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Imputation methods for quantile estimation under
missing at random
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Imputation is frequently used to handle missing data for
which multiple imputation is a popular technique. We pro-
pose a fractional hot deck imputation which produces a valid
variance estimator for quantiles. In the proposed method,
the imputed values are chosen from the set of respondents
and are assigned with proper fractional weights that use a
density function for the working model. In addition, we con-
sider a nonparametric fractional imputation method based
on nonparametric kernel regression, avoiding a parametric
distribution assumption and thus giving more robustness.
The resulting estimator can be called nonparametric frac-
tionally imputation estimator. Valid variance estimation is
also discussed. A limited simulation study compares the pro-
posed methods favorably with other existing methods.
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1. INTRODUCTION

Quantile estimation is frequently used in many disci-
plines. In industry, a device manufacturer may wish to know
what are the 10% and 90% quantiles for some features of the
production processes to tailor the process to produce 80%
of the devices. In finance, for risk management, a bank may
need to estimate a lower bound on the changes in the values
of its portfolio which will hold with high probability.

We consider imputation methods for quantile estimation,
where the missing mechanism is assumed to be missing at
random in the sense of Rubin (1987). Under existence of
missing data, imputation is often used for missing data anal-
ysis to facilitate the parameter estimation, which is a pro-
cess of replacing missing values with pseudo values so that
analysis from different users will be consistent.

There are various ways to impute missing values which
lead to different imputation methods. Multiple imputa-
tion (MI in the sequel), proposed by Rubin (1987), uses a
Bayesian method to generate multiple imputed values which
represent the uncertainty about the right value to impute.
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Parametric fractional imputation (PFI in the sequel), pro-
posed by Kim (2011), is a frequentist version of MI, where
fractional weights are assigned to the imputed values to
properly represent the point mass of the imputed values.

Imputation has been widely used for handling missing
data because a single imputed data can be used to estimate
several parameters. However, many papers on imputation
focused only on estimating the population mean. Estimat-
ing the population quantiles with imputed data is also an
important practical problem but is rarely addressed in liter-
ature. We discuss MI and PFI in terms of quantile estima-
tion. Moreover, we propose a new imputation method which
can be called fractional hot deck imputation (FHDI in the
sequel). Instead of generating imputed values, FHDI chooses
the imputed values from the set of respondents and assigns
fractional weights to imputed values so that the conditional
expectation of the estimating function is approximated by
the imputed estimating function.

The proposed FHDI method has a nonparametric fea-
ture which can easily be modified to a fully nonparametric
version called nonparametric fractional imputation (NPFI
in the sequel). In NPFI, the whole estimation procedure is
fully nonparametric. On the other hand, MI and PFI rely on
the model assumptions. Therefore, the proposed methods,
FHDI and NPFI, are more robust than the existing meth-
ods, MI and PFI, producing less-biased estimators in the
cases of failure of the assumed model.

A more important advantage of the fractional imputa-
tion methods over the MI method is that the former allow
valid variance estimators for quantile estimates while for
the latter, a variance estimator using Rubin’s formula is not
valid. Valid variance estimation for fractional imputation
is possible because, unlike MI, the effect of estimated nui-
sance parameter in imputation is correctly reflected in the
replication variance estimation. It is well known that direct
application of delete-1 observation jackknife variance esti-
mation is not valid for medians or quantiles. On the other
hand, FHDI and NPFI allow a valid two-step variance es-
timator of quantiles by combining the linearization method
(or test inversion method) and the delete-1 observation jack-
knife variance estimation to the empirical distribution func-
tion together.

The rest of the paper is organized as follows. In Section 2,
we introduce multiple imputation and parametric fractional
imputation in quantile estimation with ignorable missing
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data. In Section 3, we develop FHDI and NPFI for quantile
estimation. Delete-1 observation jackknife variance estima-
tion is discussed in Section 4. Section 5 presents a limited
simulation study and a real data set analysis. Some conclud-
ing remarks follow in Section 6.

2. EXISTING METHODS

When the study variable y is fully observed in the sample,
an empirical distribution function can be computed from the
sample by

F̂ (y) = n−1
n∑

i=1

I(yi < y),

and the sample quantile is then computed by the inverse of
empirical distribution

ξ̂p = F̂−1(p) = inf{y : F̂ (y) ≥ p},

which can also be viewed as a solution to the estimating
equation

U(ξp) =

n∑
i=1

U(ξp, yi) = n−1
n∑

i=1

{I(yi < ξp)− p} = 0.

The above estimation procedure is robust because it does
not require any distribution assumption.

For variance estimation, we consider two types of variance
estimators. The first type is the linearization method estima-
tor which is based on the Bahadur representation (Bahadur,
1966)

(1) V̂ (ξ̂p) ∼=
1

[f̂(ξ̂p)]2
V̂ (F̂ (ξ̂p,FI)),

where f is the marginal density function of Y . The second
type is the Woodruff variance estimator (Woodruff, 1952)
which is based on the so-called test-inversion method. To
compute the Woodruff variance estimator, we first construct
a normal-based 95% asymptotic confidence interval for p by

p̂± 2

√
V̂ (p̂) ≡ (p̂L, p̂U ), where p̂ ≡ F̂ (ξ̂p). Since F̂ is mono-

tone, a normal-based 95% asymptotic confidence interval for
ξp can be obtained by (F̂−1(p̂L), F̂

−1(p̂U )) ≡ (ξ̂p,L, ξ̂p,U ).
Thus the Woodruff variance estimator is given by

(2) V̂ (ξ̂p) =

(
ξ̂p,U − ξ̂p,L

4

)2

.

We now consider missing cases. Several imputation meth-
ods will be adopted to estimate the quantiles. We assume
that the study variable y is subject to missing and an auxil-
iary variable x is observed throughout the sample. Properly
incorporating x into the estimation of the quantiles of y can
lead to bias correction as well as variance reduction. For
simplicity, we assume that the first r elements have both x
and y observed and the remaining n− r elements have only
x observed.

2.1 Multiple imputation (MI)

Multiple imputation (MI) is a popular technique of im-
putation proposed by Rubin (1987). In the MI, instead of
generating one single value, a set of plausible values are gen-
erated to represent the uncertainty about the right value to
impute. The complete sample estimator is then applied to
each of the multiply imputed data sets. Finally the results
are combined from these analysis for inference.

In MI, Bayesian method is used to generate imputed
values. Multiple imputation procedure for bivariate normal
(x, y) is described in Schenker and Welsh (1988). At each
repetition of the imputation (k = 1, . . . ,m), we can calcu-

late the imputed version of the quantile estimator ζ̂γ,I(k) and

its variance estimator V̂I(k). The final quantile estimator is
computed by

ζ̂γ,MI = m−1
m∑

k=1

ζ̂γ,I(k).

Rubin proposed using the following estimator for the vari-
ance of ζ̂γ,MI :

(3) V̂MI = Wm,n +
(
1 +m−1

)
Bm,n,

where

(4) Wm,n = m−1
m∑

k=1

V̂I(k),

and

(5) Bm,n = (m− 1)
−1

m∑
k=1

(
ζ̂γ,I(k) − ζ̂γ,MI

)2

.

In (4), V̂I(k) is the variance estimator (1) or (2) applied to

the kth imputed data set.
Validity of the MI variance estimator requires that the

congeniality condition of Meng (1994) holds. Roughly speak-
ing, the congeniality condition means that

V (θ̂MI) = V (θ̂n) + V (θ̂MI − θ̂n).

Kim (2011) argues that the congeniality condition does not
hold when the parameter of interest is θ = Pr(Y < c) and

θ̂n = n−1
∑n

i=1 I(yi < c) is used to estimate θ under com-
plete response. Because the quantile estimator is also ob-
tained from the sample distribution function, the congenial-
ity condition does not hold for quantiles, which is confirmed
numerically in the simulation study in Section 5.

2.2 Parametric fractional imputation (PFI)

Parametric fractional imputation (PFI) was proposed by
Kim (2011) for general purpose estimation. In Kim (2011),
the PFI method was developed for estimating population
mean and proportion under ignorable non-response. The
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PFI method can be developed for quantile estimation as
well. One advantage of the PFI method is that, if the im-
puted data is applied to the score function or the estimating
function, the resulting estimator is very close to the maxi-
mum likelihood estimator. In the PFI method, m imputed
values are generated for yi, i = r + 1, . . . , n and m frac-
tional weights are assigned to the imputed values so that
the mean score function or the mean estimating function can
be approximated by a weighted sum of the imputed score
functions or estimating functions. Let y∗ij be the j

th imputed
value of missing yi and w∗

ij be the fractional weight assigned
to y∗ij . The fractional weights are constructed to satisfy

(6)

m∑
j=1

w∗
ij = 1,

for each i = 1, 2, . . . , n and

(7) w∗
ij ∝

f(y∗ij |xi; θ̂)

h(y∗ij)
,

where f(y | x; θ) is the conditional density of y given x, h(y)
is the density function of the distribution from which y∗ij are

generated, θ̂ is the MLE of θ which is obtained by solving

r∑
i=1

S(θ;xi, yi) = 0,

and S(θ, xi, yi) = ∂ log f(yi|xi, θ)/∂θ is the score function
for the i-th observation, f(yi|xi, θ). Once the fractional
weights are constructed, the PFI estimator of ξp is given
by

(8) ξ̂∗p,PFI = F̂ ∗−1
PFI(p) = inf{y : F̂ ∗

PFI(y) ≥ p},

where
(9)

F̂ ∗
PFI(y) = n−1

n∑
i=1

{δiI(yi < y)+(1−δi)

m∑
j=1

w∗
ijI(y

∗
ij < y)}.

and δi is the response indicator such that δi = 1 for observed
yi and δi = 0 for missing yi.

Variance estimation can be obtained by the linearization
method as described in Appendix A.1.

3. PROPOSED METHODS

In MI and PFI, the imputed values are generated from a
parametric distribution. Instead of generating imputed val-
ues, in the FHDI, the imputed values are taken from the set
of respondents. The record providing the value is called the
donor and the record with the missing value is called the re-
cipient. Hot deck imputation is initially proposed by Brick
and Kalton (1996) to reduce imputation variance by random
selection of one imputed value among donors. Kalton and
Kish (1984) and Fay (1996) used more than one donor for a
recipient to reduce the imputation variance.

3.1 Fractional hot deck imputation (FHDI)

In FHDI, for each missing yi, a set of m imputed val-
ues {y∗i1, . . . , y∗im} are obtained from the set of respondents
{y1, . . . , yr}, i = r + 1, . . . , n. Let w∗

ij be the fractional
weights assigned to y∗ij , j = 1, 2, . . . ,m. In FHDI, we use
m = r, that is, the j-th imputed value of missing yi is
y∗ij = yj , an observed value, j = 1, . . . , r. In this case,
the fractional weights w∗

i1, . . . , w
∗
ir are computed to satisfy∑r

j=1 w
∗
ij = 1 and

r∑
j=1

w∗
ijI(yj < y) ∼= Pr(yi < y|xi).

Since we can treat {y1, . . . , yr} as a set of realizations
from f(y | δ = 1), the desired fractional weight assigned to
y∗ij = yj for δi = 0 is given by

(10) w∗
ij ∝

f(yj |xi; θ̂)

f(yj |δj = 1)
,

and
∑m

j=1 w
∗
ij = 1, for i = r + 1, . . . , n. Since

f(y | δ = 1) =

∫
f(y | x, δ = 1)f(x | δ = 1)dx

=

∫
f(y | x)f(x | δ = 1)dx,

where the second equality follows from MAR, a consistent
estimator of f(yj |δj = 1) is given by

f̂(yj |δj = 1) =

∑n
k=1 δkf(yj |xk, θ̂)∑n

k=1 δk
,

which uses the empirical distribution for f(x | δ = 1). That
is, it uses

(11) f̂(x | δ = 1) =

∑
δi=1 I(x = xi)∑n

i=1 δi
.

Thus, the fractional weight in (10) is computed by

w∗
ij =

f(yj |xi; θ̂)/{
∑n

k=1 δkf(yj |xk, θ̂)}∑r
l=1[f(yl|xi; θ̂)/{

∑n
k=1 δkf(yl|xk, θ̂)}]

.

Once the weight set {w∗
ij} is created, the FHDI estimator

ξ̂p,FHDI of ξp is computed from (8)–(9) with these {w∗
ij}

replacing that in (8)–(9). Variance estimation for ξ̂p,FHDI

will be discussed in Section 4.

3.2 Nonparametric fractional imputation
(NPFI)

Fractional imputation can be implemented nonparamet-
rically. Cheng (1994) used kernel regression estimators to
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estimate mean functionals through empirical estimation of
the missing pattern. Chen (2001) and Kim and Yu (2011)
used a semi-parametric logistic regression model of mean
functionals with non-ignorable missing data. We adopt the
kernel regression idea to obtain fractional weights in FHDI,
and the resulting imputation method will be called nonpara-
metric fractional imputation, NPFI.

Let K(·) be a symmetric density function on the real line
and h = hn be a smoothing bandwidth such that hn →
0 and nhn → ∞ as n → ∞. A nonparametric regression
estimator ofm(x) = E(y|x) can be obtained by finding m̂(x)
that minimizes

n∑
i=1

Kh(xi, x)δi{yi −m(x)}2,

where Kh(u, x) = h−1K{(u − x)/h}. The minimizer is the
well-known Nadaraya-Watson (1964) kernel regression esti-
mator (NW estimator)

m̂(x) =
n∑

j=1

wj1(x)yj ,

where

(12) wi1(x) =
Kh(x, xi)δi∑n

j=1 Kh(x, xj)δj
,

which represents the point mass assigned to yi when m(x)
is approximated by

∑m
i=1 wi1(x)yi. Consider m̂(xi) to be a

prediction for missing unit i, then

μ̂y = n−1
n∑

i=1

{δiyi + (1− δi)m̂(xi)}

= n−1
n∑

i=1

{
δiyi + (1− δi)

n∑
j=1

wj1(xi)yj

}
.

The weight w∗
ij = wj1(xi) is essentially the fractional weight

assigned to jth imputed value for missing unit i. Consider
implementing fractional hot deck imputation in a nonpara-
metric fashion. Using (10) where f(yj |xi) is nonparamet-
rically estimated by a kernel-based method, the final frac-
tional weights can be given by

w∗
ij =

Kh(xi, xj)/C(xj)∑n
k=1 Kh(xi, xk)δk/C(xk)

,

where

C(xj) =

n∑
i=1

δiKh(xi, xj).

Given the weight set {w∗
ij}, the NPFI estimator ξ̂p,NPFI is

computed from (8)–(9) with these {w∗
ij} replacing that in

(8)–(9). Variance estimation for ξ̂p,NPFI will be discussed
in Section 4.

4. VARIANCE ESTIMATION

One advantage of FHDI and NPFI is that all imputed
values are realized values, which enables us to use the repli-
cation method for variance estimation. Delete-1 observa-
tion jackknife variance estimator is considered. It has been
shown that delete-1 observation jackknife variance estimator
is valid with smooth differentiable statistics, such as totals,
means, proportions and etc; but not with medians or quan-
tiles.

In order to get a valid variance estimator in FHDI and
NPI, we consider a two-step procedure using the lineariza-
tion method or the test inversion method in the first step and
the delete-1 observation jackknife variance estimation with
the empirical distribution function in the second step. This
two-step approach makes the delete-1 observation jackknife
variance estimator valid for median or quantile estimators.

Denote HD as either FHDI or NPFI. Based on the lin-
earizaiton method of (1) applied to ξ̂p,HD = F̂−1

HD(p), we
get

V (ξ̂p,HD) ∼= 1

[f̂(ξ̂p,HD)]2
V {F̂HD(ξ̂p,HD)},

or the test inversion method of (2), we get

V (ξ̂p,HD) =

(
ξ̂p,U − ξ̂p,L

4

)2

,

where (p̂L, p̂U ) = F̂HD(ξ̂p,HD) ± 2
√

V (F̂HD(ξ̂p,HD)), and

(ξ̂p,L, ξ̂p,U ) = (F̂−1(p̂L), F̂
−1(p̂U )). In either method, we

need a consistent estimate of V (F̂HD(ξ̂p,HD)).

Notice that F̂HD(y) = n−1
∑n

i=1{δiI(yi < y) + (1 −
δi)

∑m
j=1 w

∗
ijI(y

∗
ij < y)} is a proportion. Create Zi = I(yi <

ξ̂p,HD) and Z∗
ij = I(y∗ij < ξ̂p,HD). Then

F̂HD(ξ̂p,HD) = Z̄HD = n−1
n∑

i=1

{δiZi + (1− δi)

m∑
j=1

w∗
ijZ

∗
ij}.

So, Jackknife method can be applied to obtain a consistent
estimator for the variance of the average F̂HD(ξ̂p,HD) =

Z̄HD. Specifically, V {F̂HD(ξ̂p,HD)} = V (Z̄HD) is estimated
by the following delete-1 observation jackknife variance es-
timator

V̂rep{F̂HD(ξ̂p,HD)} =
n− 1

n

n∑
k=1

(Z̄
(k)
HD − Z̄HD)2,

where

Z̄
(k)
HD = n−1

n∑
i=1

{
δiw

(k)
i Zi + (1− δi)

m∑
j=1

w
(k)
j w

∗(k)
ij Z∗

ij

}
,

with

w
(k)
i =

{
(n− 1)−1 if i �= k

0 if i = k
.
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For FHDI, w
∗(k)
ij are the replicate fractional hot deck

weights computed by

w
∗(k)
ij =

w
(k)
j f(yj |xi; θ̂

(k))/{
∑n

l=1w
(k)
l δlf(yj |xl; θ̂

(k))}∑m
s=1[w

(k)
s f(ys|xi; θ̂(k))/{

∑n
l=1w

(k)
l δlf(ys|xl; θ̂(k))}]

.

The k-th replicate of θ̂, denoted by θ̂(k), satisfies

r∑
i=1

w
(k)
i S(θ̂(k);xi, yi) = 0.

For NPFI, w
∗(k)
ij are the replicate nonparametric frac-

tional weights computed by

w
∗(k)
ij =

w
(k)
j Kh(xi, xj)/C

(k)(xj)∑n
l=1{w

(k)
l Kh(xi, xl)/C(k)(xl)}

,

where C(k)(xj) =
∑n

i=1 δiw
(k)
i Kh(xi, xj).

Once we obtain the delete-1 observation jackknife vari-
ance estimator V̂rep{F̂HD(ξ̂p,HD)} of V {F̂HD(ξ̂p,HD)}, we
can get a consistent variance estimator of ξ̂p,HD. If the lin-
earization method is used, we get the variance estimator of
ξ̂p,HD as

(13) V̂ (ξ̂p,HD) ∼= 1

[f̂(ξ̂p,HD)]2
V̂rep{F̂HD(ξ̂p,HD)}.

If the test inversion method is used, we get the variance
estimator of ξ̂p,HD as

(14) V̂ (ξ̂p,HD) =

(
ξ̂p,U − ξ̂p,L

4

)2

,

where (ξ̂p,L, ξ̂p,U ) = (F̂−1(p̂L), F̂
−1(p̂U )), (p̂L, p̂U ) =

F̂HD(ξ̂p,HD)± 2
√
V̂rep{F̂HD(ξ̂p,HD)}.

5. SIMULATION STUDY

We performed a limited simulation study and a real data
analysis. In Section 5.1, we compared the performance of
the proposed method with some other imputation methods
in a correctly specified model and a misspecified model. In
Section 5.2, we applied FHDI to a real data analysis from
the Korea Labor and Income Panel Survey (KLIPS).

5.1 Simulation

Two sets of models were considered to generate the ob-
servations. In Model A, we used yi = 1 + xi + ei, where
xi ∼ N(0, 1), ei ∼ N(0, 1), xi and ei are independent. In
Model B, we used yi = 1 + xi + ei, where xi ∼ N(0, 1),
ei ∼ Exp(1) − 1, xi and ei are independent. Random sam-
ples of size n = 200 were separately generated from the two
models. In addition to (xi, yi), we also generated δi, the re-
sponse indicator variable, from Bernoulli distributions with

response rate 0.6. Variable xi is always observed but vari-
able yi is observed if and only if δi = 1. We used B = 2, 000
Monte Carlo samples in the simulation. In each of the sam-
ples, we computed the following five estimators:

1. Full sample (Full) estimator that is computed using the
complete observations.

2. Multiple imputation (MI) estimator with imputation
size m, where the imputed values are generated from
the normal-theory regression model, as considered in
Schenker and Welsh (1988).

3. Parametric fractional imputation (PFI) estimator with
imputation size m.

4. Fractional hot deck imputation (FHDI) estimator using
the full set of respondents as imputation values (m =
nr) where nr is the size of respondents.

5. Nonparametric fractional imputation (NPFI) estima-
tor.

In MI and PFI, we set the imputation size m = nr, the same
as that in FHDI, for fair comparison. In both Models A and
B, we used a working model which is the normal density with
mean β0 + β1x and variance σ2 as the imputation model.
Thus, the working model is the true model in model A but
not true in model B. In NPFI, the nonparametric kernel
regression estimator was computed using a Gaussian kernel
function with bandwidth h = an−2/5, suggested by Cheng
(1994), where a = 0.2.

We considered four parameters: the mean of y(μy), the
25% quantile (ξ0.25), the median (ξ0.5) and the 75% quantile
(ξ0.75) of y. The full sample estimator was used as a bench-
mark which is unbiased for the parameters considered.

Tables 1 and 3 present Monte Carlo mean, variance and
standardized variance of the point estimators, based on
2,000 Monte Carlo samples for Model A and Model B, re-
spectively. The standardized variance is calculated as the
ratio of variance and the variance of the full sample es-
timator multiplied by 100, which measures the increased
variance due to imputation relative to the full sample es-
timator. Comparing the Monte Carlo means in the third
column, the imputation estimators are essentially unbiased
in estimating the parameters considered in Model A, which
is expected since the imputed estimating equations are con-
sistent under the correctly specified model. Comparing the
standardized variance in the fourth column, PFI and MI
have smaller standardized variances than FHDI and NPFI,
which suggests that PFI and MI are more efficient than
FHDI and NPFI. The reason is that in PFI and MI, the
imputed values are generated according to the conditional
distribution f(y|x) directly, whereas in FHDI, the imputed
values are taken from the respondents in which case some
of the fractional weights can be large and thus dominate
other weights resulting lose of efficiency. FHDI and NPFI
lose efficiency in order to gain robustness which is shown in
Model B. In Model B, both MI and PFI show no robustness
against model misspecification. MI and PFI are unbiased
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Table 1. Mean, variance and standardized variance of the
point estimators, based on 2,000 Monte Carlo samples in

Model A

Parameter Method Mean Var Std Var

μy Full 0.998 0.0102 100
MI (m = nr) 0.997 0.0132 129
PFI (m = nr) 0.997 0.0132 129
FHDI (m = nr) 0.996 0.0135 132

NPFI 0.996 0.0134 131

ξ0.25 Full 0.047 0.0178 100
MI(m = nr) 0.046 0.0203 114
PFI (m = nr) 0.046 0.0208 117
FHDI (m = nr) 0.046 0.0266 149

NPFI 0.047 0.0265 149

ξ0.5 Full 0.997 0.0157 100
MI (m = nr) 0.998 0.0166 106
PFI (m = nr) 0.998 0.0173 110
FHDI (m = nr) 0.999 0.0231 147

NPFI 0.998 0.0231 147

ξ0.75 Full 1.951 0.0182 100
MI (m = nr) 1.949 0.0199 109
PFI (m = nr) 1.948 0.0207 113
FHDI (m = nr) 1.949 0.0272 149

NPFI 1.945 0.0281 154

Table 2. Monte Carlo relative biases and t-statistics of the
variance estimators, based on 2,000 Monte Carlo samples in

Model A

Parameter Method R.B. (%) t-statistics

μy MI (m = nr) 1.2 0.38
PFI (m = nr) 0.6 0.19
FHDI (m = nr) −4.4 −1.33

NPFI −4.0 −1.25

ξ0.25 MI(m = nr) 29.8 9.22
PFI (m = nr) −0.01 −0.01
FHDI (m = nr) −1.5 −0.45

NPFI −1.4 −0.45

ξ0.5 MI (m = nr) 30.1 9.41
PFI (m = nr) −1.5 −0.49
FHDI (m = nr) −1.6 −0.51

NPFI −1.7 −0.54

ξ0.75 MI (m = nr) 30.7 9.66
PFI (m = nr) 1.5 0.48
FHDI (m = nr) −1.6 −0.49

NPFI −3.2 −1.02

for estimating population mean but are biased for estimat-
ing quantiles due to the misspecified imputation model. On
the other hand, the FHDI estimator and the NPFI estima-
tor are essentially unbiased in estimating population mean
and quantile. The robustness of the NPFI estimator against
this misspecification is due to the fact that nonparametric
models avoid restrictive assumptions on the functional form
of the regression function. Even though FHDI method is a
parametric imputation, it turns out that FHDI estimator is

Table 3. Mean, variance and standardized variance of the
point estimators, based on 2,000 Monte Carlo samples in

Model B

Parameter Method Mean Var Std Var

μy Full 0.995 0.0095 100
MI (m = nr) 1.003 0.0136 145
PFI (m = nr) 1.003 0.0136 145
FHDI (m = nr) 0.996 0.0134 142

NPFI 0.995 0.0133 141

ξ0.25 Full 0.040 0.0125 100
MI(m = nr) 0.051 0.0137 110
PFI (m = nr) 0.052 0.0143 115
FHDI (m = nr) 0.041 0.0175 141

NPFI 0.042 0.0167 134

ξ0.5 Full 0.872 0.0125 100
MI (m = nr) 0.929 0.0145 117
PFI (m = nr) 0.929 0.0149 119
FHDI (m = nr) 0.879 0.0172 138

NPFI 0.872 0.0175 140

ξ0.75 Full 1.800 0.0196 100
MI (m = nr) 1.872 0.0245 125
PFI (m = nr) 1.870 0.0251 128
FHDI (m = nr) 1.803 0.0298 152

NPFI 1.795 0.0299 153

also robust to model misspecification in this case due to the
special structure of fractional weights. Further discussion of
the robustness feature of FHDI is discussed by Yang and
Kim.

For variance estimation, in MI, we can use either lin-
earization variance estimator (1) or Woodruff variance es-
timator (2) in Rubin’s variance function (4). It turns out
that the results from these two types of variance estimator
are comparable, so we will only present the results from (1).
In PFI, we used the variance estimator as described in Ap-
pendix A.1. In FHDI and NPFI, we used two-step Jackknife
variance estimator (14).

Tables 2 and 4 present Monte Carlo relative biases and
t-statistics of the variance estimators to test the signifi-
cance of the bias of the variance estimators for Model A
and Model B, respectively. The relative bias is calculated
as [EMC{V̂ } − VMC{θ̂}]/VMC{θ̂}, where EMC{V̂ } is the

Monte Carlo mean of variance estimates V̂ , and VMC{θ̂} is

the Monte Carlo variance of the point estimates θ̂. A jus-
tification of the t-statistics can be found in Appendix D of
Kim (2004), which claims that the bias is not statistically
significant if the t-statistics is less than 2. The relative bias
of variance estimator in MI is small (1.2%) for μy, but is
quite large (29.8%, 30.1%, and 30.7%) for quantiles even
when the working model is true (Model A), which is also
confirmed by the t-statistics. The t-statistics is small (0.38)
for μy and is quite large (9.22, 9.41, and 9.66) for quantiles,
which exceed 2 by a large amount, indicating that the MI
variance estimator is biased for quantile. Rubin’s formula is
based on the following decomposition,
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Table 4. Monte Carlo relative biases and t-statistics of the
variance estimators, based on 2,000 Monte Carlo samples in

Model B

Parameter Method R.B. (%) t-statistics

μy MI (m = nr) −1.9 −0.59
PFI (m = nr) 9.3 2.87
FHDI (m = nr) −4.7 −1.46

NPFI −3.2 −0.99

ξ0.25 MI(m = nr) 81.2 26.26
PFI (m = nr) 65.5 20.89
FHDI (m = nr) 3.0 0.99

NPFI 4.7 1.48

ξ0.5 MI (m = nr) 45.7 13.95
PFI (m = nr) 31.4 9.66
FHDI (m = nr) 5.2 1.65

NPFI 3.5 1.09

ξ0.75 MI (m = nr) 4.7 1.36
PFI (m = nr) −19.9 −6.17
FHDI (m = nr) −3.8 −1.19

NPFI −0.1 −0.03

(15) V (θ̂MI) = V (θ̂n) + V (θ̂MI − θ̂n)

where θ̂n is the full sample estimator of θ. Basically, Wm

term in (3) estimates V (θ̂n) and (1 +m−1)Bm term in (3)

estimates V (θ̂MI − θ̂n). The decomposition (15) holds when

θ̂n is the MLE of θ, which is the congeniality condition of
θ̂n (Meng, 1994). For a general case, we have

(16) V (θ̂MI) = V (θ̂n)+V (θ̂MI − θ̂n)+2Cov(θ̂MI − θ̂n, θ̂n)

and Rubin’s variance estimator can be biased. The conge-
niality condition holds true for μ̂y; however, it does not hold
for the method of moments estimator of quantiles. In PFI,
the t-statistics of the variance estimator (Appendix A.1) for
all parameters considered here are less than 2 in Model A,
however exceed 2 in Model B, suggesting that the variance
estimator in PFI is valid if and only if it is under the true
model. The reason is that the variance estimator is essen-
tially derived from the observed fisher information which is
model dependent. On the other hand, in FHDI and NPFI,
the t-statistics of the variance estimators are less than 2,
which show that the two-step variance estimator is unbi-
ased.

5.2 Real data analysis

In this section, the proposed FHDI method was ap-
plied to real data. The data set used is obtained from
the Korea Labor and Income Panel Survey (KLIPS). We
used the data set of size (n = 2,506) which consists
of the regular wage earners in the sample of year 2008.
A brief description of the panel survey can be found
at http://www.kli.re.kr/klips/en/about/introduce.jsp. The
study variable (y) is the average monthly income for the

Figure 1. Histogram Plot of Current Year Monthly Income in
the Full Sample. Unit (106 Korean Won).

current year and the auxiliary variable (x) is the aver-
age monthly income for the previous year. Figure 1 re-
ports the histogram plot of y in the full sample. The sam-
ple distribution of y is skewed to the left and the sam-
ple 25% quantile, the median, and 75% quantile of y is
(1.03, 1.6, 2.3) × 106 Korean Won. The sample mean of
(x, y) is (1.6643, 1.8504) × 106 Korean Won, the sample
correlation between x and y is 0.8144. Figure 2 reports the
scatter plot of y versus x. From the figure, the functional
relationship for y in terms of x can be treated as linear.

From the sample described above, we created artificial
missing data by deliberately deleting some of the y values
according to the response mechanism Bernoulli(π), where
π(x) = {1+exp(−φ0−φ1x)}−1, with (φ0, φ1) = (−1.1, 1.0).
From this response mechanism, the response rate is roughly
60%. Figure 3 reports the histogram plot of y in the re-
spondents. Compared to the histogram plot of y in the full
sample, the sample distribution of y pertaining to the re-
spondents has shifted to the right. From the respondents,
the sample 25% quantile, the median, and the sample 75%
quantile of y is (1.28, 1.94, 2.7)×106 Korean Won, and the
sample mean of (x, y) is (1.9309, 2.1117)×106 Korean Won.

In FHDI, the sample is partitioned into 4 × 2 × 2 cells
by age (<30, [30, 40), [40, 50), �50), gender (1=male and
2= female) and level of education (1=high school or lower,
2= college or higher ). The sixteen cells consist of sample of
size 99, 130, 91, 193, 250, 406, 107, 141, 241, 202, 179, 49,
207, 85, 115, 11, respectively. In each cell, we applied FHDI
using the imputation model yi = β0 + β1xi + ei, where ei ∼
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Figure 2. Scatter Plot of Current Year Monthly Income versus
Previous Year Monthly Income in 2008 Korea Labor and

Income Panel Survey. Unit (106 Korean Won).

Figure 3. Histogram Plot of Current Year Monthly Income in
the respondents. Unit (106 Korean Won).

N(0, σ2) to create imputed values for missing units. Once
the imputed data was created, the usual complete sample
estimators can be applied. For variance estimation, we used
the usual delete-1 observation Jackknife variance estimator

Table 5. Point estimates, estimated variance, 95% confidence
intervals from FHDI

Est Var Est 95% C.I.

μy 1.883 0.0004987 (1.838, 1.928)
ξ0.25 1.12 0.04730625 (0.68, 1.55)
ξ0.5 1.70 0.00160000 (1.59, 1.75)
ξ0.75 2.38 0.00122500 (2.30, 2.44)

for μy and two-step Jackknife variance estimator (14) for
quantiles.

Table 5 presents the estimates for μy, ξ0.25, ξ0.5 and
ξ0.75, their estimated variances, and 95% confidence inter-
vals under missing. The full sample mean μ̂n, sample quan-
tiles ξ̂0.25,n, ξ̂0.5,n, and ξ̂0.75,n are successfully captured by
the 95% confidence intervals. In conclusion, this case study
demonstrates the empirical effectiveness of the FHDI esti-
mator.

6. CONCLUDING REMARKS

In this paper, four imputation methods were considered
for quantile estimation with missing data. MI, applied to
quantile estimation, does not satisfy the congeniality con-
dition of Meng (1994) and can lead to biased variance esti-
mation. Fractional imputation methods, on the other hand,
do not require the congeniality condition and provide con-
sistent variance estimators.

In the correctly specified model, among the four methods,
MI and PFI turn out to be more efficient in point estimation
than FHDI and NPFI. In the misspecified model, the FHDI
and NPFI are shown to be much better than MI and PFI in
terms of bias. The PFI is not robust to misspecification of
models in variance estimation. In FHDI, there is no random
imputation and thus fractional weights are deterministically
computed, which enables simplified replication variance es-
timation. A revised Jackknife variance estimation method
produces an essentially unbiased estimator. Properties of
FHDI carry over to NPFI. Furthermore, for NPFI method,
no parametric model assumption is required and hence the
resulting estimator is robust. As with the usual nonparamet-
ric methods, the NPFI method may be subject to the curse
of dimensionality associated with nonparametric estimation,
if the dimension is high. More rigorous theoretical investi-
gation of the NPFI method in the high dimension cases will
be a good topic of future study.
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APPENDIX A. APPENDIX SECTION

A.1 Variance estimation in PFI

Since β and θ are information orthogonal, we can use
Louis’s formula to construct the confidence intervals for β.
(17)

Iobs(β) = −
n∑

i=1

E
{
Ṡ(β; yi)|yi,obs

}
−

n∑
i=1

V
{
S(β; yi)|yi,obs

}
,

which can be approximated by
(18)

−
n∑

i=1

M∑

k=1

w
∗(k)
i Ṡ(β̂; y

∗(k)
i )−

n∑

i=1

M∑

k=1

w
∗(k)
i

{
S(β̂; y

∗(k)
i )− S̄i(β̂)

}⊗2
,

where S(β; y) = ∂ log f(y;β)/∂β, Ṡ(β; y) = ∂S(β; y)/∂β

and S̄i(β) =
∑M

k=1 w
∗(k)
i S(β; y

∗(k)
i ).

For variance estimation of η̂, based on Taylor lineariza-
tion obtained from Ū∗(η) = 0, we can write Ū(η|γ̂) ≈
Ū(η0|γ0) +K ′S̄(γ0), where K is defined as

K = −[E{∂S̄(γ0)/∂γ}]−1E{Smis(γ0)U(η0)}.

If we write

Ū(η|γ)+K ′S̄(γ) = n−1
n∑

i=1

{ūi(η|γ)+K ′s̄i(γ)} = n−1
n∑

i=1

ũi,

the plug-in estimator of Var(
∑n

i=1 ũi) is
∑n

i=1(ûi− ¯̂u)(ûi−
¯̂u)′ , where ûi = ūi(η̂; γ̂) + K̂ ′s̄i(γ̂). The terms ūi(η̂; γ̂) and
s̄i(γ̂) can be computed from fractional imputation with frac-
tional weights.
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