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Evaluating the hedging error in price processes

with jumps present”

BINGYT JING, XINBING KoNG', Za1 Liu AND Bo ZHANG

In this draft, we consider a hedging strategy concerning
only the continuous parts of two asset price processes which
have jumps. Two consistent estimators of the hedging strat-
egy, p and p, are presented in terms of realized bipower vari-
ation and threshold quadratic variation, respectively. Based
on p, estimators for operational risk, market risk (risk due
to jumps) and total risk are investigated. It turns out that
the variance of p enters into the bias of the operational
risk estimator, whereas the variance is mainly due to jump
influenced bipower estimation error. The convergence rate
of the operational risk estimator (properly centralized) is
Op((At)'/?). The convergence rate of the market risk is
however Op((At)'/*). Based on p, the total risk is also stud-
ied, and it has the same convergence rate as that based on
p. Besides the interest in financial econometrics, it is also
of significance in a statistical sense when we are interested
in estimating the quadratic variation of the corresponding
unhedgeable residual process.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 60G44,
62M09, 62M10, 62M10, 91B28; secondary 60G42, 62G20,
62P20, 91B84.

KEYWORDS AND PHRASES: Hedging strategy, Threshold
variation, Realized bipower variation, Quadratic variation,
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1. INTRODUCTION

We consider the regression relationship between two
stochastic processes =; and S;,

(1.1)

where =; and S; are Lévy-type processes with finite activity
jumps. This kind of process is widely used as an important

d=y = pydSy +dZy, 0<t<T,

*Jing’s work was partially supported by HK RGC grants
HKUST6015/08P, HKUST6019/10P, the National Nature Science
Foundation of China (71071155), the Fundamental Research Funds
for the Central Universities, and the Research Funds of Renmin Uni-
versity of China (grant 10XNLO007), and in part by NSFC (Grant
No. 71271210); Kong’s research is supported, in part, by NSF China
11201080; Liu’s research is supported, in part by SRG (023-FST12-
LZ) from University of Macau; Zhang’s work was supported in part by
the Fundamental Research Funds for the Central Universities, the Re-
search Funds of Renmin University of China (10XNL007) and NSFC
(71271210).

fCorresponding author.

subclass of semimartingales. It also has a wide range of ap-
plications in the financial econometrics literature. Among
them, [3, 8], and [13] are significant representatives. When
=Z; and S; are Itd processes, Mykland and Zhang [15] inves-
tigates intensively the structure of the estimation error of
the quadratic variation of the residual process Z;. One of
their motivations comes from risk management in financial
econometrics. Suppose that S; and =; are the discounted
values of two securities. At each time ¢, a financial institu-
tion is short one unit of = and at the same time hold p;
units of security S. Z; is then the gain/loss up to time t and
[Z, Z); defined by Imyyaxgt, s —t:310 203 (Zt, 0y — Z¢,)? quan-
tifies the unhedgeable part of the variation in asset = in an
incomplete market, when one adopts a feasible strategy p
(regardless of the money market account units).

Under our setting of (1.1), the market is incomplete due
to the presence of jumps. Then the unhedgeable risk includes
two parts. One is due to jumps and the other due to possibly
incomplete information of a continuous component. They
are called market risk and operational risk (also known as
process risk), respectively in the literature. Readers may find
the motivations of risk-minimization in finance in [9] and [15]
and references therein.

Since it is impossible to predict the jumps, we define the
predictable hedging strategy as

(E, 5
(s,9)1

where (X,Y); = limyaxqs, 1,300 AXE AYS for two arbi-
trary semimartingales X and Y; X¢ denotes the continuous
part of X; AX{ defines the increment of X¢ in interval
[ti,tir1]; and (X, YY)} denotes the derivative of (X,Y); with
respect to time £. When = and S are continuous semimartin-
gales, p; in (1.2) is the best choice of regression coefficient
(or trading strategy) in the sense of minimizing (Z, Z)1 over
all predictable processes, c.f. [15]. Under our circumstance,
if = and S are observed continuously,

(1.2) Pt =

T
padlS. Slu+ 2, Z)r

N——
Residual SS

(1.3)
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where J.X is the jump size of an arbitrary process X at time
u, ie., JX = X(u) — X(u—), and

X, X], = lim [X, X]"™ = lim
[a 9 t

X: — X, )2
A,—0 A,—0 ( b tl_l) ’

t; <t

where 0 =ty < t; < ty < -+ < t, = T satisfying A,, =:
max;(ti41—t;) — 0. [X, X],(fn) is called realized volatility, c.f.
[6]. In high frequency datasets, one can regard tg,t1,...,t,
as successive observation times.

The last term on the right-hand side of (1.3) stands for
the sum of cross terms of regressed jumps and unregressed
jumps (JSC). It is interesting to investigate the behavior
and the influence of the JSC term in risk management.
From JSC, to make risk more controllable, one seeks to
choose a security S with jumps as small as possible. (1.3)
differs from the standard ANOVA decomposition in regular
regression because p; concerns only the continuous part of
two securities, = and S. One easily argues that classical
ANOVA decomposition exists if we set

where [X, X|’ is interpreted as Radon-Nykodym derivative
w.r.t time ¢. But unfortunately, p; is not predictable right
now and can neither be used as a trading strategy in finance
nor an integrand in It6 calculus. This is also why instead
of pf, we present the hedging strategy as defined in (1.2).
Actually, p; is a continuous predictable modification of pj.

The purpose of this paper is concerned with presenting a
consistent estimator of the total risk [Z, Z]; and giving in-
sights into the asymptotic behavior of the estimation error
as more and more observations are available within a fixed
time window. However, [Z, Z]; can be decomposed into two
parts: the first part comes from the fluctuation of the con-
tinuous part of Zy, i.e., (Z,Z);, and the second part comes
from the jumps, i.e., >, <;(JZ)?. The former is opera-
tional risk, whereas the latter market risk. Following natural
questions arise:

@1 How to estimate the operational risk (Z, Z);? What’s
the error distribution?
. . Z 2
Q2 How to estimate the market risk ZOST;S(J]- )2?

What’s the error distribution?

We tend to answer (1 and @2 respectively which are of
individual interest and importance in finance.

—=n)

To answer (1, we find that the estimator, (Z,Z)  used
in Section 2 in terms of bipower variation, has the first order
approximation as

(14) (Z,2)\") —(Z,Z), ~ bias, + (Z, Z)\") = (Z, Z),).

The expression in (1.4) implies the separate effects of the
two sources behind the asymptotics. The form of the bias
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depends on the structure of the estimator. The variation
component comes from the bipower estimation error com-
mon for arbitrary finite activity semimartingales. This is
similar to that of Mykland and Zhang [15]. The main issue
which differs from the ANOVA result in Mykland and Zhang
[15] is to find a way to deal with jumps contained in discrete
data and those jumps also influence the variance.

To answer )3, the convergence rate differs from that
in (1. This demonstrates that the risk due to jumps in
price process is unfortunately dominant in estimation error
for the quadratic variation when we expect to require that

(Z, Z>§n) —(Z,Z); and ZOST]?gt(JjZ)2 - ZogT;gt(JjZ)Q are
asymptotically proportional to each other.

Putting the answers to @1 and Q2 together, we get a
full picture of the total estimation error for the quadratic
variation of the residual process, [Z, Z];, by implementing
the estimator:

—

>, P2

0<T7<t

——(n) (n)

2,7, = {2,2),

t

After that, we also make use of the threshold variation
method to present another consistent estimator of [Z, Z];,

[Z,Z], . The estimation error of [Z, Z],

is studied as well.

——(n)

It has the same convergence rate as that of [Z, Z], . A com-
parison of these two estimators is then made.

This paper is organized as follows. In Section 2, the frame-

work is set up and the estimators of p; are introduced. Sec-

tion 3 is devoted to answering the two questions we asked
before and assessing the total risk estimators, [Z, Z],
——(n)

[Z,Z], . Extensions to include stochastic volatilities are
provided in Section 4. Proofs of the main results are de-

ferred to Section 5.

and

2. THE SETUP
2.1 Jump diffusions

Throughout the paper, we restrict attention to the case
of Z and S belonging to a subclass of Lévy type processes
of the form:

t t
at:/ ,gdﬁ/ ZdBE+ Y JE
0 0

0<TE<t

t t
stz/ ,ufds—i—/ ofdBS + > U7,
0 0

ogTjS <t

where Tjs and TjE are respectively the jth jump times as-
sociated with the Poisson processes {N=(t);t > 0} and
{N5(t);t > 0}. BZ and BY are two standard Brownian mo-
tions w.r.t the filtration .Z= and .Z2 respectively. Assume
that (B=, BS)’ € C[0,T] is bounded away from 0. Assume



that o= and o} are deterministic positive functions away
from zero belonging to C'*[0, T for simplicity. But when oF
and o} are stochastic, the main results can be extended nat-
urally without much effort under some mild conditions; see
Section 4. The drift coefficients 4= and p° are assumed to
be bounded continuous processes (maybe random).

2.2 Bipower variation, threshold quadratic
variation and estimators of p

If the processes =; and S; can be continuously observed,
the strategy can be fully figured out. However the discrete-
ness of observations leads to the need of estimating p;. Due
to discrete observations, {Z;,,5:,;0 < ¢; < T} is the only
data set available to use. Because of jumps, a natural esti-
mator of p; is to use the realized bipower variation or co-
variation:

(XX =u® Y 18X, IIAX,,, |,

0§tj+1 <t
(X7
1 _
Tl I SRR e HINE S oW
Ogtj+1 <t

—MX—mnma>Ymmﬂ

where AXy, = X,
estimator of p; is

— Xy, and yi; = (2)'/2. Then a natural

i+1

(21) ﬁt _ <ES\>{‘, _ <E’7S>2IK - <E’7‘S’>I—h
(S, Sy, (9,97 =(5.9)_,

For construction of bipower variation and its principle to
get rid of jumps from observations, we refer to Barndorff
and Neilson [7, 8]. One technical difficulty in dealing with
bipower variation is the | - | operation and no Ité formula
can be used for the artificial process (X, X); compared to
(X, X]\"). p, and p, are asymptotically independent as h —
0 when ¢ # s from the above definition.

Another way to separate the diffusion from jumps is to
use realized threshold quadratic variation or covariation:

<X7X>fé: Z (Xti+1

tip1<t

= Xi)*Li(x,,, X0, |<a(Dt)=)s

= Z (XtH»l

tit1<t

= Xi ) (Yoo — Vi)

i+1 Tt
X (X, ~Xe | <ar(AL)=, Vi, —Yi, |<as(At)=);

where w € (0,1/2), a, a1, a2 > 0. One then estimates p; via

(5,5 (8.9 (5.9,

The idea of this estimator actually comes from Lévy mod-
ulus characteristic. When max; At; is small enough, the in-
crements of continuous part will be smaller than Aty as
long as w < 1/2. A detailed description about threshold
quadratic variation can be found in Mancini[13] and Jacod
[11]. Empirical simulation shows that optimal choice of w is
0.48 or 0.49, c.f. Jacod [10].

In (2.1) and (2.2), h plays the role of a smoothing band-
width. The larger the h, the larger the bias and the less the
variance. Hence h has to be chosen to tradeoff the bias and
the variance. More discussion is given after Assumption 2.1.

From (1.1), we can estimate AZ;, through the difference

AZy, = AZ,, — p,(ASy) or AZ, = AZ,, — pi. (AS,,).

Obviously at the sampling point ¢;,

ti

(2.3) Zy, = Z AZy, =Z, — / PudSy,
ti+1<t; 0
t;

(2.4) Zy, = Z AZy, =5y, — / pudSy,
ti+1<t; 0

where p, = pg; and p, = py,, if t; < u < ;1. (2.3) and
(2.4) can be extended naturally to non-observation time as

t t

@5)  Zi=%i- [ pudS.=Zi+ [ (pu=piS
0 0
_ t t

(26) Zt - E’t - / [)udsu = Zt +/ (pu - ﬁu)dsu-
0 0

2.3 Variation of observation times

Consider a partition sequence ¢, = {0 = t(ln) < - <
tsf,i) = T'} which is assumed to be irregular and non-random
in this paper. In the following, some regulations of variation
of partition points are imposed to consider the asymptotical
property of the estimation error.

Assumption 2.1. Let Atl(.n) = tz(i)l - tl(.n), A = L and

ng
max; At = A, Suppose that:

g

1. A™ -0 asn — oo, and ﬁ(;:) =0(1).
At
2. h in (2.1) is chosen to wvariate with n satisfying
VvV AE™

h

— c*, where 0 < ¢* < 0.

3. Hy(t) = — H(t), as n — oo, and

H(t) € C'0,T).

M — H'(t), where the convergence is
uniform in t.

5 Gl T (T /AN ALY 1,

(Gy(t) = Gy (t = h))/h — 0, uniformly in t.
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These assumptions are quite similar to those of Mykland
and Zhang [15], except conditions 3 and 5. Actually, condi-
tion 3 is equivalent to (ii) of Assumption A in Mykland and
Zhang [15], i.e.,

Sy, < (B

E(”)

(2.7) — H(t), asn — oo.

In fact, condition 3 implies

i, < (A + AL)? — (A7) — (AL

Kt(n)

— H(t),

which is equivalent to (2.7).

Condition 5 is added technically to avoid too much bias
due to bipower construction which will be seen clearly in
proof of Lemma 6.1. Although we can use a smoothing band-
width h, and there will naturally be a tradeoff between h and
E(n), in this paper, we will use h = O((Kt(n))lm).

One easily concludes Assumption 2.1 includes an equidis-
tant partition as a particular example. For ease of notation,
from now on, we suppress all the script (n), upper or lower,
if there isn’t confusion. So throughout the following sections,

we interpret At as E(n), A as A ¢, as tl(-n)7 and so on.

3. MAIN RESULTS

3.1 Bipower variation, estimator and
estimation error of the operational risk

In this subsection, the aim is to answer Q. It is of inter-
est both in finance and statistics. In finance, we hope it can
be used to control the unhedgeable risk while in statistics,
it becomes the famous problem: estimating the integrated
volatility (of the residual process). With respect to Q1, a
natural estimator is introduced via realized bipower varia-
tion,

(3'1) <Za Z>t = M1_2 Z |AZt1HAZti+1‘7

tip1<t

where pp = \/g . Simple algebraic arrangement leads to the

following decomposition.

<ZZ\>t —(Z,Z)

-~

= ((Z.2), —(2,2))+ (2.2 — (Z, Z)y)
raw variance bias
— (Z,2) — (2, Z))
bias
n (u;2 S 1Az AZ,,| - (2 z>t)
tip1<t

vanriance due to distcretization

416 B. Jing et al.

—

(3.2) n [<<z, 70— (Z.2))

AZy, | —(Z, Z)tﬂ

- </~L12 Z |AZt1

tiy1<t

correction

=1+ I+ 1.

It turns out that the correction term is 0(\/A=t). So from
(3.2), the bias is caused by the estimation method and the
variance is mainly due to a kind of discretization (or jump
influenced bipower estimation error). The main result of this
section is

Theorem 3.1.
—
(2, Z)—(Z,Z)1)

VAt

1
= Dt"’T(

(X 1A%z =220 ) o),
M1

tit1<t

where Dy = c'c* fg(af)ZH’(u)du, and ¢ = ”72
2.6090.

Remark 3.1. From the proof of Lemma 6.1 and Corol-
lary 6.1, the variance of p, — p,, is the main source of the
bias D;. Compared with the result of Mykland and Zhang
[15], Theorem 3.1 shows another multiplier ¢/ in D;. This
multiplier ¢ is caused by bipower construction which ap-
pears also in Barndorff and Neilson [7, 8]. When there are no
jumps in price processes as studied in Mykland and Zhang
[15], quadratic variation instead of bipower variation applies
without appearance of ¢'.

Remark 3.2. The second term of the right-hand side con-
verges to a mixture of a normal distribution and a com-
pound Poisson distribution. When there are no jumps it is
the same as obtained by Barndorff-Nielson et al. [8]. In the
current paper jumps contained in price processes enter into
the jumps of the limiting compound Poisson distribution as
discussed in Proposition 6.2. This shows that to the second
order the realized bipower variation cannot remove the in-
fluence of jumps as to the first order property (consistency)
for jump diffusions.

3.2 Difference of quadratic variation and
bipower variation, estimator and
estimation error of the risk incurred
from jumps

Since ZT;gt(JjZ)Z is the difference of the quadratic vari-

ation and the quadratic variation of the continuous part,
ie., [Z,Z], —(Z,Z), one easily has an estimator

(3.3) N (AZ.,) - (2. 2),

t; <t



The main result with respect to this estimation error is

Theorem 3.2. When n s large enough,

1 — —
T (B2 - 2. 2),~ (2,21~ (2,2),)]
t;
1 ~ =
e S G B UR g ) )
( t) Tj3§t
and
1 -
— (prs — prs)J5 (JF — prsJ?)
(At)1/4 T;t T Ty /25 N\ TP 7]
£ 5¢ 1= s U%‘
- Z 7 (7 = prsdy) 5 derH'(T))E;,
T5<t Fi

where &;, for j > 0, are iid standard normal random vari-
ables which are independent of F=\/ F, on which (Z,S5)
are defined.

Remark 3.3. Theorem 3.2 shows that for market risk,
the estimation error comes from the estimation error of the
hedging strategy at jump times.

3.3 Assessment of estimators of the total
risk [Z, Z];

—

3.3.1 [Z,Z], as an estimator and its estimation error

By definition,

2.2),= Y (AZ,)~

tiv1<t

As shown by the following result with respect to estimation
error, this is a consistent estimator.

Theorem 3.3. Asn — oo,

1 —
(_t 1/4([Z’ Z]t - [Z7 Z]t)
P _ oZ.
=2 Z JJS(J]-: — ijsJJS) JSJ cderH'(T5)E;,
TS<t T

where fgs are a sequence of iid. standard normal variables
which are independent of F=\/ F°, on which (Z,S) are de-
fined.

3.3.2 [Z,Z], as an estimator and its estimation error

In this subsection, we implement p as the estimator of
the hedging strategy, hence a natural estimator of the total

risk [Z, Z];,
Y (AZy).

tip1<t

[Za Z]t =

The main result in this subsection is

Theorem 3.4. Asn — oo,

(3'4) ( t)_1/4([Z7 Z]t - [Z> Z]t)
z
L2 3 ISIE = pr ) e BT
T <t T;

where 5}9 are a sequence of iid. standard normal variables
which are independent of F=\/ F°, on which (Z,S) are de-
fined.

Remark 3.4. This theorem also tells us that estimation
error for the market risk dominates the estimation error for
the operational risk. This is also an inspiration to explore
the hedging risk due to a continuous component and jumps
separately.

333 [Z,7Z], vs. [Z, 2],

As estimators of [Z, Z];, [Z, Z], and [Z, Z], have the same
convergence rate. When it comes to the finite sample perfor-

mance, [Z, Z], is more efficient and the asymptotic relative

efficiency of mt w.r.t. [E,\E}t is & ~ 0.38. The differ-

ence comes from the difference in estimation scheme of py,
see the comparisons on p; and p¢. Simulations demonstrate

o

that [Z, Z], is a bit better than [Z, Z],; see Section 5.

4. EXTENSIONS

The main results in Section 3 are obtained under the
assumption that the volatilities of S and = are deterministic
functions. In this section, stochastic volatility models for S
and = are considered and Theorems 3.1-3.4 are extended.
Obviously,

(07)? =1(5,9);,  (07)* = (8,2,
and
t —_— —_—
/ o202d(B=, B%), =
0

First, we introduce some assumptions and notations used
to deduce the results in this section. Assume that the spot
volatility of Z and S are continuous Itd processes. Let

t t
<E,E)’:/ MXEdu+/ oV EdWYE
0 0
and
t t
<S,S>’:/ u}fsdu+/ a/Sawys,
0 0

where WYE and WY are Winner processes w.r.t the filtra-
tion .#Y= and FY? respectively.

Assumption 4.1. 1.1 (Z, =) € Z& and (S,S), € F
for 0 <wu <T are Ito processes, or
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1.2 (Z,2) and (S,S)" are independent of c{.FE \ F3}.
2. 0V% and VS are continuous processes bounded away
from 0. uV= and 1nV° are bounded continuous processes.
3. (BE,B%) € C'0,T).
Conditions 1.1 and 1.2 trace back to [14] and [6] respec-
tively. Now Theorem 3.1 is extended as follows.

Theorem 4.1. Under Assumptions 2.1 and 4.1, Theo-
rem 3.1 (including Remarks) holds with Dy replaced by

t t
c/c*/ (Z,Z) H'(u)du + e / {p,p)h,d(S,S),.
0 ¢ Jo

The bias changes when volatilities of = and S are stochas-
tic. This is because the effects of the continuous-estimation
error of the instantaneous volatilities of = and S in any in-
terval like [t — h, t] for 0 < ¢ < T are not negligible compared
to the normalization rate, as can be seen from comparison
of (5.5) and Lemma 6.5.

Although volatilities become stochastic, it is still contin-
uous. This should not affect much to the estimator of the
jump risk. The following theorem shows what is expected
and even the proof of it remains the same as that of Theo-
rem 3.2 except replacing the r.h.s of corollary 6.1 by

>§u.

Theorem 4.2. Under Assumptions 2.1 and 4.1, Theo-
rem 3.2 holds with the limit replaced by

Z
S/ = EN B S 1
> I —ijst)<U%4/c/c H/(TS)+ 3 oV &

Tjsgt
where 53-5 are a sequence of iid. standard normal variables
which are independent of F=\/ FS, on which (Z,S) are de-
fined.

Extensions to Theorems 3.3 and 3.4 are also listed below.

Theorem 4.3. Under Assumptions 2.1 and 4.1, Theo-
rem 3.3 holds with the limit replaced by

2 T = prp )

S
TS<t

O'Z_
% ? C'C*H/(Tjs) + % fj,
oz, v 3c*(p. p)7,

where 6;»8 are a sequence of iid. standard normal variables
which are independent of F=\/ FS, on which (2, ) are de-
fined.

Theorem 4.4. Under Assumptions 2.1 and 4.1, Theo-
rem 3.4 holds with the limit replaced by

UZ 1
S( 7= s Tj | « /
2 Z Jj (J] _ijSJj )<O'¢191 C H’(TJS)‘F m fj,

S
TS<t

Z
UU /*H/ ]‘
(oﬁ ) A 3 o
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where 5;5 are a sequence of iid. standard normal variables
which are independent of F=\/ F¥, on which (Z,S) are de-
fined.

5. SIMULATION STUDIES

In this section, we conduct some simulation studies to
verify the consistency of the estimators of the hedge ratio
p¢ and the total variation of the hedging error in the model

dEt = ptdSt + dZt

We generate n equally spaced discrete observations for both
= and S in the time interval [0, 1] from two jump-diffusion
processes,

(5.1) S =0"WE+ I, Si=d"WS+J7P,
where W; is a standard Brownian motion and .J; is a Pois-
son process with intensity A. For illustration, two cases are

considered:

1. The two processes are independent, namely, W= and
W% are independent, and JZ and J° are independent.
Hence the optimal hedge ratio is 0 according to our
theoretical result.

2. The correlation between W= and W* is p and two Pois-
son processes are independent.

Further, we choose the bandwidth h = VAt/2 = 1/(2y/n).
First we use a thresholding technique to remove the
jumps effects, giving an estimator of hedge ratio p:

—_~—

<Ea S>ti+h - <Ea S>t-

i

/N)ti, =

—_

<S7 S>t7¢+h - <S, S>ti
B Ztigtjgti-i-h(AjE) AjS)1{A.jE<rr0-48,A_7-S<n*0448}
Ztigtjgtﬁh(AJS)Ql{AjS<n*°'48}

)

where A;Z and A;S are the differences of two consecutive
observations of = and S, respectively.
Secondly, we use A,Z = A;E — 5, A;S to estimate the
total variation of Z:
(2,2), =) (AZ).

tj<t;

We also investigate the performance of Bipower estima-

tors, py, and (Z, Z), where we estimate the co-variation of
= and S by Bipower estimator:

Z (‘A(E+S)t7||A(E+S)tJ+1|
0Stj+1§t

1 _
1#12{

—|AE = S5),I|AE = S)

j+1|) .



| —— The path of estimator

— The true path of [Z,Z] The path of hat(p)l

—_~—

Figure 1. The path of (Z,Z), (the thresholding estimator),
[Z, Z]:, and py,t € (0,1), with n = 10,000, p =0 and A\ = 3.

y ‘ Biliad :
0 0.2 0.4 0.6 0.8 1

| — The path of estimator of [Z,Z] —— The true path of [Z,Z] ----- The path of hat(p)l

Figure 2. The path of (Z, Z), (the thresholding estimator),
[Z, Z]s, and pu,t € (0,1), with n = 10,000, p = 0.5 and
A=5.

Table 1. The MADE values for two estimators, where we take

n = 10,000
Threshold estimator Bipower estimator
2,2) 5 2.2) 5
p=0 0.03 0.001 0.05 0.0015
p=0.5 0.04 0.07 0.07 0.092

The thresholding estimators and the true values in inter-
val [0,1] are displayed in Figures 1-2. Both figures show that
the estimator is close to the true value, which is consistent
with our theoretical results.

The mean absolute deviation errors (MADE) of two esti-

—~

mators are calculated as well, where, the MADE for (Z, Z),
is defined as

1 m —_
MADE = — > 2.2, —(2.2),],
i=1

and MADE for § is defined similarly, where m = n — | £ |.

From Table 1, we can find both the MADE values are
very small, this is in line with our theoretical result. We
confirm the performance of our estimator with this numeri-

cal example.

6. PROOFS
6.1 Proof of Theorem 3.1

Since there are only finite jumps implied in the data and
E25u a5, for h small enough. So
(8¢,89),

without loss of generality, for calculating I, we suppress the
script ¢ and regard = and S as continuous processes. From

(2.3),

h—0as A —0,p, =

(6.1) Bias — /O (5 — pu)2d(S, S)u.

To find the limit it is necessary to analyze the convergence
rate of p, to p,. This is described by the following lemmas.

Lemma 6.1. p, —p, = Op((At)Y4) uniformly for 0 < u <
T.

Proof. When t; <u < t;41,

Pu — Pu
= [)ti —Pt; T Pt; — Pu
1 == o —
= W[(:,S%i —(&,9)1, — pt,—n((S,9)}.
k) t’L_
(6.2) —{S, S>21)] +OP((KL‘)1/2)
(6.3) = 013((5)1/4)7

—

<Ev S>£7 and <Sv S>fZ - <Sv S>£7

are Op((At)}/*), which will be clear later. From now on, we
/!

—

concentrate on (S, S), — (5,5)},, and other terms can be
deduced similarly.

if we can show that (2, 5), —

(5,5), — (5.8,

2Ly

=M
tifhgtj <t;

_ %(<5, Ve, — (S, 8)ti—n)

|AS, ||AS,

j+1‘

1
+ 5 (8, ) = (8, S)i-n)= < 8,8 >,
(64) = Ai + Bi-

By Taylor’s expansion,

©3)  Bi=g [0 - )P dn = O(E )

uniformly in ¢. Now
Bias of A;

—2
M1

:E—
5

>

ti—hgtj <t;

(Ug)Q‘ABt].71 ||ABtJ|
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1 _
- (afj)zAtj} + O(At)
t;—h<t;<t;
(66) = — Z 0'?)2(\/Atj_lAtj—Atj)—f—O(Kt)
ti—h<t;<t;
< sup( 5)2% Z At;_1AL; —
i tifhgtj<t
+ O(At)
If
1
(6.7) - > (VAL A — Aty) + o(AE)4,

ti—h<t;<t;

then EA; = o((At)'/*). Condition 5 of Assumption 2.1 en-
sures that (6.7) holds uniformly in i.

VarA; =: E[A;]?

51
By X Iaslas,.|
ti—h<t;<t;
o1 ?
Bty X lasylas,.l)]
t;—h<t;<t;

= Sl = 1)+ 200 - 1)
x Y (%) At Aty + O((At)**)

t; 7h§tj <t;

68) = %c/z(as);*jmj_lmj + O((BD

J
1 h
O(h2) L.

—(S,8)1, = Op((A1)'/*) by us-

—
ing Chebyshev’s inequality. Similarly, (Z,S), — (E,5);, =
Op((At)!/*). O

(6.9) (At)* = O((AD)'/?),

—
uniformly in i. So, (S,5),.

By (62), when t,‘ S u S ti+17
(/A)u_pu)2
1 = OV (= qy 2
= m[“ws%i (E,9)%)
- 2pti—h(<E’ S>2,_<E7 S>;7)(<Sv S>£,_<Sv S>:ﬁl)
(6.10) + (pr,-n((S, )1, = (S, 8)1,)*1+0p (A1)
= IVZ'FV;"‘ VI“

From (6.1), it suffices to show respectively the limit of
1 1
— Y IV (S, 8);, _nAt;, — ) Vi(S,S);, _nAt;
VAL ; ot VA ; !

and

=y

t;

(S, SY _p At
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It turns out that

Lemma 6.2.

> VIS, 8);, At

tit1<t

=27

l+1<t

ptb

YL WAL+O0p (A1),

E(A:)*(8,5)i,-

PT’OOf. Define YVZ = (Zi)2 — E[(ZZ)Z], since A,’ + Bz' = Zq +
B; + EA;, by (6.5) and the conclusion under (6.7) simple
calculation results in

MSE

(¥

tipa <t ( f .
T

-5(¥ ¥

tig1 <t try1<t ( Tt —n)

Pt1

L YA +o((BD)

ptl hptk h

(o)

Yl'YkAtiAtk) +O(E)

SupogugT(U;)4
= infocu<r(0f)®
X Z Z At At I{i < k;t; > t), — hYE|Y;|| Yz
tiv1<ttri1<t
(6.11)
< CNA? Z Z I{i < k;t; >ty — h}

tit1<ttry1<t

BE(Y?)VEYe)?

(6.12)
— (@1 g (BOED2) = O((E,

From (6.11) to (6.12), we used the fact that max; EY;> =
max; Var(4;)? = O((At)), which is indicated by (6.9) and
can be calculated directly as well. O

Substitute (6.8) into Lemma 6.2, by interchange of sum-
mation,

r A)%(5.5);,

P? h
__i=h g At;
2 @ h

2
c

\/_ Z S e

X Z (

t;—h<t;<t;

1
V_ Z o ) AL 1 At (h

o<t

<D

ti+1<ti<t;j+h

05)4At]‘_1At_j)<S, S>;¢—hAti

2
Pti—h

(.5, r S*ih“i)



c 1 Pt;
=——2> > (09) Aty At
Ath tjr2<t ( tj)2
¢
(6.13) i>c’c*/ p2(c2)? H' (u)du
0
Similarly,
(6.14)
1 P t =
— IV(S,8), _ Atiﬁclc*/ oy 2H (u)du
\/E; < >t7, h 0( ) ( )
and
1
6.15 —— V; S7S /,7 Atl
( ) \/E; < >tz h
t
R —20’0*/ puo=0 (B, B H' (u)du.
0
Applying equations (6.1), (6.10), (6.13), (6.14) and

(6.15), the following result can be obtained easily.
Propostion 6.1.

I
— =

VAt

in probability, where ¢’ ~ 2.6090.

/Ot(af)2H’(u)du

Corollary 6.1.

Pu
(At)1/4

!
—=\/dcrH (u)y,

where &, is a standard normal random variable which is in-
dependent of F=\/ F*, on which (Z,S) are defined.

Next, we state a CLT result of the realized bipower vari-
ation related to Remark 3.1 after Theorem 3.1. Instead of
applying the CLT result directly to the residual process Z, a
general form is given in terms of an arbitrary jump diffusion
process X, i.e.,

t N(t)
X, = uXt+/ oxdB, + Y J,
0 =1

where N(t) is a Poisson process with intensity A associated
with the arriving points 0 < 77 < Tb < --- < 00 and Uff and
wX belongs to C1[0, T). This is of individual interest since,
as far as we know, there are no such results on bipower
variation of processes with jumps. Define

P; = {tTj_f’tT_

atT;atT;'+;j = 071723"'}7

where tTf = max{t;;t; < T;}, ¢ T+ = = min{¢;;t; > T;} are
respectlvely the observation times before and after Ty, tp—_
.7

is the observation time before ¢,.- and t,+_ is the observa-
J

s
tion time after ¢, .
J

Propostion 6.2.

AX ||AX,,
_|:Z| t7,||2 t1,+1| —<X7X>
VA My
_>EtX+’u2 ZUT i+ CPIxsl15¥

.7

in distribution, where
w2 t
Y = (Z +7— 3) / (022 H' (u)du
0

¢
%2.6090/ (0X)2 H' (u)du,
0

tT.* - tTf_
Oj = lim 4——*—, C =
A=0 At J

trt, — bt
T, + T;

lim —
A—0 At

and x and x;, j = 1,...,N(t), are independent stan-
dard mormal random wvariables which are independent of

FEN F3, on which (Z,S) are defined.

Proof.
(6.16)
AX
3 B
Ml
AXy, . AX ||AX,,
:Z| t; > 1+1|+Z ‘ t1||2 t1+1|—<X7X>t.
P, M1 P/P, H1

Since in the subgrid P; there are only finite terms almost
surely, and X jumps only in the subgrid Pj,

|AXt 1+1|

1
\/E Lg}; Nl
(6.17)

- (XX,

1 [Z |AXC||AX
_\/A_t IS N1

Following the proof of Theorem 3 of Barndoff and Neilson
[8], dominant term of (6.17) converges to a zero-mean nor-
mal distribution. The only gap we have to fill in is to calcu-
late the limiting variance because in our case the observa-
tions are not equidistant.

il <X,X>t] +op(1).

AXFIIAXE |
(6.19) a Z )1+ 3ud) (0)](Ak)2.
So,

(6.20)

|AXE[|AX

%vﬂ(; 2 wl (X, X}t)
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= i [ 10 P+ 3 2 )
(6.21)

— <%2 +m— 3) /Ot(of)QH’(u)du.

On the other hand, by conditioning on the counting pro-
cess {N(t);t > 0} and using the continuity of volatility and
Brownian process,

Z |Ath | |Ath+1 ‘
VAL P, N1

1 ( 1 .
=—=\(—=3Q _(of _
VAL \ui Zj: ;-
(B, = Bi, )l

J

‘BtTj_ o BtTj_ — ‘

X X
X |Jj + gi
J

Ko (B, - B o, (B, - B )
+0P(1)
(6.22)
3 1
?Zoj (Cj + CHIxG T O
1

TJ
Now we prove Theorem 3.1.

Proof. By Propositions 6.1 and 6.2, and (3.2), it remains to
prove that the correction term II7 is asymptotically negligi-
ble. Observe that from (2.5), up to the order Op((At)%/4),

o tit1
B2y =82+ [ (pu - puiS:
t

i

+(pr = ) Y TPt < TP < tiga})

TS
and
o t
(2.2 = (2.2)c+ [ (pu— p2 (05 du
0
Observe also that, as A become small enough, I{t; < T]S <

ti+1}l{ti+1 < T];g < ti+2} = 0 a.s. for all ] and k, by a
similar trick in (6.22),

Z |Z\Zt7'”z\zti+1|

0<t;41<t
tita
= > |AZ+ / (Pu — Pu)dS
0<t; 1<t t;
tit2 —
<82+ [ (ou = pasi| +on(VED)
tit1

By definition of p, (Z¢, BS), = 0 for all 0 < u < T. There-

fore, regarding X; in Proposition 6.2 as Z; + fg(pu — Py )dSE
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(depending on the partition sequence g, ), following the proof
of Proposition 6.2, it suffices to show that

(Xe,X¢), = (2,2) — ((2°,2¢), = (2°,2°):) = op(V Al).
Simple calculation of the MSE of the left-hand side of the
above equation is 0o(At). Thus III = op(V At). O

6.2 Proof of Theorem 3.2
Proof.
! {Z(ZZ.)Q SIS A AN
@y | ) g 2 18R
k3 i+1>

1 ~ ~
- (P Z |AthHAZt1+1| -

1 tit1<t

7, z>>].

Slight variation of Theorem 6.1 of Jacod and Protter [11]

implies
Z (Z\Zh )2 -

ti

(6.24) 1Z,Z) = Op((A1)'/?)).

Theorem 3.1 implies

(6'25) T2 Z |Z\Zti||z\Zti+1‘ - <Za Z> = OP((E)UQ))

Litiga<t
By (2.3), simple calculation yields
(6.26)
2.2~ 2.2= [ (o5

+2 Z (PTJS - ﬁTJS)JjS(JE

S
TE<t

d[S, S,

Prs JS)

Since Lemma 6.1 holds and there are only finite jumps, by

conditioning on the arriving times TJS, 7 =0,1,..., and
using Corollary 5.1,
1 PN
— YAVARERVAVA
w2 21-12.2)
2 .
= i)/ Z (prs = prs) 3 (J5 = prsJ3) + 0p(1)
TP <t
(6.27)
S 7= (U%)Q * [T/
=2 > TIIE — prs ] )(US E e H'(Ty)E;,
TS<t T
in distribution. O



6.3 Proof of Theorem 3.4

Lemma 6.3.

1/4

sup \Ptz — pu| = Op(AL ).
t;€[0,T
Proof. Note that
Pt; — Pt;
1 [ _ -
= ——((E.8)}, — (&5, — P ((8,9)}, = (S, 9)1,))
<S’ S>21
1 =55 - T ov /
<S S>/ (<H S>t1 <H S>t1 ptz(<Sa S>2 <S7 S>t1))
+op(AEY)
if (S, S), — (8, 8Y = Op(AF"*), while this follows from the
following estimate for realized threshold quadratic variation,
(6.28)
—_~— 1
= > (AS;)*1yas;)2<a(at))=) — (S, 9)1,
t{,—hgtj <tj+1§t,
(6.29)

=: /L—FBz—FOp(\/E)
B; = O,(VAt ) by Taylor expansion.

~ 1

ti—h<t;<t;j+1<t;

= >

ti—h<t;j<tj;1<t;

((AS)) 1q(as)2<a(at) =3 —A(S, S)t,)

A simple calculation shows that,

E[n3]
(Atj)QE(< AS; ) .
= AS
h? \/TtJ {(\/A—fj)2§a(Atj)w—1/2}
A<Sa S>tj 2
Ay
At 2
— ( hg) E(( f)2</1/ 1{("5)2JV2<0¢(A15 S
A<Sa S>tj 2
At;
= O0p(Aty).

Then 3, < co, i<t En} = Op(VAt ), hence by Cheby-

shev inequality
A; = O, ((ADYY).
This concludes the proof. O

Lemma 6.4.

L
(A )1/4

where \/ Vs, _p,

Proof. Select function ¢(t) satisfies

1. ¢(t) € C*;
2. L(xj<1) < o(x) < 1(x )
3. limy o () = (%)

(Pt — pt) _></V(O Vii—pi)s

*H/

\_/

Then we have

>

(@8
ti—h<t;<t;i1<t;

S

ti—h<t;<tjii1<t;

>

ti—h<t;<t;i1<t;

AS;
aAt“—”

(AS))*1((as;)2<a(at)=)

@s;Po( 25 )

ozAt;-”

hence also

>

tq-,—hgtj <tj4+1 <t;

((AS))*11(as;)2<a(ar)=y — A(S, S)t,)

<z ((Asjw(ai—i%) N S>tj)'
+ 3 <(A5j)2g0<2ii;) ~ A(S, s>t_7.> ‘

ti—h<t;<t;y1<t;

It is clearly enough to prove the result for the first term and
second term, and also that

L ( 2 AS; 5 [2A85;\\ p
Ly (asre(A5)-ms (%) s
ht'i_h§t1<tj+1§t1: aAtj O‘Atj

This is a direct consequent of Theorem 2.11 of Jacod [10].
Therefore, there are no difference between our estimator and
the one in Zhang [16], which completes the proof. O

Next, we turn to prove Theorem 3.4.

Proof. Simple algebraic arrangement yields,

—_~

[Zv Z]t - [Zv Z]t

=: VII + IIX + IX
~12,2, - (12, 2" — |2, 2),))
7.2, —12,21) + (12, 2" - (2, Z);).

t

2.2), = (2.2), + / (pu — 5u)?dIS, S,
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+2 Y (pry = )5 = pry )
0<T; <t

By Theorem 6.1 of Jacod and Protter [11],

(6.31) VII = Op(VAL);  IX = Op(VAY).
Lemma 6.4, (6.30)—(6.31) imply the theorem. O

6.4 Proof of Theorem 4.1

In the proof of Theorem 3.1, it proceeds by first getting
rid of the negligible bias of A; and the effect of B;, and
then take A; as the dominant part of the estimation error
of the estimator of the instantaneous volatility of the price
process, S, which determines the convergence rate of p to
p. The proof of Theorem 4.1 follows similar lines to that of
theorem 3.1 with slight modification noting that B; does not
reduce in this case.

Proof. Firstly, replace all the expectations in the proof of
Theorem 3.2 by E,, conditional expectation on both o=
and 0.

Secondly, instead of using Taylor’s expansion of o°
around observation times in (6.2) and (6.6) when the volatil-
ity is deterministic and continuously differentiable, the fol-
lowing two lemmas concerning the discrete error of (S,.S5)’
and S, respectively, ensure that we can go through steps
(6.2) and (6.6).

Lemma 6.5. When t; < u < t;y1, under the Assump-
tion 4.1, (S, 8), — (S, 8);, = Op(VAL).
Proof.

(S, 8), — (S, 8);, :/ Sdt+/ VSawys,
t t;

i

(S, 5, (S, 8))|t = / %ysvdt

< max (07 %)?A = Op(At). O

~ 0<t<T
Lemma 6.6. Under Assumption 4.1, for arbitrary ¢ > 0

Eo[(|AS,| = 07| ABy, = Op(At)*9),

)|AS,

i+1|]

uniformly in i.

Proof.
Eq[(JAS] - UtLIABtll)IASth
< \/EG'(|ASti - )2\/E0(Asti+1)2
< i — )2
= % B, S0 (e o)A

i+1

by using Lévy continuity modulus theorem to time-changed
Gaussian paths, c.f. proof of Theorem 3.1 in Mancini [12].
|
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Thirdly, (6.5) is invalid under this new circumstance, so
we replace (6.5) by another estimate.

Lemma 6.7. Under Assumption 4.1, B; = Op((At)'/*).
Proof. Integration by parts yields

(632
tl
</ /u dtdu+/ (ti—h—u)oXSquS).
t t; h

Boundedness of 1V° and ¢V° and simple calculation of the
variation of B; concludes the result. O

Fourthly, taking Lemma 6.5 into consideration, Lem-
ma 6.2 holds with E,(A4;)? replaced by E,(A; + B;)?. Since
E,(A;B;) = 0, Lemma 6.2 follows with E,(A;)? replaced by
E,(A;)?* + (B)%

Next, we calculate

2
ptifh

(<S> S>;i—h)2

5((S.9)", (8, 8))1, + Op((At)*/*).
Now, up to small term, (6.29) is

(6.33) \/— > E(Bi)*(S, 8);,_nAt;.

tip1 <t

Lemma 6.8. (B;)* =

h / n
h) §<<Sv S> 7<S’ S> >tiAt

\/_ZSS>

tip1<t
whose limit is
11 Pa

R

d((5,5), (8, 8) )

in probability. Similarly, by decomposing (Z, 5)’; —(Z,5)’,,
and using Kunita-Watanabe inequality, we can get the same

estimate as in Lemma 6.3-6.6 for (=, S)’, —(Z,5)’, , hence
b Z ;E ( )2(S,8Y, _, At
VAt tiy1<t (<S’ S>;i*h)2 ’ 7 e

and
% 2. MEUKB?SM (S, ), nrt

(6.36)
pll —2pu = gy ’
5 | eS8

where B is 4 ((Z, S)s, — (Z, S)1,—1) — (£, 5);,. Combining
(6.13)— (6 15), (6.30)—(6.32) and using It6's formula on p,,
the bias term of Theorem 4.1 is obtained.

Finally, Proposition 6.2 still holds without any changes
to do with the proof in subsection 6.1. This completes the
proof of Theorem 4.1. O



6.5 Proof of Theorem 4.4

Proof. Replacing all the expectations in the proof of Theo-
rem 3.4 by E,, conditional expectation on both ¢= and o°
and following the proof of Theorem 3.4 lead to completion
of the proof. O
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