Supplemental Material

A Computation Via MCMC

The posterior sampling from the models presented previously were done via Markov chain Monte
Carlo (MCMC), more specifically a Gibbs-type sampler, with some steps implemented via the
Metroplis-Hastings algorithms ([19]). The exact details are tedious, so here we outline only the
major steps, via specifying the full conditional distributions corresponding to Gibbs steps. We also
do so only for the CR-probit model, since the multivariate probit model is easier.

According to the model specifications, the conditional distributions and sampling techniques

are as follows:

e Sample from P(Z|uq, By, B Sa, Sb, X1, v, &, W, W), a truncated multivariate normal. Draw
each triple Z = (Z,j, Zv.j, Z1;) one by one given the rest, where Z, j, Z j, and Z; ; denote
the latent variables for Sy ;, Sp j, and §; respectively. Since (Z4j, Zs j, Z1 ;) are jointly inde-
pendent given the rest, (Z,;, Zy j, Z1 ;) is distributed as independent truncated normal. Here

j indicates different services.

e Sample from P(uq, By, 81| Z, Xa, Xb, i, o, &, W, W), a multivariate normal distribution. The
mean and covariance can be computed by a linear regression routine combined with the prior

distribution we specified in Section 2.4.

e Sample from P(X,, ¥, 3|8, Z, a, &, W, W) Notice that conditional on the remaining param-
eters, X4, 2p, and 3, are inverted Wishart random matrices. Hence, we can, for instance,
draw matrix X from Inv-Wish(S, dfy +n), where S = (Zb—ﬁl;rX —WC)(Zb—ﬁI;rX—I/VC)—r +3

and n is the sample size.

e Sample from P(«, &|Z, tia, By, Bis Las 2o, 21, W, W), a multivariate normal distribution. This

is similar to the sampling of P(38|Z, ¥11, p, a, W).

e Sample from P(W, W| B, %11, p, Z, ), a multivariate normal distribution.

We ran 10 independent Markov chains. The starting points of the latent variables are indepen-
dent truncated N (0, 1), truncated to obey the sign restrictions from our observed service indicators.
Each chain contains 10, 000 iterations, which took about 30 hours to run on a 3.0 GHz computer.

The last iteration from each chain is used as one imputation.



The iteration number 10,000 was decided based on Gelman and Rubin’s R (see [11]) and graph-
ical diagnostic checks. The Gelman-Rubin statistic R was computed for the regression coefficients,
By’s and B;’s. For Group A, there are 884 variables to be monitored; and for Group B and Group
C, 806 each. By discarding the first 2000 iterations and taking a 20-skeleton (that is, a chain of
length 10000/20 = 500), all the R’s were below the common cut-off 1.1 for Group A. For Group
B, 6 out of 806 are between 1.1 and 1.12; for group C, 1 out of 806 is between 1.1 and 1.2; the rest
are all below 1.1. We took a 20-skeleton was due to lack of storage and memory in the computer
used. In usual applications of MCMC, it would be a waste to throw away so many draws. In
our setting, however, the goal was to create only 10 imputations for all subsequent analyses. We
therefore wanted to make sure that they are of as good quality as possible in the sense of being

genuinely independent draws from the posited posterior distribution.

B Checking for Sub-Populations

Here we present several exploratory analyses to illustrate the complications in checking imputation
quality. In Table 4 and Table 6, we compared the imputed rates and the observed rates under
the new design across different Latino ethnicity groups. Here we compare them in sub-populations
obtained via a few stratifying variables. In particular, we examine gender, insurance type, and
major depression, among which gender and insurance type are predictors included in the imputation
model, but major depression (MDE) is not included. Figure 5 shows the comparison in male and
female groups for lifetime service use. Visually, the results seem to be acceptable, with the bars
for the imputed rates much closer to the bars for the rates under the new group than under the
old one, and the difference in patterns resemble those in Table 4. However, this provides minimal
comfort, since gender is one of the predictors in our imputation model.

For a public data set, a potential analysis may include variables that are not used in our
imputation model. Therefore, it is more important to make the same type of comparisons for
sub-populations that are formed by stratifying on variables not included in the imputation model.
Figure 6 shows the observed rates and imputed rates for both the MDE positive and negative cases.
Though MDE is not part of the model, the comparative results are quite similar to that of Figure 5,
with no obvious patterns of over or under-imputations. We believe that our imputation model did
well for this stratification because it already took into account a significant number of predictors
that are highly correlated with MDE. Indeed, the hope with any imputation model, which typically

cannot include all variables as one wishes to, is that those variables included in the model will
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capture the essence of all important covariates for the outcome variable that is being imputed.

So far, so good. But unfortunately there is no guarantee that there are no large “discrepancies”
for sub-populations that are stratified even according to a variable that is included in the model,
let alone for those that are not included. For instance, we discover this when comparing the rates
by different insurance types. NLAAS documented six types of insurance, that is, not insured,

private insurance through employer, private by purchased insurance, Medicare, Medicaid, and other

insurance. Figure 7 shows the comparison of the imputed service rates and the observed new group

Effective Sample Size Sample Size

Total New Old Total New Old
Not Insured 610 163 447 1082 283 799
Private Through Employer 1006 234 776 2349 588 1761
Private Purchased 107 25 83 259 61 198
Medicare 158 50 123 508 113 395
Medicaid 318 82 237 515 125 390
Other Ins. 67 19 48 151 36 115

Table 8: Sample Size and Effective Sample Sizes of the Insurance Groups.
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Figure 7: Lifetime Service by Insurance Categories
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Weighted Averages

New Design Old Design
Number of Disorders 0.37 0.92
Any Disorder 0.20 0.22
Anxiety Disorder 0.11 0.18
Substance Disorder 0 0.17
Correlations with Survey Weights
New Design Old Design
Formal Services -0.07 0.17
Any Services 1-10 -0.11 0.17
Any Services 1-13 -0.11 0.16

Table 9: Some Statistics in Other Insurance Group.

Simple Mean Weighted Mean

New Old Old-New New Old Old-New
Formal Service (1-8) 0.19 0.30 0.11 0.17 0.39 0.22
Any Service (1-10) 0.22 0.31 0.09 0.18 0.41 0.23
Any Service (1-13) 0.22 0.34 0.12 0.18 0.43 0.25

Table 10: Observed Rates for Other Insurance Group.

rates by insurance types. We see that, out of the six sub-populations, the comparative results from
the (highlighted) groups of Private Purchased, Medicare, and Others, some of the imputed rates are
substantially higher than the observed rates from the new-design group. The Others group is most
extreme, with some imputed rates more than double the observed rates from the corresponding
sub-group under the new design.

So what is wrong? Is this an evidence of the gross failure of our imputation model? To answer
these questions, let us first look into a few more facts. First, Table 8 gives the sample sizes and
effective sample sizes of all six insurance groups, and we notice that the three most problematic
groups correspond to the three smallest samples sizes or effective sample sizes. We emphasize
here that because the variations in survey weights from NLAAS are very large, with the ratio of
maximum to minimum exceeding 1,000, it is important to calculate the effective sample size. We

use the common approximation for this purpose (see [14, 15]):

n
ff N 8
Neff [+, /177 (8)

where n is the nominal sample size, and W and 3124/ are the sample mean and sample variance (from

the sub-population of interest) of the survey weights. As we see from Table 8, the effective sample



sizes are significantly smaller than the nominal sample sizes, making the instability problems with
small sub-populations particularly serious. In particular, the Medicaid group has a similar sample
size as the Medicare group (515 vs 508), but its effective sample size is more than twice that of the
Medicare group (318 vs 158). This further indicates the impact of (real) sample sizes, because the
substantial over-imputation occurs for the Medicare group but not for the Medicaid group.

Perhaps more disturbingly, we observe that whenever our model “over-imputes”, the corre-
sponding observed rates from the traditional design group are higher than those of the new group.
This is expected since our model setup is such that the imputed rates are designed to be higher
than those from the traditional design groups, which we assume under-report the service uses. Is
it a contradiction to our assumption of under-reporting by the oldgroup when the observed rates
from the old-design group are higher than those from the new group?

Not necessarily. The comparison to the new group reveals under-reporting of the old group only
when the two groups are comparable to start with. We rely on the randomization to achieve this
comparability. However, there is no guarantee especially on small sub-populations that the ran-
domization has worked perfectly (even assuming the survey protocols have been followed perfectly,
which is never the case in practice). If the old group starts with a very high service rate compared
to a new group, then even with the under-reporting, it can still end up with significantly higher
self-reported rates, causing the false impression that under-reporting may not have occurred.

Indeed, there is good evidence for this possibility. When we look into some diagnostic depression
variables included in our model (number of disorders, any disorder, anxiety disorder, substance
disorder), we discover that the old group has much higher values on these important predictors.
Table 9 shows the sample weighted averages of these variables for the other group. We see that
the old group has much higher disorder rates and more disorders per person than the new group
In the most extreme case, there are no reported cases of substance disorders in the new group, a
good reminder of the large variability due to small (effective) sample sizes, but a 17% estimated
rate from the old group. Such variables are known to be highly correlated with psychiatric service
use, and therefore a serious unbalance between them can lead to substantial discrepancies in the
service rates. As an illustration, we ran a logistic regression for any service ~ anxiety disorder +
substance disorder. The estimated regression coefficients and the standard errors are 1.64 (0.23)
for substance disorder and 2.13 (0.11) for anxiety disorders, which are highly significant.

Furthermore, the two groups exhibit noticeably different patterns of sample weights, which also

contribute to the differences. First, Table 9 shows that the correlation between the survey weights



and three “any rates” are much higher in the old group than those in the new group, even with
different signs! Second, Figure 8 shows box plots of the survey weights against the binary “any
services” variable. There are two positive cases in the old group that have very large weights.
These two facts together also contribute to the phenomenon of the higher self-reported rates from
the old group. To see this more clearly, Table 10 compares the weighted and unweighted sample
means of the three “any rates” for the other group, where the differences are doubled with the
weighted version. This simple comparison between weighted and unweighted averages allows us to
have a quantitative indication as to how much of the problem is due to weights and how much is
due to the difference in the background variables. For this case, the examination above leads us to
believe that both problems are very significant. In general, how to conduct such an examination in

a systematical way and how to disentangle them is an important but exceedingly challenging issue.

C Lower Bound on Var(Z —Y),) and its Estimate

Let F denote all the observed data, and hence Z is F measurable. The usual “EVE law” then

allows us to decompose
Var(Z — Yy) = EVar(Z — Yy |F)) + Var(E(Z — Yy |F)). (9)

The first term on the right-hand side of (9) is the variance due to finite imputation and therefore it
can be estimated by Bjs/M. The second term can be interpreted as the variance due to sampling
variations in covariates. Let Yo, = E(Y)/|F) be the posterior mean (fitted value) of the oldrate.

The second term then becomes
Var(E(Z — Yy|F)) = Var(Z — Ys). (10)

Letting H be all the covariates and the remaining 12 service variables, we can then apply the EVE

law to (10) and conclude that,

Var(Z —Ys) = EVar(Z — Yuo|H)) + Var(E(Z — Yao|H))
> Var(BE(Z — Yyo|H)).

To proceed further, let Y be the service rate of the oldgroup without under-reporting, that is,

if the ordering of question has no effect. Under the null hypothesis that our imputation model is



adequate, the bias of the imputation model should be of order o,(1/y/n), that is,

B(Vacl#) = B(VIH) + 0p( ). 1)

\/ﬁ

This assumption requires that the bias is of a smaller order than that of the standard error. It
holds trivially in the case of standard linear prediction, that is, when Y is the prediction from a
linear regression (with a constant prior on the regression coefficient) and X is the covariate matrix.
In such a case, E(Yoo|H) = E(XB|H) = XB = E(Y|H), so (11) holds without the error term.
In the case of a generalized linear model with informative prior, the posterior mean is no longer
an unbiased estimator. Nevertheless, invoking the philosophy of hypothesis testing, we can simply
take (11) as our null hypothesis (or a consequence of it) that our imputation model is a “good”

model. Under this null, we can further approximate

E(Z ~ YoolH) = BE(Z — Y[H) + op<\}ﬁ>,

where n is the total sample size. Since the old and new groups are randomized, E(Z — Y|H) =

Op(1/+/n) by Central Limit Theorem. Therefore, we have

_ _ _ _ 1 V/new Vold 1
Var(Z —Yoo) > Var(E(Z - Y|H)) + Op(ﬁ) =—+ old + Op(ﬁ). (12)

n?’LBU)

The equality in (12) is true because E(Z|H) depends only on the new design covariates and E(Y |H)
depends only on the old covariates. Since the new and old design assignments are randomized, the
corresponding covariates are independent and hence E(Z|H) and E(Y|H) are independent too. To

estimate V" we fit a generalized linear model:

E(S|X) = G™H(XB), (13)
where X includes all the covariates used in the imputation as well as the remaining 12 service
variables. Let B be the estimate of 8 based on the new design data only. The sample variance of

the fitted values,

n—1
Jj=1

2
. 1 IPU R | I
= ——% (G (XB) - G 1(&-/3)) (14)
then serves as our estimate of V"¢,
However, estimating V¢ is trickier, because #H includes all the covariates and the other service

variables not under investigation. For the old-design group, the service indicators are only partially



observed, therefore it is not straightforward to obtain a consistent estimator for V. Note however,

VO = Var(BE(S™H)) > Var(E(S° X)) = Vi (15)

ow?’

where X is the matrix of covariates alone (services not included). Therefore, we fit a similar model

as (13) but only include the covariates in matrix X and use (14) to obtain V,2<.



