.07 3.57 1.25 0.03* 0.13* 0.01
05/01/2007 A Aaga Ass A1z Aqs Aog

POL 0.03 22.7 3.69 0.17* 0.23* 0.01
QML, 0.03 22.8 3.72 0.04* 0.10" 0.02
QKF, 0.04 22.0 4.18 0.01" 0.03* 0.00"
Note: 04/01/2007 means January 4th, 2007, similar for 05/01/2007.

Original data are synchronized by refresh time scheme for the POL and
QML approaches. QKF; is our new estimator obtained by combining
the QML approach and Kalman filter together. QML is the estimator
developed in Liu and Tang (2012) and POL; is the estimator derived
in Alt-Sahalia, Fan, and Xiu (2010). Values with stars at right head

are minus.

dle asynchronous observations by considering the problem
in a scenario of missing data. We develop an EM algorithm
for estimating the integrate covariance matrix with a general
assumption on the covariance matrix of the microstructure
noises. We show that the state space model approach per-
forms promisingly in various scenarios.

A few problems remain open for further investigation.
First, how to quantify and practically assess the impact due
to the data asynchronicity is generally difficult because the
mechanism lead to asynchronous data is complicated. The
existing study generally assumes a special structure on the
dependence between the price process and the observation
times. Second, structural information from the market such
as an industrial segment might be helpful for enhancing the
performances of the estimating approaches. A study on how
to incorporate such information in the framework of high
frequency financial data analysis will be beneficial. Third,
it is of great interest to investigate methods for assessing
the level of uncertainties associated with the methods when
dealing with asynchronous data.

APPENDIX
Lemma A.1. Let Aj = (Alolf If_d‘) with Aq11; to be
the upper-left d; x d; block matriz of A; = BjAB; =
(2;; :;z;) Giving the initial conditions Xo = m, and
PO = 3., we have the following three results for the state
space model (3):

(1) (Filtering). For j =1,2,...,n,

(11) XITh=XI7],

(12) P/ =PIl + 34,

(13) X) =X K(Y; - BXI ),
(14) P/ = (I-K;B;P/",

472 C. Liu and C. Y. Tang

where Yj = (Yﬂ('l)), Bj = (Bgl)), and

0
(15) K, = Pgﬁ‘lB;(ijgi‘lB; +A)™!

(2) (Smoothing). For j =n,n—1,...,1,

(16)  Xi, = XIh 43X - X,
(17) j— 1—P] 1+JJ 1(P P] 1) j—1
where

(18) Jjio =PI

(8). Under the initial condition

(19) n

nn—1 "

(I - Kan)PZ:%y

the lag-one covariance smoother can also be derived as fol-
lowing: for j=n,n—1,...,2,

(20) ?714'72

Lemma A.1 is an extension of Properties 6.1, 6.2 and 6.3
in Shumway and Stoffer (2006).

=P/J, ,+ 3, (P

J—1\y/
Fio1 = Pii)d; .

Proof of Lemma A.1. Since Kalman filter is based on up-
dating the conditional expectation under increased infor-
mation and previous information. Therefore, we firstly give
the following well-know conclusion.

If
W, ) ~ N 1231 Q1 Qo
W, Mo )7\ Qa1 Qo ’
then
(21) W2|W1 = w1
~ N (pg + Q1 Q7 (w1 — py), Qoo — Q21077 Qo)

Denote that

’Y; = {Vj7vj+1a v 7V87Uj+1a Uj+27 .o 7US}7

where s > j. Then for h < j, we can find that y,, Vj, and
en =Y, — E(Yn|lyn—1) = Y — BhXh_1 are independent
of 7j, and Y, and €; are independent as €; and Y are
Gau551an random variables with covariance

E(e;Y},) = E {Yﬂ?ﬁz - E(Yj|yj,1)Yh}

=E {?ﬂ?ﬁl - E(i’jYMyj—l)} =0.
Therefore,
XI = B(Xjlyj-1) = B(X;-1 + Vj]y;-1)
= EXj-1lyj-1) = Xj .

PJ

B{(X; - X)X, - X7}



= B{(X;o1 - X)X - X7}
+E(V,V))+E {(Xj,1 - X;i—l)vg}
+E{V;(X;-1 - X7}

=P/ 1+ 3A,

which are (11) and (12). Next, we prove (13). To prove it, we
firstly derive the joint distribution of X; and €; conditional
on y;—1. We have

Var(e;|yj—1)
= Var(e;) = Var{B;(X; — X?il) +U;}
_ -
= BjP§ B;- +Aj,
Cov(X;, €;lyj—1)
= Cov(X;,Y; — B;X] y;-1)
: ~ e I
=E ((Xj - X 1) {Bj(Xj -X7 +Uj} |yj—1>
-
= P; B;-.
The last equation is because X, Xg_l are independent of

U, and E{X;fl(Xj - X§71)|yj_1} = 0. Then the joint
distribution of X; and €; conditional on y;_; follows

(%)
(%)

Therefore, by (21) we have that

P! P B’
T ~ J.o ) L
B/PI™' B,P/'B+A,

)

1 1
(22) X =E(X;ly-1. YY) = B(Xlyi-1 ;)
= X§_1 + Kjej
- S
=XIT HKG(Y; - B X T
=X+ K B(X; - X + KU,
where
K, =P/ 'Bj(B;PI'Bj + A;)"".
And

P} = Var(X;[y;-1,¢€;)

i—1 15/ B Pi—15 A \—1p pi-l
=Pj7 - Py Bj(B,;P;T B +A;)" B,Pj
=(I- KJBJ‘)Péilv

which is (15). Therefore, we have proven the conclusion for
Kalman filter part of Lemma A.1.
Next, we prove the smoothing part of Lemma A.1. Since

Yi-1, X5 — X;:_l and v; are mutually independent. There-
fore, by applying (21), we have that

E(X; aly;-1, X, —XI 71 95)

= BE(Xj-1lyj-1,X; — Xﬁ’l)

=X+ 30X - X3,
where the first equation is because X;_; is independent of
7;. By applying (11), we have

Jia

= Cov(X;-1,X; = X3 ;1) { Var (X; = Xy 1) }_1
=P (P
where the last equation is because

j—1
Pjyjfl

= B{(X; - X)X, - X))}
= B{(X; 1+ V,; = X)X, 1 - XJ7)} =PI7).

(23)

Then (16) are proven by
X = E(Xj-1]yn)

_ B (E (Xj,1|yj,1,Xj - Xj?_lﬁ?) \yn)
j—1 n j—1
:X;;l +Jj—1(Xj _X;‘ ).

Therefore

(24)
Xjo1 = X0+ 3,0 X0 =X - XD 4+ 35X

Hence by taking expectation of each side of (24) multiplied
by the transpose of itself, we have

(25) P"_ +J, 1 E(XIX7)J)

j—1

=P/ 1+ Jj,lE(X-;:}X;:}')Jﬁ

7j—1

where the last equation is because E{X%(X;_1—X7_;)'} =
0 and E{X?j(Xj_l - X;j)’} = 0, which can be obtained
by firstly denoting

Th _ h
and then for h <[, h <iand !l < j,

(26) E (ijcgf)

0,

E(XIXV) = B{X!(X; - X})'}

B
E{E (XIXly)} - B (XIX))
B

(x;lxg.') —E (X?X?) -0,
and for h > 1, h <iand !l < j,
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B (XIX)) = B{X}(X; - X!)'}
= B{B (XIXJy)} — B (X!x))
—E (x?xy') ~E (X?X?) # 0.

On the other hand, since

E(X?X}z’) = E(X; X’) ? = E(XjﬂX;-,l) +3A; - P!
= E(X/1XI7)) + PITL +2A; - P?
= B(XIXIZ )+ P P

by realizing V; is independent of X;_; and (12), therefore
we obtain equation (17) by combining (25) and above equa-
tion.

The lag-one covariance smoother can also be proven by
direct calculation. By (11) and (22) we have

~ o~ ~ !/
_ Jj_lKj(BjX;_l +0;)} )
1n
JJ 1_P] BKJ J—1
15/ /
—|—K(BP] B+A) LI
=P/_| - K;B,P/_| - P 'B/K}J)_,
10
+PJ B/K'J. |
1
=(I- Kij)Pg'fr

The fourth equation is because (23) and (15). Therefore (19)
is proven by above and letting j = n.
To prove (20), we reuse (24) to have

(27) (X)) + T X)) (X + T, X))

= (X371 + 3,0 X (XI5 + 30X 73
And, on the other hand, we have

E (X}

1) =0.B (XX ) = 0, B (X21X) 5 ) =0

by (26). Combining above three equations, (16), (27), and
X7

I =(0-K;.1B,_ 1)X§ ? 4+ K,;_1U,_, obtained from
(22), we have

Pj 12
=Bl (% 3, x) (X024 3, 0%x02)
J*1+ J—1451 j72+ J=245-2
— Jj—lE(X?X?Ll)J‘lij
=1 -K;-1B;- )P}, +3,0K B, P
+ 35 {EIXE) - Begxy ) by,
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:P;:i.]; 2+JJ 1K] 1B_7 1P_7 1,j—2
+ 3 BT - Bexy) b

asPI7] = (I-K;_1B;_1)P/7}, J;_» =P’
(23) Moreover, since

(P;:f)’l and

E(X7X7))
{E(X X] 1)

B(XIIXI7Y) -
= B(X)3XI7%) -
E(XJ IXJ 2) P] 1] 2}

—A{EX;1 X)) + A —
—Pr - (PJ §+2Aj_1)

P?,j—l}

Il
—

Py 1}

by (13) and (23), therefore by (12) and (14) we have

Py =PI+ 3 P
(P;':l_Kjlejflpg‘:z( 372)71)} Lo

- .
=P+ (Pj,j—l P ) -2

which is actually (20). Therefore, we finished the proof of
Lemma A.1. O
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