
Supplemental Material

A Computation Via MCMC

The posterior sampling from the models presented previously were done via Markov chain Monte

Carlo (MCMC), more specifically a Gibbs-type sampler, with some steps implemented via the

Metroplis-Hastings algorithms ([19]). The exact details are tedious, so here we outline only the

major steps, via specifying the full conditional distributions corresponding to Gibbs steps. We also

do so only for the CR-probit model, since the multivariate probit model is easier.

According to the model specifications, the conditional distributions and sampling techniques

are as follows:
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is similar to the sampling of P (�|Z,⌃11, ⇢,↵,W ).

• Sample from P (W, W̃ |�,⌃11, ⇢, Z,↵), a multivariate normal distribution.

We ran 10 independent Markov chains. The starting points of the latent variables are indepen-

dent truncated N(0, 1), truncated to obey the sign restrictions from our observed service indicators.

Each chain contains 10, 000 iterations, which took about 30 hours to run on a 3.0 GHz computer.

The last iteration from each chain is used as one imputation.
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The iteration number 10, 000 was decided based on Gelman and Rubin’s R̂ (see [11]) and graph-

ical diagnostic checks. The Gelman-Rubin statistic R̂ was computed for the regression coe�cients,

�
b

’s and �
l

’s. For Group A, there are 884 variables to be monitored; and for Group B and Group

C, 806 each. By discarding the first 2000 iterations and taking a 20-skeleton (that is, a chain of

length 10000/20 = 500), all the R̂’s were below the common cut-o↵ 1.1 for Group A. For Group

B, 6 out of 806 are between 1.1 and 1.12; for group C, 1 out of 806 is between 1.1 and 1.2; the rest

are all below 1.1. We took a 20-skeleton was due to lack of storage and memory in the computer

used. In usual applications of MCMC, it would be a waste to throw away so many draws. In

our setting, however, the goal was to create only 10 imputations for all subsequent analyses. We

therefore wanted to make sure that they are of as good quality as possible in the sense of being

genuinely independent draws from the posited posterior distribution.

B Checking for Sub-Populations

Here we present several exploratory analyses to illustrate the complications in checking imputation

quality. In Table 4 and Table 6, we compared the imputed rates and the observed rates under

the new design across di↵erent Latino ethnicity groups. Here we compare them in sub-populations

obtained via a few stratifying variables. In particular, we examine gender, insurance type, and

major depression, among which gender and insurance type are predictors included in the imputation

model, but major depression (MDE) is not included. Figure 5 shows the comparison in male and

female groups for lifetime service use. Visually, the results seem to be acceptable, with the bars

for the imputed rates much closer to the bars for the rates under the new group than under the

old one, and the di↵erence in patterns resemble those in Table 4. However, this provides minimal

comfort, since gender is one of the predictors in our imputation model.

For a public data set, a potential analysis may include variables that are not used in our

imputation model. Therefore, it is more important to make the same type of comparisons for

sub-populations that are formed by stratifying on variables not included in the imputation model.

Figure 6 shows the observed rates and imputed rates for both the MDE positive and negative cases.

Though MDE is not part of the model, the comparative results are quite similar to that of Figure 5,

with no obvious patterns of over or under-imputations. We believe that our imputation model did

well for this stratification because it already took into account a significant number of predictors

that are highly correlated with MDE. Indeed, the hope with any imputation model, which typically

cannot include all variables as one wishes to, is that those variables included in the model will
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Figure 5: Lifetime Service by Gender

Figure 6: Lifetime Service by Major Depression

capture the essence of all important covariates for the outcome variable that is being imputed.

So far, so good. But unfortunately there is no guarantee that there are no large “discrepancies”

for sub-populations that are stratified even according to a variable that is included in the model,

let alone for those that are not included. For instance, we discover this when comparing the rates

by di↵erent insurance types. NLAAS documented six types of insurance, that is, not insured,

private insurance through employer, private by purchased insurance, Medicare, Medicaid, and other

insurance. Figure 7 shows the comparison of the imputed service rates and the observed new group

E↵ective Sample Size Sample Size
Total New Old Total New Old

Not Insured 610 163 447 1082 283 799
Private Through Employer 1006 234 776 2349 588 1761
Private Purchased 107 25 83 259 61 198
Medicare 158 50 123 508 113 395
Medicaid 318 82 237 515 125 390
Other Ins. 67 19 48 151 36 115

Table 8: Sample Size and E↵ective Sample Sizes of the Insurance Groups.
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Figure 7: Lifetime Service by Insurance Categories

Figure 8: Weights versus Service in the “Other” Insurance Category
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Weighted Averages
New Design Old Design

Number of Disorders 0.37 0.92
Any Disorder 0.20 0.22
Anxiety Disorder 0.11 0.18
Substance Disorder 0 0.17

Correlations with Survey Weights
New Design Old Design

Formal Services -0.07 0.17
Any Services 1-10 -0.11 0.17
Any Services 1-13 -0.11 0.16

Table 9: Some Statistics in Other Insurance Group.

Simple Mean Weighted Mean
New Old Old-New New Old Old-New

Formal Service (1-8) 0.19 0.30 0.11 0.17 0.39 0.22
Any Service (1-10) 0.22 0.31 0.09 0.18 0.41 0.23
Any Service (1-13) 0.22 0.34 0.12 0.18 0.43 0.25

Table 10: Observed Rates for Other Insurance Group.

rates by insurance types. We see that, out of the six sub-populations, the comparative results from

the (highlighted) groups of Private Purchased, Medicare, and Others, some of the imputed rates are

substantially higher than the observed rates from the new-design group. The Others group is most

extreme, with some imputed rates more than double the observed rates from the corresponding

sub-group under the new design.

So what is wrong? Is this an evidence of the gross failure of our imputation model? To answer

these questions, let us first look into a few more facts. First, Table 8 gives the sample sizes and

e↵ective sample sizes of all six insurance groups, and we notice that the three most problematic

groups correspond to the three smallest samples sizes or e↵ective sample sizes. We emphasize

here that because the variations in survey weights from NLAAS are very large, with the ratio of

maximum to minimum exceeding 1,000, it is important to calculate the e↵ective sample size. We

use the common approximation for this purpose (see [14, 15]):

n
eff

⇡ n

1 + s2
W

/W̄ 2
, (8)

where n is the nominal sample size, and W̄ and s2
W

are the sample mean and sample variance (from

the sub-population of interest) of the survey weights. As we see from Table 8, the e↵ective sample
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sizes are significantly smaller than the nominal sample sizes, making the instability problems with

small sub-populations particularly serious. In particular, the Medicaid group has a similar sample

size as the Medicare group (515 vs 508), but its e↵ective sample size is more than twice that of the

Medicare group (318 vs 158). This further indicates the impact of (real) sample sizes, because the

substantial over-imputation occurs for the Medicare group but not for the Medicaid group.

Perhaps more disturbingly, we observe that whenever our model “over-imputes”, the corre-

sponding observed rates from the traditional design group are higher than those of the new group.

This is expected since our model setup is such that the imputed rates are designed to be higher

than those from the traditional design groups, which we assume under-report the service uses. Is

it a contradiction to our assumption of under-reporting by the oldgroup when the observed rates

from the old-design group are higher than those from the new group?

Not necessarily. The comparison to the new group reveals under-reporting of the old group only

when the two groups are comparable to start with. We rely on the randomization to achieve this

comparability. However, there is no guarantee especially on small sub-populations that the ran-

domization has worked perfectly (even assuming the survey protocols have been followed perfectly,

which is never the case in practice). If the old group starts with a very high service rate compared

to a new group, then even with the under-reporting, it can still end up with significantly higher

self-reported rates, causing the false impression that under-reporting may not have occurred.

Indeed, there is good evidence for this possibility. When we look into some diagnostic depression

variables included in our model (number of disorders, any disorder, anxiety disorder, substance

disorder), we discover that the old group has much higher values on these important predictors.

Table 9 shows the sample weighted averages of these variables for the other group. We see that

the old group has much higher disorder rates and more disorders per person than the new group

In the most extreme case, there are no reported cases of substance disorders in the new group, a

good reminder of the large variability due to small (e↵ective) sample sizes, but a 17% estimated

rate from the old group. Such variables are known to be highly correlated with psychiatric service

use, and therefore a serious unbalance between them can lead to substantial discrepancies in the

service rates. As an illustration, we ran a logistic regression for any service ⇠ anxiety disorder +

substance disorder. The estimated regression coe�cients and the standard errors are 1.64 (0.23)

for substance disorder and 2.13 (0.11) for anxiety disorders, which are highly significant.

Furthermore, the two groups exhibit noticeably di↵erent patterns of sample weights, which also

contribute to the di↵erences. First, Table 9 shows that the correlation between the survey weights
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and three “any rates” are much higher in the old group than those in the new group, even with

di↵erent signs! Second, Figure 8 shows box plots of the survey weights against the binary “any

services” variable. There are two positive cases in the old group that have very large weights.

These two facts together also contribute to the phenomenon of the higher self-reported rates from

the old group. To see this more clearly, Table 10 compares the weighted and unweighted sample

means of the three “any rates” for the other group, where the di↵erences are doubled with the

weighted version. This simple comparison between weighted and unweighted averages allows us to

have a quantitative indication as to how much of the problem is due to weights and how much is

due to the di↵erence in the background variables. For this case, the examination above leads us to

believe that both problems are very significant. In general, how to conduct such an examination in

a systematical way and how to disentangle them is an important but exceedingly challenging issue.

C Lower Bound on V ar( ¯Z � ¯YM) and its Estimate

Let F denote all the observed data, and hence Z̄ is F measurable. The usual “EVE law” then

allows us to decompose

V ar(Z̄ � Ȳ
M

) = E(V ar(Z̄ � Ȳ
M

|F)) + V ar(E(Z̄ � Ȳ
M

|F)). (9)

The first term on the right-hand side of (9) is the variance due to finite imputation and therefore it

can be estimated by B
M

/M . The second term can be interpreted as the variance due to sampling

variations in covariates. Let Ȳ
1

= E(Ȳ
M

|F) be the posterior mean (fitted value) of the oldrate.

The second term then becomes

V ar(E(Z̄ � Ȳ
M

|F)) = V ar(Z̄ � Ȳ
1

). (10)

Letting H be all the covariates and the remaining 12 service variables, we can then apply the EVE

law to (10) and conclude that,

V ar(Z̄ � Ȳ
1

) = E(V ar(Z̄ � Ȳ
1

|H)) + V ar(E(Z̄ � Ȳ
1

|H))

� V ar(E(Z̄ � Ȳ
1

|H)).

To proceed further, let Ȳ be the service rate of the oldgroup without under-reporting, that is,

if the ordering of question has no e↵ect. Under the null hypothesis that our imputation model is
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adequate, the bias of the imputation model should be of order o
p

(1/
p
n), that is,

E(Ȳ
1

|H) = E(Ȳ |H) + o
p

(
1p
n
). (11)

This assumption requires that the bias is of a smaller order than that of the standard error. It

holds trivially in the case of standard linear prediction, that is, when Ȳ
1

is the prediction from a

linear regression (with a constant prior on the regression coe�cient) and X is the covariate matrix.

In such a case, E(Ȳ
1

|H) = E(X�̂|H) = X� = E(Y |H), so (11) holds without the error term.

In the case of a generalized linear model with informative prior, the posterior mean is no longer

an unbiased estimator. Nevertheless, invoking the philosophy of hypothesis testing, we can simply

take (11) as our null hypothesis (or a consequence of it) that our imputation model is a “good”

model. Under this null, we can further approximate

E(Z̄ � Ȳ
1

|H) = E(Z̄ � Ȳ |H) + o
p

(
1p
n
),

where n is the total sample size. Since the old and new groups are randomized, E(Z̄ � Ȳ |H) =

O
p

(1/
p
n) by Central Limit Theorem. Therefore, we have

V ar(Z̄ � Ȳ
1

) � V ar(E(Z̄ � Ȳ |H)) + o
p

(
1

n
) =

V new

nnew

+
V old

nold

+ o
p

(
1

n
). (12)

The equality in (12) is true because E(Z̄|H) depends only on the new design covariates and E(Ȳ |H)

depends only on the old covariates. Since the new and old design assignments are randomized, the

corresponding covariates are independent and hence E(Z̄|H) and E(Ȳ |H) are independent too. To

estimate V new, we fit a generalized linear model:

E(S|X̃) = G�1(X̃�), (13)

where X̃ includes all the covariates used in the imputation as well as the remaining 12 service

variables. Let �̂ be the estimate of � based on the new design data only. The sample variance of

the fitted values,

V̂ new =
1

n� 1

nX

j=1

 
G�1(X̃

j

�̂)� 1

n

nX

i=1

G�1(X̃
i

�̂)

!2

(14)

then serves as our estimate of V new.

However, estimating V old is trickier, because H includes all the covariates and the other service

variables not under investigation. For the old-design group, the service indicators are only partially
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observed, therefore it is not straightforward to obtain a consistent estimator for V old. Note however,

V old = V ar(E(Sold|H)) � V ar(E(Sold|X)) ⌘ V old

low

, (15)

where X is the matrix of covariates alone (services not included). Therefore, we fit a similar model

as (13) but only include the covariates in matrix X and use (14) to obtain V̂ old

low

.
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