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On smoothing estimation for seasonal time series

with long cycles

SoNG X1 CHEN* AND ZHENG XU

We consider a kernel smoothing estimator to the peri-
odic component of seasonal time series which have quite a
large periodicity relative to the length of the time series.
The estimator is formulated by smoothing the commonly
used seasonal-dummy estimator. It combines the neighbor-
ing seasonal-dummy estimates of the periodic function so
as to reduce the variance of the estimation. We provide
some theoretical justifications to the approach as well as
simulation evaluations to demonstrate its effectiveness. The
proposed approach is used to analyze the return rates of a
German electricity price index.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62M10,
62GO05; secondary 91B84.

KEYWORDS AND PHRASES: Kernel estimator, M-dependent,
Seasonal-dummy approach.

1. INTRODUCTION

Many time series contain periodic components due to the
seasonal affects on the variable being measured. Existing ap-
proaches for estimating the periodic components, when the
components are regarded as “fixed” function of time, include
the approach of trigonometric functions (Hamilton, 1994),
the seasonal-dummy variable approach (Harvey, 1993), non-
parametric kernel regression such as the Nadaraya-Watson
estimator (Hall, Reimann and Rice, 2000; Hall, 2008), the
seasonal ARIMA models and the time-varying splines (Har-
vey and Koopman, 1993). The estimation of periodic func-
tions, when they are treated as random, is typically based
on the state space approach which models the time series as
the sum of a random trend, seasonal and error components
and applies the filtering techniques (Hamilton, 1994). These
methods have been further extended by researchers. For ex-
ample, Harvey, Koopman, and Riani (1997) employed the
trigonometric approach for single seasonal time series with
multiple sources of errors; and Pedregal and Young (2006)
modeled for double-seasonal time series. De Livera, Hyn-
dman and Snyder (2011) employed the Box-Cox transfor-
mation to handle the non-linearity of the time series, which
allows for multiple nested and non-nested seasonal patterns.

In this paper, we consider estimation of the periodic com-
ponents when they are viewed as fixed, for which situation
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the seasonal-dummy variable approach is a popular method.
Comparing with modeling the trend with the trigonometric
functions, the seasonal-dummy variable approach has the
advantage of being nonparametric and hence avoids the risk
of misspecifying the cyclic functions. It is basically a sample
average of the time series observations in such a way that
one observation per cycle is used in the averaging, in the case
of a single cycle. However, often the observational span of
the series covers only limited replicates of the cycles, hence
a small sample size issue will cause large variability in the
seasonal-dump variable estimation. For example, the Phelix
electricity price series, which we will analyze later, spans 10
years and 5 months. Hence, the sample size in the dummy-
variable estimation for an annual cycle would be based on 10
observations only, and the variance of the resulting estimates
for the seasonality would be large. To improve the seasonal-
dummy variable approach, we propose a kernel smoothing
estimation approach that conducts a local average of neigh-
boring seasonal-dump regression estimates so as to achieve a
variance reduction, provided the underlying periodic func-
tion is smooth enough. By choosing the smoothing band-
width properly, the bias of the kernel smoothing estimator
can be controlled while enjoying the benefits of the variance
reduction. Our proposal can be viewed as one that enhances
the statistical properties of the seasonal-dummy estimator
while enjoying the model-robustness nature of the approach.
The proposed approach is particularly applicable for estima-
tion for relatively long periodic functions, for instance esti-
mating the quarterly or annual pattern based on the daily
time series.

The rest of the paper is organized as follows. Section 2
analyzes the properties of the seasonal-dummy variable ap-
proach and our proposed approach for a seasonal time se-
ries with a long cycle. Section 3 extends the approach to
the series with a long cycle and a short cycle. Results from
simulation experiments are reported in Section 4. Section 5
applies the proposed methodology to empirically study the
Phelix electricity price series. Technical details are relegated
to the Appendix.

2. TIME SERIES WITH A LONG CYCLE

Suppose we observe the following time series at a regular
sampling interval § > 0

(1) Yis=p+Std) +es for t=1,2,...,n
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where p is a constant representing the long term average of
the series, S(-) is a periodic function with period L§ for a
positive integer L and €5 are the errors such that E(e5) =0
and Var(e,s) = 02(t6). We follow the convention regarding
the sampling interval so that 6 = 1 for yearly observation,
which means ¢ = 1/365 for daily and 6 = 1/12 for monthly
observed series. With such a convention, T' = nd represents
the total amount of observation time in year of the time
series observed.

In order to identify u and the periodic function, we re-
quire Zle S(jo) = 0. We may write e;5 = o(td)ess where
es5 are of zero mean and unit variance. Throughout the pa-
per, we assume {e;s 7 is an a-mixing process. To simplify
the presentation, we assume the variance function o?(td)
has the same periodic feature as periodic component S(-)
so that their periodicity is the same. This is to make our
analysis less mathematically involved without altering the
main results of the paper.

For any t = 1,2,...,n, define t;, = t — L|t/L] so that
trd € {0,26,..., L5} where |a]| denotes the integer strictly
less than a, regardless of whether a is an integer or not,
which differs from the usual integer truncation. Then Model
(1) can be written as
(2) Yis =+ S(trd) + ess
Let v(t0) = pu + S(td) which is the elevated periodic
component. A popular method for estimating the periodic
function is via the seasonal-dummy variable approach (Har-
vey, 1993; Hamilton, 1994). Define a row vector A; =
(L4p=1,1¢p=2,...,14,=r) for each ¢, where 1;, —; is the in-
dicator for the j-th day, and vy = (7v(d),7(29),...,v(LJ)).
Then, Model (2) can be written as a linear regression:
for

YZ(S:AtVL‘FEté t=1,2,...,n.

Let A= (A}, A,,...,A ) and Y = (Y1,Y5,...,Y,)’, where
denotes the matrix transposition. Then, the least square
(LS) estimator of 7y, is

= (AA)AY.

Let J,, = [n/L] be the number of complete cycles cov-
ered by the time series, and Y; = Y(;r4x)s be the k-th
observation in the j-th cycle for 7 =0,1,2,...,J,. It can be
shown that the LS estimates of the periodic function have
the following forms

S Y /(n+1), it <n—J,L,

(3) A(tro) = {Z;‘]igl Vi, /T, i

tr >n— JpL.

Then, the estimated long term average is ji = Zle 4(436)/L
and the estimated periodic function S(t;d) is S(t;d) =
A(tLo) — fu.

436 S. X. Chen and Z. Xu

We now present some technical conditions needed in our
analysis. First we introduce the notion of a-mixing for the
standardized residual series {ess }7
(4) a(k) = k>1

sup  |P(BNC)— P(B)P(C)),
BeF!,CeFr

t+k

7

where F{ and F},, are the o-fields generated by {ess,s <t}
and {egs,s > t + k} respectively. The sequence {ess}7 ; is
said to be a-mixing if limg_, ., (k) — 0. Specifically, we
need the following condition.

C1: The sequence {ess}y; is strictly stationary and a-
mixing, E(|e;s|”) < oo for a 7 > 2 and a(k) < ak™" for a
positive constant a and 8 > r/(r — 2).

Let Qn(tL(S) = (Jn"'l)il Z]J;() C(jL+tL)d ifty < n—J,L,
and Q,(tL8) = J; ' 327"  e(jqenys if t > n—J, L. Then,
according to (1) and (3),

() Y(tL0) = ¥(tLd) + o (tLd)Qn(tLd).

According to Bosq (1998), under Condition C1, there exists
a positive constant v?(tz) such that J,Var{Q,(trd)} —
v2(ty) as n — oo, which means that Q,,(t.6) = Op(JQI/Q).
A detailed derivation on the variance of @, (¢1,0) reveals that

Jn—1
V3 (tLo) = nli_{rolo{l‘f‘? Z(1—j/Jn>E{€(L+tL)56((j+1)L+tL)6}}-
j=1

If {ess}7; is M-dependent, namely e, s and e4,s are in-
dependent if |t; — 3| > M, then if L > M, we have

v2(tL6) =1.

This is more likely to be true for a series with a long cycle,
say an annual cycle.
From (5) and under C1,

A(tpd) B y(trd) as n — oo.

(6)

Furthermore, according to the central limit theorem for sta-
tionary a-mixing sequences as given in Theorem 1.7 of Bosq
(1998), we have under conditions C1 and C2,

(7) VI {A(tL6) — 7 (tL8)} % N(0,0%(t10)).

To show the consistency and the asymptotic normality of
A(td), we need to consider the asymptotic normality of

VI (3(8) = (8), ..., A(L8) — 4(Ld))T .

To this end, we need to define the asymptotic covariance
matrix. For ¢,5 € {1,..., L}, let

which exist under condition C1, and v(id,jo) =
o(i6)o(jo)p(id, j6). Then, define a L x L matrix V(4) =



(v(i0,79)). If {ews}y—y is M-dependent with M < L, then
v(id,i0) = 1fori=1,...,L and v(i6,i6) = 0 if |i — j| > M.
Hence, V(6) will be a banded matrix with bandwidth M,
which is the maximal number of non-zero sub-diagonals.

By the central limit theorem for stationary a-mixing se-
quences, for instance Theorem 1.8 of Bosq (1998), and the
Cramer-Wold device, it can be shown that

(8)
VI (3(8) = 4(6), ..., A(LS) — v(L8)" % N (0,V(5))

where Np, (0,V(0)) denotes the L-dimensional multivariate
normal distribution with zero mean and asymptotic covari-
ance matrix V.

The seasonal-dummy variable estimation encounters a
large variance if J,, = |n/L] is not large, which is very likely
to happen if the periodicity L is large. For example, the Phe-
lix electricity price series, which we will analyze later, covers
11 years and 5 months and may have an annual cycle. Hence,
Jn is 10, which means that the dummy-variable estimates
for each (t1,0) will be based on 11 observations only and the
variance of the dummy-variable estimates would be large.

We propose a kernel smoothing approach that combines
neighboring periodic functional estimates so as to increase
the “sample size” used in estimating each y(¢10). We need
the following smoothness condition regarding the periodic
function and those involved with the covariances.

C.2: The periodic v(t1,0) and the covariance related quan-
tities 02(id) and v(id,j6) are realizations at the discrete
points {id}£ | of the same named functions 7(s), o2(i8) and
v(s1, 82), respectively, which have continuous second deriva-
tives over [0, Ld]. Both o2(t) and p(t1,t2) are periodic with
period L.

Let K be a continuous symmetric unimodal probability
density with compact support, its maximum at the origin
and finite second moment. Define the kernel weights K}, (t) =
K(t/h)/h where h is a smoothing bandwidth that controls
the bias and variance of the smoothed estimate. Let m =
(L —1)/2 for odd m and m = (L — 2)/2 for even m. The
kernel smoothing estimator of v(¢10) is

(9)
An(tro)
_ KR(0)y(tLo)+ 3270 Kn(50)[A{(tL+7)0}+3{(tL—5)d}]
Kp(0)+2377 ) Kn(j9) 7

which is a weighted average of the seasonal-dummy esti-
mates around £,6.

Proposition 2.1. Under Conditions C.1 and C.2,

ZT:l Kh(jé)j%Q
Kp(0) + 23270 Kn(j0)

Bias{,(tL0)} = 7" (tr0)

and
Var{%(tLd)}
= Und X0 KaGOYI™ 3 3 K@) Kn()

v{(i+1t1)0,(j +1tL)d}.

We now outline some benefit of the smoothing if
v(id,i0) = v(jo,jo) for all i # j, namely the residuals are
homoscedastic and the covariance matrix V() has identi-
cal diagonal elements. In this case, v{(i +t5)d, (j +tr)d} <
v(tr,o,tr0) for all ¢,7. This together with the fact that all
the kernel weights are non-negative leads to

Tnd Y Kn(36)}2Var{y(tLo)} — Var{4(t.0)}

= Y Y KK

{v{(i +tL)0,(j+tL)0} —v(tro,trd)} <O0.

Hence, the kernel smoothing reduces the variability of the
dummy variable estimator 4(t1,9).

When the variances {v(id, id)} are not the same, smooth-
ing at a low variance location say t;§ may incur larger
variance due to its neighbors having larger variance. How-
ever, this can be controlled for M-dependent time series with
M < L, if the ratio max; 02(¢5)/ min; 02(t8) satisfies

(10)

m m—k

2> > Kn(i6)Kn((i+ k)6)p{(tr + 1), (t + i + k)3}

k=1li=—m

j=—m

If the residuals are homoscedastic, then max; o%(td) =
min; 02(¢§) and (10) is valid. To appreciate the role of (10),
let U = max; 0(t5)/ min; 0%(¢5), then (10) implies

0(225L+i)5 < Udz(tL(S) and O(tr,+i)60 (tp+i+k)s < UO’Q(tL(s).

Then, from the variance in Proposition 2.1,

Var{7(t.6)}

< [f i Kn(58)} 71 i Kj(i6)Uo?, 5
+2le K (i0) Ky ((i + k)0)
Uot%jp?(t L+ 0)0, (tr, + i+ k)d}]

< [nd f} Kn(30)}Y*7 o7, 5U| i K3 (j9)
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M m—k
+2) 0 ) K (i6) Kn((i + k)d)
k=1i=—m

p{(tr +1)0, (tr, + i+ k)d}|

< i Z Kn(j0)Y’] o7, 51 Z K (j0)}

j=—m j=—m

= Var{j(tLd)},

where the second last inequality is based on (10) and the
last equality is based on M-dependence with M < L.

To gain more insight on the bias and variance expres-
sions given in Proposition 2.1, we consider a high frequency
scenario where 6 — 0, 6/h — 0 but md remains fixed to
be T'/2, the half length of the cycle. This allows approxima-
tions of the sums in the bias and variance by integrals under
Condition C.2. Let 0% = [2?K(z)d=.

Proposition 2.2. Under Conditions C.1 and C.2, as § —
0, h— 0, 6/h — 0 but md is fized,

Bias{7(trd)} =~ %hQJf{y”(té);

Var{3(tr0)} =~ &6J, ' h = Hu(tpd,tL0) / K2(t)dt

2m

+QZ tL(S tL +])5)

/ K(t
Let R =230" v{tL0, (t, +5)0} [ K(t)K (42 +1t)dt. The
mean square error (MSE) of 4(¢10) is approximately

J +t)dt}.

(1) MSEG)} ~ Jhokd (o))

(t16,t8)R(K) + RS
+ Th .

We can compare the MSEs of the seasonal-dummy esti-
mator 4(t16) and the kernel smoothed estimator under the
M-dependence. Specifically,

(12 MSE(3(0,0)) = MSE{(0.0)
v(trd,tré
_ (LJ L ){ ( ) }____h4 |’Y/l(tL6)|2-
Hence if h is chosen such that (R(K) + m)é/h <1

which is equivalent to (R(K) + m)é < h, smoothing
will reduce the variance of estimation. Intuitively speaking,
the smaller § is, the approach is more likely to reduce the
variance.

The optimal bandwidth A* that minimizes the approxi-
mate mean square error (MSE) of 4(¢1,0) is

(L6, t0){R(K)} + R]565
T3 oy (trd)|3

(13) h* =
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In practice the cross validation (CV) method (Hérdle, 1990;
Fan and Gijbles, 1996) can be used to select the smooth-
ing bandwidth A. In the simulation and empirical study re-
ported in Sections 4 and 5, the CV method is shown to be
effective in producing quality estimation of a long periodic
component.

3. TIME SERIES WITH A LONG CYCLE
AND A SHORT CYCLE

We consider in this section extending our analysis to the
case of the time series having a long cycle and a short cycle.
We are to show that the same form of results we have estab-
lished in the last section for the case of a single long cycle
can be attained. A key intermediate result is that there is a
kind of orthogonality between the short cycle and the long
cycle estimates for the seasonal-dummy approach.

Consider the following time series model:

(14) Yis = p+ Syp(td) + Sa(td) +ews fort=1,2,....n
where S,,(+) denotes a short periodic function with period-
icity L,, and S,(.) denotes a longer periodic function with
periodicity L,, and €5 are the residuals which satisfied the
same assumptions as the previous section. The subscripts w
and a had their origins in denoting the weekly and annual
cycles in the study of the Phelix electricity time series, which
motivated our analysis. We assume that the periodicities L,
and L,, (L, < L,) are integers with 1 being their greatest
common divisor. For identification purposes, it is required
that 37 Sa(j6) = 0 and 37 S, (j6) = 0.

Similar to the notation in Section 2, we denote v(t§) =
c+ S, (t0), ta =t—Lq|t/Ly] and ty, =t — Ly |t/ Ly, |. Thus,
te € {1,2,...,Ls} and ¢, € {1,2,...,L,}. Then Model
(14) can be written as
(15)  Yis = Sw(twd) +v(tad) + €15 fort=1,2,... n
Define Wt = (]-t“,:l - ].tw:Lw, 1251‘):2 - 1t1u:Lw7 ey 1tw:L1u —
1y,=1,) and Ay = (14,21, 14,=2,..., 1t,=1,) be the day in-
dicator vectors for the short and the long cycles respectively.
With these notations, Model (15) can be expressed as the
following linear regression model:

(16) Y—t5 :Wtﬁw+Atﬁa+6t5 (t: 1727“'7”)7
where B, = (Sw(d),...,8(Lw_16)) and B, =
(7(6),7(26), ..., v(Lad)) -

Let W = (W{,W3,..., W}), A= (A],A4,,...,A) and
Y = (Ys,Y2s,...Y0s), e = (es5,€a5,...,¢ens), then (16) be-
comes

Y =Wg, + AB, +e.

Furthermore, define X = (W, A) and 8 = (8.,,8,)’, then

(17) Y=XS+e.



The LS estimator of £ is

(18) f=(X'X)"'X"Y

Our interest is in estimating [, which corresponds to
v(ta0) of the long cycle. A key fact we use is that the columns
of A and columns of W are nearly orthogonal such that
(19) n'WA=0(m.
Let us first consider the case where the length of the series

n is an integer multiple of L,,L,. Denote (i, j)-th element of
W'A as (W'A), ;. Define vectors

Nt=i
= (liopy =i Loy 2 =i Ly, =) €R",
and

nta:i

= (Mop, =i Lo na 2 =in o Inna 2 =) € R™

As the greatest common divisor of L,, and L, is one, it can
be checked that
(20) (W'A),, (Mto=i = My =L) Mta=j

n/(LuLa)] = [n/(LyLa)| = 0.

This indicates “orthogonality” between the column vectors
of W and A. Let 1, denote a vector of length L, with all its
entries being 1 and 0r,,, 1 denote a vector of length L,, —1
with all its entries being 0. In this case, the least square
estimator of 3, is

~ / —1
fe = e (T S XY

= (A'A)tAY.

This means that under the orthogonality, the seasonal-
dummy estimator of 3, is the same as the one that ignores
the short cycle. Similarly, the estimation of the short cycle
can ignore the long cycle as well under the orthogonality.

We now consider the more general case where n is not an
integer multiple of L,L,, so that there is a residual block
toward the end of the series. It can be shown that the (4, j)-
th element of W' A satisfy

|(W'A); 0 <1

with the non-zero entries largely contributed by the residual
fraction. Hence, as n — oo

1 , _
W'W = —|n/Lu|(I5y 1,001 + 1oy -11g,-1) + O(n7")
1 :
= 7 (Ury-1z,-1+10,11p, 1),

WA=0+0(Mn"') =0,

AW =0+0mn"1) >0,
1
A'A = ELn/LaJILmLa + O(n_l)

1
—- —1 ,
La La;La

where O(n~1) refers to a matrix with all its elements being
at the magnitude n~!. So as n — 0o

nX'X
L (WW WA
- " \aw a4
R el R D Y L) 1 0 .
0 1L, L.

This implies that asymptotically (X'X) is block diagonal,
hence the least square estimation of one periodic component
can be carried out by ignoring the other cyclic component
as far as the estimation is concerned.

Denote J, = |[n/L,|. Hence, the seasonal dummy esti-
mator of the long cycle
(21)

A(tL0) = Z}‘Jio Y /(Jn+1), if
e Yien /s if

tL S n_JnL7
tr >n—Jp,L;

which assumes a similar form to that in Section 2 when there
is a single cycle.

The properties of the seasonal-dummy estimator can be
evaluated by noticing that
(22) A(trd) = v(trd) + Bin(trd) + o(trd)Qn(tLo),
where, by utilizing the fact that the sum of consecutive L,,
terms in S, is 0 and the fact that the greatest common
divisor of L., and L, is 1,

Jn
Bln(tLd) = (Jn + 1)71 Z Sw((jLa + tL)(S)
j=Luw!|Jn/Lw]
ifty, <n—J,Lg,
Jn—1
Bin(trd) = J;' Y. Su((jLa +1tL)d)
j:Lw LJW//LwJ
ifty >n—JyL,
and
Jn
Qu(trd) = (Ju+ 17" e(roie)s if tr <n— JyLa,
j=0
Jn—1
Qn(tL(S) = J;l Z €(jLa+tL)d ifty, >n — J,L,.
§=0

We note that By, (t16) = O(J,; 1) since it effectively cap-

n

tures less than L, terms of S, (). This implies that the
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Table 1. Average squared bias, variance and MSE (multiplied by 10®) of the seasonal-dummy estimator (Sq.1(t1,08)), the

seasonal-dummy estimator that ignores the short cycle (S, 2(t1.0)), and the kernel estimator (Sq 5(t1,6)) with cross-validated
bandwidth for the four simulation settings under Model (23). The unit for the sample size n is 103

Model n hew Bias® Var MSE

Sa,,l Sa,2 Sa,3 Sa,l Sa,Q ga,S Sa,l S’a,Q ga,S
1 4.5 0.13 2.07 1.35 88.45 88.36 5.88 88.58 90.43 7.23
2 3.9 0.07 0.22 0.81 44.33 44.32 3.27 44.40 44.54 4.08
L, =90 4 3.4 0.04 0.14 0.48 22.24 22.23 1.84 22.28 22.37 2.32
Homos. 6 3.1 0.03 0.07 0.33 14.68 14.68 1.33 14.71 14.75 1.67|
8 2.9 0.02 0.04 0.24 11.03 11.03 1.11 11.05 11.07 1.34]
1 4.5 0.18 1.92 1.24 100.42 100.27 7.09 100.59 102.19 8.33
2 4.0 0.08 0.27 0.80 49.33 49.33 3.82 49.40 49.59 4.62
Ly, =90 4 3.5 0.05 0.15 0.45 25.28 25.28 2.27 25.32 25.42 2.73
Heteros. 6 3.2 0.03 0.08 0.33 16.73 16.73 1.65 16.76 16.81 1.98
8 3.0 0.02 0.05 0.26 12.51 12.51 1.27 12.53 12.56 1.52
1 18.3 0.75 30.90 1.19 378.92 375.15 5.95 379.66 406.05 7.15
2 15.9 0.39 4.74 0.61 183.40 183.23 3.30 183.79 187.97 3.90

Lo = 365 4 13.9 0.17 2.09 0.37 91.34 91.32 1.83 91.51 93.40 2.2
Homos. 6 12.9 0.12 0.86 0.29 60.58 60.57 1.28 60.70 61.43 1.58
8 12.2 0.08 0.22 0.22 45.53 45.53 1.05 45.61 45.74 1.27]
1 19.0 0.87 30.59 1.44 431.24 426.99 6.27 432.10 457.58 7.70
2 16.4 0.43 4.98 0.87 205.75 205.57 3.55 206.18 210.55 4.41]

L, = 365 4 14.1 0.20 2.13 0.42 101.90 101.86 1.97 102.09 103.99 2.4
Heteros. 6 13.1 0.15 0.90 0.33 67.84 67.83 1.46 67.99 68.74 1.79
8 12.4 0.10 0.24 0.27 51.32 51.32 1.15 51.42 51.56 1.42

central limit theorem we establish in Section 2 can be also
made here even in the presence of another cycle.

Because the form and the properties of 4,(t0) in the pres-
ence of another cycle are the same with those in Section 2
in the absence of another cycle, we can propose the same
kernel estimator for the long cycle as given in Equation (9)
that smooths the seasonal-dummy estimates 4, in (18). The
kernel estimator for the long cycle is denoted as 7, (t9).

4. SIMULATION STUDIES

We conducted simulation experiments which were de-
signed to evaluate the estimators for the long cycle proposed
in the previous section. The model used in the data gener-
ating process was
(23) Yis =24 Sy (twd) + sin(2wt/Ly) + €5,
where the short cycle Sy, (t,0) represents a weekly cycle
with Sy, (t,9) = 0.4, 0.2, 0.15, 0.05, —0.1, —0.3, —0.4 for
tw =1,2,...,7 respectively and e;5 < N(0,V?) with V = 1
and 1 + 0.5sin(27t/30) respectively. We note here that the
conditional variance has different cycles from the cycles in
the mean, which deviates from our assumptions in the pre-
vious sections. This was designed to illustrate that the as-
sumption is not essential for our approach. The value of Sys
given above was the estimates from the empirical study on
the return rates of Phelix electricity prices, which we will
analyze in the next section. The long cycle was sin(27t/L,)
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with L, = 90 and 365 respectively. We considered four set-
tings that cross the homoscedastic and heteroscedastic er-
rors with the length of the long cycle, respectively. Specifi-
cally, Setting 1: L, = 90 and V = 1; Setting 2: L, = 90 and
V =140.5sin(27t/30); Setting 3: L, = 365 and V =1 and
Setting 4: L, = 365 and V = 1+ 0.5sin(27t/30). In each
setting, we chose the sample size n = 1,000, 2,000, 4,000,
8,000 and 16,000, respectively.

We considered three estimators of the long cycle: (i) the
full seasonal-dummy (the least square) estimator S, 1 (£1,6),
(ii) the seasonal-dummy estimator that ignores the short
cycle S, o(tr0), and (iii) the kernel smoothing estimator
Sa.3(trd) which smooths the full seasonal-dummy estima-
tor S’a,l(tL(S).

For the kernel estimator, the fixed bandwidths of 3, 7
and 15 days were used together with the data driven cross-
validation bandwidth.

Simulation results for each of the four settings based on
500 replications are reported in Tables 1 and 2, respec-
tively. Table 1 reports the performance of different estima-
tors Sa.1(tad), Sa2(tad) and S, 3(t.8) with the bandwidth
selected by cross-validation. Table 2 reports the performance
of Smg(taé) using different bandwidths. Table 2 also reports
the average of the cross-validation bandwidth h.,,. The main
observation of Table 1 is that the kernel smoothing estimator
S'a,s(ta§) was always better than the other two estimators
Sa1(tad) and S, o(t,08), mainly due to a significant reduction
in the variance. In almost all the settings, the variance of the



Table 2. Average squared bias and variance (multiplied by 10%) of the kernel smoothing estimator with different bandwidths 3,
7, 15 and the cross validation (CV) under Model (23). The unit for the sample size n is 103

Model n hov Bias? Var
Bandwidth CV 3 7 15 CvV 3 7 15
1 4.5 1.35 0.28 6.53 87.84 5.88 7.41 2.64 0.71
2 3.9 0.81 0.30 6.60 87.99 3.27 3.72 1.30 0.34
L, =90 4 3.4 0.48 0.28 6.53 87.83 1.84 1.85 0.66 0.18
Homos. 6 3.1 0.33 0.27 6.49 87.73 1.33 1.24 0.43 0.11
8 2.9 0.24 0.24 6.35 87.39 1.11 0.95 0.34 0.09
1 4.5 1.24 0.22 6.16 86.92 7.09 8.30 2.95 0.79
2 4.0 0.80 0.24 6.33 87.33 3.82 4.05 1.42 0.37
Lo =90 4 3.5 0.45 0.24 6.34 87.37 2.27 2.13 0.76 0.21
Heteros. 6 3.2 0.33 0.25 6.40 87.51 1.65 1.44 0.53 0.14]
8 3.0 0.26 0.24 6.35 87.39 1.27 1.07 0.39 0.11
1 18.3 1.19 0.05 0.04 0.50 5.95 35.00 14.47 6.09
2 15.9 0.61 0.04 0.02 0.44 3.30 16.90 6.98 2.98
L, = 365 4 13.9 0.37 0.02 0.02 0.49 1.83 8.41 3.47 1.46
Homos. 6 12.9 0.29 0.01 0.03 0.51 1.28 5.52 2.26 0.96
8 12.2 0.22 0.01 0.02 0.49 1.05 4.18 1.74 0.75
1 19.0 1.44 0.11 0.06 0.54 6.27 39.26 16.15 6.76
2 16.4 0.87 0.04 0.05 0.59 3.55 18.90 7.77 3.32
L, = 365 4 14.1 0.42 0.02 0.03 0.51 1.97 9.35 3.79 1.58
Heteros. 6 13.1 0.33 0.01 0.03 0.54 1.46 6.28 2.58 1.09
8 12.4 0.27 0.01 0.03 0.54 1.15 4.74 1.95 0.83

kernel estimator was less than 10% of its seasonal-dummy
counterparts, while the bias was only slightly larger. This
spells out nicely the benefits of the kernel smoothing in esti-
mating long periodic component. Table 2 shows that among
the kernel estimator with different bandwidths, the cross-
validation bandwidth offered satisfactory performance. The
best performing bandwidth under each model setting was
the one that was the closest to the cross-validation band-
width, which lends further support to the cross-validation
approach.

To gain more insight on the benefits of the smoothing,
we plot in Figure 1 the seasonal-dummy and the kernel
smoothed estimates for the long cycle based on two sim-
ulated time series under Model (23). The volatility of the
seasonal-dummy estimates was the most visible while the
kernel estimates were quite nice and smoothed, and were
quite close to the underlying truth.

5. EMPIRICAL STUDY

We analyzed the Physical Electricity Index (Phelix) in
the German-based European Exchange (EEX). This index
is the average hourly price for the 24 hour period of a day.
We referred to it as Phelix in our paper. The average prices,
denoted as P, are the reference price for swap, futures and
options, and have drawn much attention in many empirical
studies (e.g. Benth, Benth and Koekebakker, 2008; Benth,
Kiesel and Nazarova, 2012). Electricity spot prices tend to
have seasonality, which can be explained by the commod-
ity’s characteristics. Seasonality of the electricity spot prices

is widely observed in many markets including the EEX. It is
caused by the working week pattern and the annual natural
seasons. There has been a set of literature on modeling elec-
tricity spot prices including Benth, Benth and Koekebakker
(2008), Rebennack et al. (2010), Benth, Kiesel and Nazarova
(2012). We studied the seasonality in the return rates of elec-
tricity prices. We intended to answer the question whether
the return rate of electricity prices has an annual and/or a
weekly cycle.

The period of the Phelix index we considered ranges from
July 7, 2000 to December 31, 2011, consisting of 11 years and
6 months with 4,213 daily prices P;s at 6 = 1/365. There
were two negative prices on October 4, 2009 and October 26,
2009, which can happen and reflect the fact that electricity
power companies sometime have to pay to discharge a big
surplus supply in order to maintain the order of the power
production. In the calculation of the log prices In(P;s), these
two negative prices were discarded. Thus, the time series of
log-prices has a sample size n = 4,211. We then calculated
the log returns Y;s = In(Pss) — In(P_1)s). The Phelix price
Pys, its log prices In(Pys) and the log returns Y;s are plotted
in Figure 2, which show that the log returns were largely
stationary.

To explore the seasonality, we calculated the sample auto-
correlation function (ACF) and the sample partial autocor-
relation function (PACF), the widely used tools in exploring
the seasonal patterns of a time series (Hamilton 1994), which
are displayed in Figure 3 at lags values ranging from 1 to
40 and 1 to 400 respectively. Both the sample ACF and the
PACF showed spikes at lag values in multiples of 7, which in-

On smoothing estimation for seasonal time series with long cycles 441



2 T

true
- - = smoothing-cv H

seasonal-dummy

05

-1

2 T

true
- - - smoothing-cv H

seasonal-dummy

2 I I I I I I I I

) I I

L L L
50 100 150 250 350

200

300

10 20 30 40 50 60 70 80 920

Figure 1. Estimated long-cycle by the seasonal-dummy estimator and the kernel estimator with the cross-validation bandwidth

based on two simulated series from Model (23). Left panel: L,

dicated a weekly cycle in the log returns. However, the ACF
and PACF did not provide much support for an annual cycle
as no spikes around the lag 365 in the ACF and PACF were
observed. To gain empirical support for the weekly pattern,
we plotted the 601 weekly return rates in Figure 4 by con-
necting each weekday’s returns by lines. The figure showed
a consistent monotone decreasing pattern that peaked on
Mondays, and decreased from Tuesday to Sunday.

We then analyzed the log return data by considering the
following model:
(24) Yis = p+ Suw(twd) + Sa(tad) + €5,
with a weekly cycle and an annual cycle, where t,, =
t—7|t/7), ta = t — 365[¢/365), and 37_; S,(jd) = 0 and
2?6:51 Sa(38) = 0 for the identification purpose. The residu-
als were assumed to be a-mixing as assumed in Section 2.

We first estimated the weekly cycle and the annual cy-
cle by the seasonal-dummy variable approach, followed by
carrying out the kernel smoothing using the bandwidth of
3 days and 15 days. These estimates are displayed in Fig-
ure 5. The seasonal-dummy estimate of the long cycle given
in Panel (2) of the figure displayed strong volatility which
reflected the fact that each estimate was only based on 11
or 12 observations. The kernel smoothed estimates of the
annual cycle were quite flat regardless of the bandwidths
used. The bandwidth selected by the cross-validation was
very large, which may be viewed as an indication that the
annual cycle was not significant. Panel (1) of Figure 5 also
displayed the seasonal-dummy estimate (in dashed line) of
the short cycle assuming no annual cycle, which was almost
identical to the estimate assuming the presence of the long
annual cycle. This is another indication that the annual cy-
cle was not significant.
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= 365 with n = 4,000, Right Panel: L, = 90 with n = 1,000.

We observe that the estimates of the weekly cycle were
monotone decreasing from Monday with the lowest values
during the weekend. This was consistent with the plot of
the weekly returns in Figure 4. The presence of the weekly
cycle is tested by comparing the model that prescribes only
the long cycle as specified in Model (1) with the model that
has both the weekly and the annual cycles as specified in
Model (14). The standard F test is used to carry out the
testing with the F statistic = 858.93, which corresponds to
a p-value of almost 0. Thus, we reject the hypothesis of no
weekly cycle at an overwhelming significance. The signifi-
cance of the weekly cycle is consistent with our previous
findings on the sample ACF and PACF in Figure 3 and the
plot of the weekly return rates in Figure 4.

We then carried out a goodness-of-fit test for the presence
of the annual pattern in the log returns Y;5. Based on Model
(14), the null hypothesis is

Hy :v,(i0) = k for all ¢ and an arbitrary constant k
versus the alternative hypothesis
Hy :7a(i6) # 7a(j0)

The test statistic is

for some i # j.

LC',
(25) Q=L D _{7ali0) - 3}’
j=1
where 7, = Zf;l Fa(j0) and 7, (j9) are the kernel smoothed

estimates of the long cycle with the bandwidth being a pre-
determined fixed bandwidth or the cross-validation band-
width. The test statistic Q¢ = 2.3975 x 107°.

The wild bootstrap method (Hardle and Mammen, 1993)
was used to approximate the distribution of @, which had
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Figure 4. Weekly Return rates of the log electricity prices for
all the 601 weeks.

the following steps in its implementation. We first obtained
the estimated residuals

(26) €5 = Yis — Su(tw6) — Fa(tad).

Then we generated the wild bootstrap residuals €f; from a
two point discrete distribution with the probability of €;5; =
(v/5+41)et5/2 being (5—+/5)/10 and the probability of €5 =
(1 — v/5)ess/2 being (5 + v/5)/10. The wild bootstrapped
resample was

Yis = ':Va + SYw(tw(s) + €155

which respect the Hy of no annual cycle. We repeated the
above procedures independently 500 times to obtain 500
bootstrap statistics Q%*. We found that all the wild boot-
strap statistics Q& were bigger than Q%, which indicated
that there was insufficient evidence to reject the null hy-
pothesis of no annual cycle. Our finding was that there was
no annual cycle in the log return rates of the Phelix index

series.

APPENDIX

Proof of Proposition 2.1. We first consider the bias.
Note that

Bias{3(tLo)} = E{3(tL6)} — v(tLo)

Kn(0) +2370, Kn(59)

By Taylor expansion, we have
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21 Kn(i0) (ke + 4)0} + H{(tL — 5)0} — 2v(tL9)]

Wt +5)0} = Y(tLd) + 6y (tLo)
:2

+L627//(tL5)+%53 ///(771)7

(tL5)—J5 ( )

72//
+5077(8L0) —

(e =4} = tro
53 ///(772)7
with my € [t10, (¢ + 7)d] and ne € [(tr, — j)0,trd]. Then

At +5)0} +{(tL —5)6} — 27(tL0)

= PO (00) + 8 )~ 7 )
~ 520%4"(tLf).
So
o Sty Kn(j0)5%6°
Bias{7(tLd)} ’ ¥ (tL0),

Kn(0) +2327% Kn(j0)

as stated in the first part of the proposition.
For the variance,

Var{¥(tLo)}

m

= {Jn( Z K

> Kn(i8)Kn(j0)v{(ts + )5, (t, + j)6}

—m<i,j<m

= {Jn( Y Kn(j0))*}!

j=—m

[ D KiowA(ts +10)3, (b + )0}

2m m—k

+2) ) K (i6) Kn((i + k)d)

k=1i=—m
v{(tr +1)0, (tr +i+k)o}].
This completes the proof of Proposition 2.1.

Proof of Proposition 2.2. On the bias, we note that
>y Kn(j6)j%0%
K(0) + 255, Kn(70) |
LR L KRR,

Bias{7(t6)} = 7" (tLo)

= = - 7" (tL6)
2 % j=—mK(%)
md/h
o Lypdomon 2K 5" (tL0)
méd/h :
20 e K(2)d(2)

As [-md/h,md/h| covers the support of K as h — 0,

md/h md/h
/ K(z)d(z) =1, / 22K(2)d(z) = o%.
—mé/h —md/h
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Figure 5. Estimated weekly cycles (upper left panel) and the estimated annual patterns by seasonal-dummy variable approach
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Hence, approximately Bias{7(ty8)} ~ +h?0%~" (tL.0).

2
Under Condition C.2,

2 ms

S Ki(j9) za—Q[[h K(t)d]? ~ 52

and

KZ(50)v{(tr + §)8, (tr + 7)o}

Z K? J:) (tr 5+h35 tL6+h]6)
j=

m

)

1 h

— / K2(t)v(trd + ht, t6 + ht)dt
hé _ms

ok

(tLétLé/ K2(t dt+O(h2)}

Q

%

hd

By applying the standard technique in the analysis of kernel
smoothing,

m—k

2

j=—

Kn(GO)Kn(( + E)0)v((ty + 7)6, (tr + 7 + k)d)

m—k

1 5 K6
- h—zﬁ HEG )

t;;é—i—k‘é—i—hﬁ

19
v(trd+hio, =)

h

N 5
= = KK (k +1)
x v tL6+ht t1,6 + k& + ht)dt

(m—k)§ k:)d

5
~ h5/ K (K (kg +1)

[v(tL0, thS + kd) + htvy(e1,tL6 + ko)
—|—htZ/2 (tro, e2)]dt

)
< —
< s / K(DK (ks +1)
(W(trd,trd + kd) + htvy(e1, L0 + k)
+ htv)(tL6 + €2)]dt
1 o0
~ —u(trd,trd + ké)/ K(t)K(ké +t)dt
hé e h
Then, we have the approximate variance for 4(¢0). O
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