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Direction estimation in the single-index model
with missing values
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∗
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We cast direction estimation in the single-index model
into the sufficient dimension reduction framework. Existing
sufficient dimension reduction literature with missing val-
ues mainly focuses on sliced inverse regression and requires
the missing at random (MAR) assumption. In this paper, we
propose new methods to handle missing data based on sliced
average variance estimation and directional regression. By
examining different missingness schemes, we demonstrate
that inverse probability weighted estimators for missing pre-
dictor are not sensitive to the MAR assumption. The fusion-
refined procedures for missing response, on the other hand,
may be outperformed by complete case analysis if the re-
sponse is missing completely at random (MCAR).
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1. INTRODUCTION

In multivariate analysis with p-dimensional predictor X
and univariate response Y , the single-index model assumes
that the regression between Y and X can be fully de-
scribed by a single linear combination βTX of the predictor.
Throughout this paper, we assume for some β ∈ R

p,

Y = f(βTX, ε),(1)

where ε X and “ ” means statistical independence. Model
(1) is a compromise between fully parametric and nonpara-
metric modeling. Average derivative estimation (Hardle and
Stoker, 1989) considered a special case of (1), and assumed
that the conditional mean E(Y |X) has a single index struc-
ture. As an incomplete list, model (1) has also been con-
sidered in Li and Duan (1989), Li (1991), Yin and Cook
(2005).

Estimating the direction β in model (1) can be cast
into the framework of sufficient dimension reduction (Cook,
1994, 1996). Sufficient dimension reduction looks for B ∈
R

p×d(d < p) with the smallest column space, such that
Y X|BTX. The column space of B, Span(B), is called
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the central space of Y versus X and denoted by SY |X .
The existence of the central space has been discussed in
Yin et al. (2008). The most popular sufficient dimension
reduction methods in literature include sliced inverse re-
gression (SIR) (Li, 1991), sliced average variance estimation
(SAVE) (Cook and Weisberg, 1991), and directional regres-
sion (DR) (Li and Wang, 2007). Model (1) implies that the
conditional distribution of Y |X is a function of βTX, or
equivalently, Y X|βTX. Estimating index β in (1) can
thus be viewed as estimating the one-dimensional central
space SY |X = Span(β). In this paper, we aim to recover β
in model (1) when there are missing values in the predictor
or in the response. The procedures discussed throughout the
paper are based on SIR, SAVE and DR.

Missing data is commonplace in multivariate analysis and
poses challenges to the existing sufficient dimension reduc-
tion methodology. Missing values in the predictors and in
the response are treated separately in the literature. Li and
Lu (2008) proposed an inverse probability weighted estima-
tor to estimate SY |X with the predictors missing at random.
In the case when the response is missing, denote Δ as the
missingness indicator of Y and SΔ|X as the central space
of Δ versus X. Ding and Wang (2011) introduced a novel
fusion-refined procedure, where estimation of SY |X borrows
information from SΔ|X .

The estimators proposed in Li and Lu (2008), Ding and
Wang (2011) are both based on SIR. In this paper, we de-
velop the inverse probability weighted procedure and the
fusion-refined procedure based on SAVE and DR. SIR is
known to be preferable when the link function between Y
and βTX is monotone, but SAVE works better when the
link function has significant quadratic trend. DR combines
the strength of SIR and DR, and enjoys satisfactory perfor-
mance for a wide range of models. We will see the newly
developed estimators based on SAVE and DR inherit such
properties when there are missing data. For a complete
treatment, we discuss likelihood based estimators in addi-
tion to the inverse probability weighted estimators in the
presence of missing predictors. For missing response, impu-
tation based estimators as well as fusion-refined procedures
are presented.

Missing completely at random (MCAR) and missing at
random (MAR) (Rubin, 1976; Little and Rubin, 1987) are
two commonly considered missingness schemes. Li and Lu
(2008), Ding and Wang (2011) both rely on the MAR

http://www.intlpress.com/SII/


assumption. We compare various methods under different
missingness schemes. Because the MAR and MCAR as-
sumptions may be difficult to test in applications, it is im-
portant to understand how sensitive the procedures are to
the missingness assumptions. Through extensive simulation
studies, we find that the inverse probability weighted esti-
mators with missing predictors can work well under either
the MAR or the MCAR assumption. On the other hand,
although the fusion-refined procedures for missing response
can improve over complete analysis under the MAR assump-
tion, this may not be true when the response is MCAR.

The paper is organized as follows. We briefly review the
classical SIR, SAVE and DR algorithm without missing
values in Section 2. Based on SAVE and DR, we develop
new procedures for the missing predictor in Section 3. New
fusion-refined and imputation methods for missing response
are proposed in Section 4. As we treat missing predictor and
missing response separately, simulation studies are provided
for each case at the end of Sections 3 and 4 respectively. We
conclude the paper with a brief discussion in Section 5.

2. A REVIEW OF SIR, SAVE AND DR

We assume X is multivariate normal with mean 0 and
variance Σ throughout this paper. Please note that normal-
ity is not the necessary condition for the validity of SIR,
SAVE and DR. See, for example, Li and Dong (2009), Dong
and Li (2010). Denote Pβ = β(βTΣβ)−1βTΣ, and the nor-
mality of X implies

E(X|βTX) = PT
β X and Var(X|βTX) = Σ− PT

β ΣPβ .(2)

Under model (1), SIR is based on the following fact,

E(X|Y ) = E{E(X|βTX)|Y } = PT
β E(X|Y ).

It follows that MSIR = Var{E(X|Y )} ⊆ ΣSY |X . For the
development of SAVE, we have

Var(X|Y ) = E{Var(X|βTX)|Y }+Var{E(X|βTX)|Y }.

After plugging in (2) and rearranging the terms, we have

Σ−Var(X|Y ) = PT
β {Σ−Var(X|Y )}Pβ .

It follows that MSAVE = E[{Σ−Var(X|Y )}2] ⊆ ΣSY |X . DR
can be viewed as a combination of SIR and SAVE. For

MDR = E[{Σ− E(XXT |Y )}2] + E2{E(X|Y )E(XT |Y )}
+ E{E(XT |Y )E(X|Y )}E{E(X|Y )E(XT |Y )},

Li and Wang (2007) demonstrate that MDR ⊆ ΣSY |X . De-
note η as the leading eigenvector of MSIR, MSAVE or MDR.
Then Σ−1η is used to recover the direction β in model (1).

For the sample level estimation, consider an i.i.d. sample
(xi, yi). Suppose the sample space of Y can be partitioned
into H categories J1, . . . , JH , with the hth category having

nh observations. This partitioning is obvious with discrete
Y , and can be achieved by slicing when Y is continuous.
Let Ii,h = I(yi ∈ Jh) denote the indicator function of the
ith observation yi in the hth category. The algorithm for
classical SIR, SAVE and DR with no missing values is as
follows.

1. Calculate Σ̂ =
∑n

i=1(xi − x̄)(xi − x̄)T /n, where x̄ =∑n
i=1 xi/n.

2. Calculate intraslice mean x̄h =
∑n

i=1 xiIi,h/nh and in-

traslice variance Σ̂h =
∑n

i=1(xi− x̄h)(xi− x̄h)
T Ii,h/nh.

Also compute ph = nh/n, νh = (x̄h − x̄)(x̄h − x̄)T and
ch = (x̄h − x̄)T (x̄h − x̄), h = 1, . . . , H.

3. For SIR and SAVE, compute M̂SIR =
∑H

h=1 νhph and

M̂SAVE =
∑H

h=1(Σ̂− Σ̂h)
2ph respectively. For DR,

M̂DR =

H∑
h=1

(Σ̂− Σ̂h − νh)
2ph

+

(
H∑

h=1

νhph

)2

+

(
H∑

h=1

chph

) (
H∑

h=1

νhph

)
.

4. Denote the leading eigenvector of M̂ (SIR, SAVE, or

DR) as η̂. We estimate β in (1) by β̂ = Σ̂−1η̂.

When there are missing values in either the response or the
predictor, the complete case analysis will discard the cases
with missing values, and the above algorithm is implemented
based on the cases with complete observations.

3. MISSING PREDICTOR

Li and Lu (2008) proposed inverse probability weighted
SIR, and we extend it to SAVE and DR. Besides the in-
verse probability weighted methods considered in Li and Lu
(2008), we present the likelihood based methods as well. For
the ease of demonstration, we only discuss the case where
one predictor is missing.

3.1 Inverse probability weighted estimators

For X = (XT
1 , X2)

T with X1 ∈ R
p−1 and X2 ∈ R, sup-

pose X1 is complete, and the missingness of X2 depends
on the observed data but not on the missing data. In sym-
bols, R X2|(Y,X1), where R = 1 indicates no missing-
ness and R = 0 means at least one entry in X2 is missing.
The challenge here is to recover terms such as Σ, E(X|Y )
and Var(X|Y ) in spite of missingness in the data. The key
of inverse probability weighted methods is to model the
non-missing probability via π = P (R = 1|Y,X1). Define
X̃2 = RX2/π and X̃22 = RX2X

T
2 /π. We modify Lemma 1

in Li and Lu (2008) and have the following result.

Proposition 1. Suppose π = P (R = 1|Y,X1) is correctly
specified, and the MAR assumption R X2|(Y,X1) holds,
then E(X̃2) = E(X2), E(X̃22) = E(X2X

T
2 ), E(X̃2|Y ) =

E(X2|Y ), E(X̃22|Y ) = E(X2X
T
2 |Y ), E(X1X̃

T
2 ) =

E(X1X
T
2 ), and E(X1X̃

T
2 |Y ) = E(X1X

T
2 |Y ).
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The proof of Proposition 1 is straightforward and thus
omitted. Please note that Proposition 1 is still valid if we re-
place the MAR assumption R X2|(Y,X1) with the MCAR
assumption R (Y,X), as the latter will guarantee the for-
mer.

Proposition 1 suggests we recover Σ and Var(X|Y ) via

Σ =

(
Σ11 Σ12

ΣT
12 Σ22

)
and Var(X|Y ) =

(
Σ11|Y Σ12|Y
ΣT

12|Y Σ22|Y

)

where Σ11 = Var(X1), Σ12 = E(X1X̃
T
2 ) − E(X1)E

T (X̃2),
Σ22 = E(X̃22) − E(X̃2)E

T (X̃2), Σ11|Y = Var(X1|Y ),

Σ12|Y = E(X1X̃
T
2 |Y ) − E(X1|Y )ET (X̃2|Y ), and Σ22|Y =

E(X̃22|Y )− E(X̃2|Y )ET (X̃2|Y ).
We describe the sample level inverse probability weighted

estimators next. Suppose (xi, yi, ri) are i.i.d. copies of
(X,Y,R). For i = 1, . . . , n, xi = (xT

1i, x
T
2i)

T , ri = 0
if x2i is missing and ri = 1 otherwise. The inverse
probability weights have to be estimated by positing a
parametric model π(θπ) = π(Y,X1; θπ). Based on all

(x1i, yi, ri), θ̂π can be obtained by maximizing the likelihood∏n
i=1[π(yi, x1i; θπ)]

ri [1−π(yi, x1i; θπ)]
1−ri . We follow Li and

Lu (2008) and posit a linear regression model π(θπ). Denote

the resulting estimators as π̂i = π(yi, x1i; θ̂π). Then we have

ˆ̃x2i = rix2i/π̂i, and ˆ̃x22i = rix2ix
T
2i/π̂i.

Although x2i may be missing, ˆ̃x2i and ˆ̃x22i are avail-
able at the sample level. Denote x̄1 =

∑n
i=1 x1i/n,

x̄2 =
∑n

i=1
ˆ̃x2i/n, and x̄22 =

∑n
i=1

ˆ̃x22i/n. The sample
estimators of Σ is thus

Σ̂ipw =

(
Σ̂11 Σ̂12

Σ̂T
12 Σ̂22

)
,

where Σ̂11 =
1

n

n∑
i=1

(x1i − x̄1)(x1i − x̄1)
T ,

Σ̂12 =
1

n

n∑
i=1

x1i
ˆ̃xT
2i − x̄1x̄

T
2 , and Σ̂22 = x̄22 − x̄2x̄

T
2 .

Recall that J1, . . . , JH is a partition of the sample space of
Y , Ii,h = 1 if yi ∈ Jh, and Ii,h = 0 otherwise. Let x̄1,h =∑n

i=1 x1iIi,h/nh, x̄2,h =
∑n

i=1
ˆ̃x2iIi,h/nh, and x̄22,h =∑n

i=1
ˆ̃x22iIi,h/nh. Then we estimate Var(X|Y ∈ Jh) by

Σ̂ipw
h =

(
Σ̂11,h Σ̂12,h

Σ̂T
12,h Σ̂22,h

)
,

where Σ̂11,h =
1

nh

n∑
i=1

(x1i − x̄1,h)(x1i − x̄1,h)
T Ii,h,

Σ̂12,h =
1

nh

n∑
i=1

x1i
ˆ̃xT
2iIi,h − x̄1,hx̄

T
2,h, and

Σ̂22,h = x̄22,h − x̄2,hx̄
T
2,h.

Furthermore, denote x̄ipw = (x̄T
1 , x̄2)

T , x̄ipw
h = (x̄T

1,h, x̄2,h)
T ,

νipwh = (x̄ipw
h − x̄ipw)(x̄ipw

h − x̄ipw)T , and cipwh = (x̄ipw
h −

x̄ipw)T (x̄ipw
h − x̄ipw). The sample estimators of MSIR and

MSAVE become

M̂ ipw
SIR =

H∑
h=1

νipwh ph, and M̂ ipw
SAVE =

H∑
h=1

(Σ̂ipw − Σ̂ipw
h )2ph.

Similarly, we have the sample estimator of MDR as

M̂ ipw
DR =

H∑
h=1

(Σ̂ipw − Σ̂ipw
h − νipwh )2ph

+

(
H∑

h=1

νipwh ph

)2

+

(
H∑

h=1

cipwh ph

) (
H∑

h=1

νipwh ph

)
.

Denote the leading eigenvector of M̂ ipw (SIR, SAVE, or
DR) as η̂ipw, and the final inverse probability weighted es-

timator is β̂ipw = (Σ̂ipw)−1η̂ipw.

3.2 Likelihood based estimators

For multivariate normal with missing observations, like-
lihood based estimators for the mean vector and the co-
variance matrix are well-established in literature. See, for
example, Little and Rubin (1987). SIR, SAVE, and DR rely
on estimation of intraslice mean vectors and intraceslice co-
variance matrices, and we modify the algorithm in Section 2
as follows:

1′. Calculate Σ̂mle and x̄mle using the mlest function in the
R package ‘mvnmle’.

2′. Based on the xi values in the hth slice, use mlest and
calculate the intraslice mean x̄mle

h and the intraslice

variance Σ̂mle
h . Also compute ph = nh/n, ν

mle
h = (x̄mle

h −
x̄mle)(x̄mle

h − x̄mle)T and cmle
h = (x̄mle

h − x̄mle)T (x̄mle
h −

x̄mle), h = 1, . . . , H.

3′. For SIR and SAVE, we have M̂mle
SIR =

∑H
h=1 ν

mle
h ph and

M̂mle
SAVE =

∑H
h=1(Σ̂

mle − Σ̂mle
h )2ph. For DR,

M̂mle
DR =

H∑
h=1

(Σ̂mle − Σ̂mle
h − νmle

h )2ph

+

(
H∑

h=1

νmle
h ph

)2

+

(
H∑

h=1

cmle
h ph

) (
H∑

h=1

νmle
h ph

)
.

4′. Denote the leading eigenvector of M̂mle (SIR, SAVE,

or DR) as η̂mle. We estimate β in (1) by β̂mle =
(Σ̂mle)−1η̂mle.

3.3 Simulation with missing predictor

We carry out numerical studies in this section to com-
pare different estimators in the presence of missing predic-
tors. Suppose X = (V1, . . . , V5)

T is multivariate normal with

SIM with missing values 381



Table 1. Missing predictor. The median absolute sample correlation between βTX and β̂TX is reported based on 100
repetitions and sample size n = 200

Model
Missing

Method β̂full V1 MCAR V1 MAR

Proportion β̂cc β̂mle β̂ipw β̂cc β̂mle β̂ipw

I

50%
SIR .981 .954 .977 .978 .953 .969 .971
SAVE .939 .794 .898 .900 .825 .897 .788
DR .973 .914 .957 .949 .928 .957 .932

70%
SIR .978 .927 .959 .966 .925 .943 .962
SAVE .953 .781 .792 .779 .796 .844 .727
DR .969 .891 .939 .915 .896 .920 .832

II

50%
SIR .377 .352 .418 .503 .386 .489 .502
SAVE .986 .968 .975 .975 .968 .975 .968
DR .986 .968 .977 .976 .968 .976 .966

70%
SIR .335 .308 .447 .480 .348 .512 .492
SAVE .987 .949 .954 .966 .949 .951 .937
DR .987 .949 .955 .965 .949 .953 .935

mean zero and identity covariance matrix I5. The error ε is
standard normal and independent of X. The two models we
consider are

Model I: Y = exp(βTX) + ε, where β = (.5,−.5, .5, 0, 0)T ;

Model II: Y = (βTX)2 + .5ε, where β = (.5, .5, 0, 0, 0)T .

Suppose only V1 has missing observations with missingness
indicator R. We have R = 1 when V1 is observed and R = 0
otherwise. Consider two missingness schemes:

V1 MCAR: P (R = 1) = ρRx (1− ρx)
1−R;

V1 MAR: π = P (R = 1|Y, V2, . . . , V5)

=
exp(cx + 0.5V4 + V5)

1 + exp(cx + 0.5V4 + V5)
.

(3)

The missing proportion of the predictor V1 can be controlled
by adjusting ρx and cx above. We get approximately 50%
missing proportion with ρx = .5 and cx = 0; and roughly
70% of V1 is missing with ρx = .3 and cx = −1. Various esti-
mators are compared across these two different missingness
schemes. The estimator based on all observations as if there
is no missingness is denoted as β̂full; β̂cc denotes the com-
plete case estimator; β̂ipw is the inverse probability weighted
estimator described in Section 3.1; and β̂mle denotes the like-
lihood based estimator in Section 3.2. Three types of esti-
mators (SIR, SAVE and DR) are compared across two miss-
ingness schemes (MCAR and MAR). Sample size is fixed at
n = 200. Based on 100 repetitions, we report in Table 1 the
median of the absolute sample correlations between βTX
and β̂TX.

We first compare different columns in Table 1. β̂full pre-
tends there is no missing data and sets the benchmark. Both
β̂ipw and β̂mle have better overall performances than the
complete case estimator β̂cc. As we discussed in Section 3.1,
β̂ipw is not sensitive to the MAR assumption, and has decent
performance with V1 MCAR.

Next we compare SIR, SAVE, and DR across the rows of
Table 1. SIR enjoys the best performance for Model I as the
link function is monotonic, while it will fail for Model II with
quadratic link function. SAVE performs worse than SIR for
Model I, but is much better for Model II. As a combination
method of SIR and SAVE, DR shares the strength of both
methods and has the best overall performance over Models I
and II.

4. MISSING RESPONSE

Now we focus on the case when the predictor X is fully
observed and the response Y is missing. Ding and Wang
(2011) considered fusion-refined and imputation-based esti-
mators for SIR. Their methods can easily extend to SAVE
and DR.

4.1 Fusion-refined estimators

Let Δ be the missingness indicator of Y , with Δ = 1
meaning Y is observed and Δ = 0 otherwise. Assume X
is fully observed, and Y is MAR with Y Δ|X. Ding and
Wang (2011) carefully studied the relationship between the
joint central space S(Y,Δ)|X , and two marginal central spaces
SY ∗|X and SY |X , where Y ∗ = YΔ is observable. We state
the following result that connects these spaces.

Proposition 2. Suppose there exists β ∈ R
p such that

Y X|βTX and Δ X|βTX. Then under the MAR as-
sumption Δ Y |X, we have

S(Y,Δ)|X = SY ∗|X = SY |X = SΔ|X .

Proposition 2 can be viewed as an extension of Theorem 1
in Ding and Wang (2011). Its proof is obvious and thus omit-
ted. Please note that Proposition 2 is still valid if we replace
the MAR assumption Δ Y |X with the MCAR assumption
Δ (Y,X), as the latter will guarantee the former. While we
assume SΔ|X aligns with SY |X through the same index β,
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Table 2. Missing response. The median absolute sample correlation between βTX and β̂TX is reported based on 100
repetitions and sample size n = 200

Model
Missing

Method β̂full Y MCAR Y MAR

Proportion β̂cc β̂mri β̂fr β̂cc β̂mri β̂fr

I

50%
SIR .978 .953 .942 .945 .973 .976 .982
SAVE .959 .841 .644 .624 .815 .913 .919
DR .974 .928 .771 .764 .943 .965 .968

70%
SIR .976 .920 .911 .916 .959 .966 .970
SAVE .951 .771 .516 .543 .738 .803 .793
DR .971 .898 .560 .550 .901 .943 .940

II

50%
SIR .347 .335 .312 .385 .796 .659 .946
SAVE .986 .970 .959 .967 .970 .946 .953
DR .986 .971 .965 .969 .970 .962 .967

70%
SIR .392 .340 .315 .297 .775 .586 .934
SAVE .987 .938 .906 .901 .893 .868 .849
DR .987 .941 .915 .913 .904 .933 .942

Ding and Wang (2011) provided a more general treatment
where SΔ|X may be different from SY |X . Without ambigu-
ity, we refer to estimators based on SY ∗|X the fusion-refined
estimators.

At the sample level, denote (xi, yi, δi) as an i.i.d. sample.
For i = 1, . . . , n, δi = 0 means yi is missing and δi = 1
otherwise. Based on fully observable xi and y∗i = yiδi, we
can carry out the algorithm in Section 2 and estimate SY ∗|X .
The final estimator via SIR, SAVE, or DR is denoted as
β̂fr.

For Y MCAR, it is obvious that SΔ=1
Y |X = SY |X , where

SΔ=1
Y |X denotes the central space of Y versus X based

on the fully observed data. Under the assumption that
Y is MAR, Theorem 5 of Ding and Wang (2011) states
that SΔ=1

Y |X coincides SY |X . Thus complete case analysis
should yield satisfactory results regardless of the missing-
ness scheme.

4.2 Mean regression imputation estimators

Mean regression imputation has been suggested as an al-
ternative to the fusion-refined procedure in Ding and Wang
(2011). Let ẑi = xT

i β̂
fr. For subject i with missing re-

sponse, the key idea is to impute yi based on (ẑj , yj , δj),
j = 1, . . . , n. Suppose K(·) is a kernel function and denote
Kb(u) = b−1K(u/b). We obtain

p̂ij =
δjKb(ẑj − ẑi)∑n
j=1 δjKb(ẑj − ẑi)

,(4)

which can be viewed as an estimate of pij = P (Y =

yj |XT β̂fr = xT
i β̂

fr), the probability of imputing yj for the
ith observation. The mean regression imputation response
for the ith observation is thus ymri

i =
∑n

j=1 yj p̂ij . Replace

Ii,h with Imri
i,h for the algorithm described in Section 2, where

Imri
i,h denotes the indicator function of ymri

i ∈ Jh. The corre-
sponding estimator of β is the mean regression imputation
estimator, and we denote it by β̂mri.

4.3 Simulation with missing response

We revisit Models I and II in Section 3.3 and consider
the case when Y is missing. Denote Δ as the missingness
indicator of Y , with Δ = 1 meaning Y observed and Δ = 0
otherwise. Consider two missingness schemes:

Y MCAR: P (Δ = 1) = ρΔy (1− ρy)
1−Δ;

Y MAR: P (Δ = 1|X) =
exp(cy + βTX)

1 + exp(cy + βTX)
.

(5)

The missing proportion of the response Y can be controlled
by adjusting ρy and cy above. Setting ρy = .5 and cy = 0 cor-
responds to approximately 50% missing proportion; and we
get around 70% missing response with ρy = .3 and cy = −1.
Please note that according to Proposition 2, we set the miss-
ingness index β to be the same as in the model statement.
Various estimators are compared across these two different
missingness schemes. As before, we denote β̂full as the esti-
mator based on full data, and β̂cc denotes the complete case
estimator. The fusion-refined estimator in Section 4.1 is de-
noted by β̂fr, and the mean regression imputation estimator
in Section 4.2 is denoted by β̂mri. For Kb(·) involved in (4),
we use Gaussian kernel and set the window width b = n−1/5

following Ding and Wang (2011).
In Table 2, we report the median absolute sample correla-

tions between βTX and β̂TX based on 100 repetitions. β̂full

is based on the full data and sets the benchmark. We clearly
see that SIR and DR are preferable for Model I, while SAVE
and DR are better than SIR for Model II. The fusion-refined
estimator enjoys decent performance under the MAR as-
sumption. With 50% missing proportion for SIR in Model I,
β̂fr even yields better result than β̂full (.982 versus .978).
This scenario has been described in Ding and Wang (2011),
which is possible because SΔ|X aligns with SY |X and the
missingness carries useful information for estimating β. The
overall performance of the mean regression imputation esti-
mator β̂mri is similar to β̂fr.
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The complete case estimator β̂cc under either MCAR and
MAR seems to have consistent results with the full data
when the missing proportion is 50%, and have reasonable
performances when the missing proportion is 70%. This is
to be expected as the complete case analysis is unbiased
with missing response MCAR or MAR. The fusion-refined
β̂fr can improve over β̂cc under the MAR assumption, as β̂fr

captures useful information to estimate β from the missing-
ness scheme. On the other hand, β̂fr is dominated by β̂cc

under the MCAR assumption. This is not really surprising,
as the only difference between β̂cc and β̂fr is that the latter
includes one additional slice containing all the observations
with missing response. When the response is MCAR, the
missingness carries no useful information about β and will
dilute the estimation of SY |X .

An interesting finding in Table 2 is the difference between
SIR estimator β̂cc for Model II. The performance of β̂cc

based on SIR improves a lot from MCAR to MAR (.335 to
.796 with 50% missing; .340 to .775 with 70% missing). SIR
based on full data does not work well for Model II due to the
symmetric link function, and the estimator with response
MCAR will inherit this limitation. When the response is
MAR, the observed response is no longer symmetric due to
the asymmetry in missingness probability, which explains
the improvement of SIR.

5. CONCLUSION

We provide a general treatment of direction estimation
in single-index model with missing values. Existing esti-
mators based on SIR, such as inverse probability weighted
and fusion-refined estimators, are extended to estimators
based on SAVE and DR. We recommend DR-based proce-
dures, which enjoy the best overall performance in a wide
range of models, and provide a balance between SIR and
SAVE. By considering MAR and MCAR as different miss-
ingness schemes, we demonstrate that while inverse proba-
bility weighted estimators are not sensitive to the predictor
MAR assumption, the fusion-refined procedures could be
dominated by complete case analysis when the response is
MCAR.

The methods proposed in this paper can be further im-
proved along the following lines. The inverse probability
weighted procedures rely on estimation of the missingness
probability π, which is estimated in a parametric fashion
in this paper. To guard against misspecification of π, aug-
mented inverse probability weighted estimators can be de-
veloped as in Li and Lu (2008), Dong and Zhu (2012). The
missing predictor and missing response are treated sepa-
rately, and we only consider the case with a single missing
predictor. Further investigation is warranted for multiple
missing predictors together with missing response under the
sufficient dimension reduction framework.
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