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Estimation and imputation in linear regression
with missing values in both response and
covariate

Jun Shao
∗

We consider linear regression with missing responses as
well as missing covariate data. When the missing data mech-
anism is ignorable, we show that regression parameters and
the response mean can be estimated using standard meth-
ods and treating imputed values as observed data. We also
show that the same procedure results in biased and inconsis-
tent estimators when missing response mechanism depends
on covariates that also have missing values and thus is non-
ignorable. Efficient estimation and imputation under non-
ignorable missingness is a challenge problem. Under some
conditions, we derive some asymptotically unbiased and con-
sistent estimators via direct estimation or imputation. Some
simulation results are presented to examine the finite sample
performance of various estimators.
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1. INTRODUCTION

Nonresponse or data missing with an appreciable rate ex-
ists in many applications in areas such as medicine, popula-
tion health, economics, social sciences, and sample surveys.
Let y be a response variable of interest and x be a covariate
vector associated with y. We consider the regression between
y and x and/or the estimation of the mean of y using x as
an auxiliary variable. There is rich literature for the case
where y has missing values but x is always observed (see,
for example, Little and Rubin, 2002; Kim and Shao, 2013).
In the situation where x has missing values but y is always
observed, which is referred to as the problem of missing co-
variate values, a review given by Little (1992) summarized
results obtained prior to 1992 but not much has been added
since that time. The focus of the current paper is on the
situation where both y and x have missing data, a prob-
lem often encounted nowadays but has not been thoroughly
discussed in the literature.

∗Partially supported by the NSF Grant DMS-1007454.

When x has missing data but y does not, what is often
done in practice is that missing data in x are first imputed
(using some appropriate method given in the literature) and
then a further analysis on the association between y and x
or estimation of the mean of y is carried out by treating
imputed values in x as observed values. A conclusion in
Little (1992) is that treating imputed covariate values as
observed data for further analysis of y data is valid provided
that

(i) the conditional expectation E(y|x) is linear in x;
(ii) the missing data mechanism for x is ignorable in the

sense that it depends only on the observed part of x;
(iii) imputation for missing values in x is done using expec-

tations conditional on the observed part of x.

However, the main finding of the current paper is that the
conclusion is different when y also has missing values al-
though (i)–(iii) still hold. If the missing data mechanism of
y is also ignorable, which is a somewhat too strong assump-
tion as we explained in Section 4, then treating imputed
covariate values as observed data leads to nearly unbiased
estimators of regression parameters and the mean of y; oth-
erwise treating imputed covariate values as observed data
results in biased estimators.

Details on notation and assumption on the model and the
missing data mechanism that generates observations are de-
scribed in Section 2. The results under the approach of treat-
ing imputed covariate values as observed data are given in
Section 3. In Section 4, we consider some estimation meth-
ods valid in the presence of nonignorable missing data. Some
simulation results are presented in Section 5. The last sec-
tion contains some discussion.

2. NOTATION AND ASSUMPTION

Let u and z be two covariate vectors such that u has
missing values but z is always observed. We denote x =
(1,u′, z′)′, where t′ denotes the transpose of a column vec-
tor t, as the entire covariate vector including a constant
component. For the variable y of interest, we assume a lin-
ear model for the conditional expectation

(1) E(y|x) = θ′x = α+ β′
uu+ β′

zz,

http://www.intlpress.com/SII/


where θ = (α, β′
u, β

′
z)

′, α is an unknown parameter, and βu

and βz are unknown parameter vectors with dimensions the
same as u and z, respectively. We assume that the condi-
tional expectation

(2) E(u|z) = Γz

also follows a linear model, where Γ is an unknown parame-
ter matrix that has row dimension the same as u and column
dimension the same as z. Note that a vector of intercepts
can be added to the right-hand side of (2), but we omit it
since the discussion with the intercept vector is the same by
applying some transformations of covariates. Furthermore,
we assume that, conditioned on z, components of u are in-
dependent.

When there are missing data, we use a to denote the
indicator of whether y is observed (a = 1 if y is observed
and a = 0 otherwise) and use b to denote the vector whose
components are the indicators of whether components of u
are observed. We assume that the missing data mechanism
for u satisfies

(3) p(b|y,u, z) = p(b|z),

where p(·|·) denotes conditional probability density. For the
missing data mechanism of y, we assume that

(4) p(a|y, b,u, z) = p(a|u, z).

Note that (3) is stronger than the general ignorable missing
data assumption, whereas (4) is nonignorable since u has
missing values.

Note that assumptions (3)–(4) are nonparametric since
we do not have any condition on the form of conditional
densities; assumptions (1)–(2) are semi-parametric since the
conditional expectations are parametric but the forms of the
densities are unspecified.

Under (3)–(4),

(5) p(b|y,u, z, a) = p(a|y,u, z, b)p(b|y,u, z)
p(a|y,u, z) = p(b|z),

a result seems to be stronger than (3) but is actually equiv-
alent to (3).

Throughout we assume that n subjects are sampled and
that (yi,ui, zi, ai, bi), i = 1, . . . , n, are independent and
identically distributed as (y,u, z, a, b). For the ith sampled
subject, yi is observed if and only if ai = 1, components of
ui are observed if and only if their corresponding compo-
nents of bi are equal to 1, and zi is always observed. Based
on the observed data, we are interested in the estimation of
θ in (1) and the mean of y, μ = E(y).

3. TREATING IMPUTED COVARIATE
VALUES AS OBSERVED DATA

Let u be a univariate component of u and γ′ be the row
of Γ in (2) corresponding to u, i.e., E(u|z) = γ′z. Also, let

b be the component of b corresponding to the component
u. Based on assumption (3), if ui (the u-value of the ith
sampled subject) is missing, it can be imputed by γ̂′zi with

(6) γ̂ =

(
n∑

i=1

biziz
′
i

)−1 n∑
i=1

biuizi.

For missing values in ui, imputation is done component-
wise. Let ûi denote the vector ui with missing components
imputed according to this imputation procedure, and let

x̂i = (1, û′
i, z

′
i)

′.

Note that assumptions (1) and (3) correspond to require-
ments (i) and (ii) in the discussion in Section 1, respectively,
while imputation as previously described is exactly the same
as (iii) in Section 1 under model (2).

3.1 Estimation of θ

If we treat imputed covariate values as observed data,
then we estimate θ = (α, β′

u, β
′
z)

′ by

(7) θ̃ =

(
n∑

i=1

aix̂ix̂
′
i

)−1 n∑
i=1

aiyix̂i.

Although each γ̂ in (6) is asymptotically unbiased (as
n → ∞) under assumption (3) (ignorable missing u-values),
θ̃ in (7) is asymptotically biased under assumption (4) (non-
ignorable missing y-values). This is because

E

(
n∑

i=1

aiyix̂i

)
=

n∑
i=1

E[E(aiyix̂i|ui, zi)]

=

n∑
i=1

E[E(aiyi|ui, zi)x̂i]

=

n∑
i=1

E[E(ai|ui, zi)E(yi|ui, zi)x̂i]

=

n∑
i=1

E[E(ai|ui, zi)x̂ix
′
iθ]

whereas

E

(
n∑

i=1

aix̂ix̂
′
i

)
=

n∑
i=1

E[E(aix̂ix̂
′
i|ui, zi)]

=

n∑
i=1

E[E(ai|ui, zi)x̂ix̂
′
i].

In general, E(ai|ui, zi) is a non-linear function of (ui, zi)
and, thus,

E[E(ai|ui, zi)x̂ix
′
i] �= E[E(ai|ui, zi)x̂ix̂

′
i],

which implies that θ̃ is asymptotically biased.
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It is interesting to see under what kind of additional as-
sumption θ̃ is asymptotically unbiased. Let uo

i denote the
observed components of ui. Suppose that we replace as-
sumption (4) by a stronger assumption

(8) p(a|y, b,u, z) = p(a|uo, z),

i.e., missing y values are ignorable. Then,

E[E(ai|ui, zi)x̂ix
′
i] = E[E{E(ai|uo

i , zi)x̂ix
′
i|uo

i , zi}]
= E[E(ai|uo

i , zi)E(x̂ix
′
i|uo

i , zi)]

= E[E(ai|uo
i , zi)x̂iE(x′

i|uo
i , zi)]

= E[E(ai|uo
i , zi)x̂ix̃

′
i],

where x̃i is the same as x̂i except that γ̂ is replaced by γ.
Since γ̂ is asymptotically unbiased and consistent,

E[E(ai|uo
i , zi)x̂ix̃

′
i] = E[E(ai|ui, zi)x̂ix̂

′
i] + o(1),

where o(1) is a term converges to 0 as n → ∞. Hence, θ̃ is
asymptotically unbiased and consistent.

Thus, we reach the following conclusions under assump-
tions (1)–(4).

(a) If covariate missing values are imputed using (2) and
(6) and if we treat imputed covariate values as observed
data in the estimation of θ under (1), then θ̃ in (7) is
asymptotically biased and inconsistent. Hence, using θ̃
for any further estimation or inference leads to invalid
results.

(b) If we replace the nonignorable missing y data assump-
tion (4) by the ignorable missing y data assumption (8),
then treating imputed covariate values as observed data
provides an asymptotically unbiased and consistent es-
timator θ̃. Clearly, this conclusion includes the special
case where y has no missing value, the conclusion in
Little (1992).

3.2 Estimation of μ

If we treat imputed covariate values as observed data,
then we estimate the mean of y, μ = E(y), by the sample
mean of the imputed y data:

(9) μ̃ =
1

n

n∑
i=1

[aiyi + (1− ai)θ̃
′x̂i].

Obviously, we cannot expect μ̃ to be asymptotically unbi-
ased and consistent when θ̃ is biased and inconsistent. But
even if we replace θ̃ in (9) by a consistent estimator of θ, μ̃
is still biased because of the nonignorable missing y data.
To illustrate this, we consider the special case where u = u
is univariate. Further, since γ̂ is consistent and we assume
that θ̃ is replaced by a consistent estimator, we can replace
θ̃ and γ̂ in (9) by their true values θ and γ in the following
discussion. Then, μ̃ becomes

1

n

n∑
i=1

[aiyi + (1− ai)θ
′x̂i]

=
1

n

n∑
i=1

[aiyi + (1− ai){α+ biβuui

+(1− bi)βuγ
′zi + β′

zzi}]

=
1

n

n∑
i=1

[aiyi + (1− ai)(α+ βuui + β′
zzi)

+(1− ai)(1− bi)βu(γ
′zi − ui)]

=
1

n

n∑
i=1

[aiyi + (1− ai)θ
′xi

+(1− ai)(1− bi)βu(γ
′zi − ui)]

Under (1) and (4),

E[aiyi + (1− ai)θ
′xi]

= E[E{aiyi + (1− ai)θ
′xi|ui, zi}]

= E[E(ai|ui, zi)E(yi|ui, zi) + E(1− ai|ui, zi)θ
′xi]

= E[E(ai|ui, zi)θ
′xi + E(1− ai|ui, zi)θ

′xi]

= E(θ′xi)

= E(yi).

Under (2) and (3),

E[(1− ai)(1− bi)(γ
′zi − ui)]

= E[E{(1− ai)(1− bi)(γ
′zi − ui)|ui, zi}]

= E[E{(1− ai)(1− bi)|ui, zi}(γ′zi − ui)]

= E[E(1− ai|ui, zi)E(1− bi|zi)(γ
′zi − ui)]

which is not equal to 0 since E(1 − ai|ui, zi) is typically

nonlinear in ui.

The previous argument also helps us to establish a result

similar to that in Section 3.1. That is, if assumption (8)

holds, then

E{(1− ai)(1− bi)|ui, zi}
= E{(1− ai)(1− bi)|ui, zi, bi = 0}P (bi = 0|ui, zi)

= E(1− ai|ui, zi, bi = 0)P (bi = 0|ui, zi)

= E(1− ai|zi, bi = 0)P (bi = 0|zi)

= E{(1− ai)(1− bi)|zi, bi = 0}P (bi = 0|zi)

= E{(1− ai)(1− bi)|zi},

where the second equality follows from assumption (3) and

the fact that, under assumption (8), ai is independent of ui

when ui in unobserved (bi = 0). Consequently,
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E[(1− ai)(1− bi)(γ
′zi − ui)]

= E[E{(1− ai)(1− bi)|ui, zi}(γ′zi − ui)]

= E[E{(1− ai)(1− bi)|zi}(γ′zi − ui)]

= E
(
E[E{(1− ai)(1− bi)|zi}(γ′zi − ui)|zi]

)
= E

(
E{(1− ai)(1− bi)|zi}E[(γ′zi − ui)|zi]

)
= 0

and μ̃ in (9) is asymptotically unbiased and consistent. This
result can be extended to the general multivariate u. Thus,
we obtain the following conclusion.

(c) Conclusions (a)–(b) in Section 3.1 hold with θ̃ in (7)
replaced by μ̃ in (9), when we consider the estimation
of the mean of y instead of θ.

4. METHODS FOR NONIGNORABLE
MISSING Y VALUES

The results in the previous section show that, if missing y
data are ignorable, i.e., assumption (8) holds, then asymp-
totically unbiased and consistent estimators of θ and μ can
be obtained by first imputing covariate missing values and
then treating imputed covariate values as observed data.
How reasonable is the ignorable missing data assumption
(8)? When ui has missing components, why does the miss-
ingness of yi depends on observed but not the unobserved
components of ui?

On the other hand, missingness of y depends on all covari-
ate vectors, such as assumption (4), is much more reasonable
than assumption (8). The trouble is, under (4), it is a chal-
lenge problem to derive valid parameter estimators because
missingness is nonignorable (i.e., u has missing values).

The same problem does not occur for missing u data,
because if we view u as a response and z as its covariate,
then (3) is missingness dependent on covariate z that has
no missing value. Of course, missingness of y becomes ig-
norable if we assume that it depends on covariate z but
not on covariate u. This is, however, somewhat a too strong
assumption.

In this section, we derive some estimation methods valid
under assumptions (1)–(4).

4.1 Estimation of θ and μ

To estimate θ in (1), the easiest way is to fit a regression
between y and x based on subjects with observed yi and
completely observed xi. This leads to the following estima-
tor:

(10) θ̂ =

(
n∑

i=1

aicixix
′
i

)−1 n∑
i=1

aiciyixi,

where ci = 1 if all components of ui are observed and ci = 0
otherwise. This estimator is asymptotically unbiased and
consistent, because

E

(
n∑

i=1

aiciyixi

)

=

n∑
i=1

E[E(aiciyixi|ui, zi)]

=

n∑
i=1

E[E(ai|ui, zi)E(ciyi|ui, zi)xi]

=
n∑

i=1

E[E(ai|ui, zi)E(ci|ui, zi)E(yi|ui, zi)xi]

=

n∑
i=1

E[E(ai|ui, zi)E(ci|zi)xix
′
i]θ

and

E

(
n∑

i=1

aicixix
′
i

)

=

n∑
i=1

E[E(aicixix
′
i|ui, zi)]

=

n∑
i=1

E[E(aici|ui, zi)xix
′
i]

=

n∑
i=1

E[E(ai|ui, zi)E(ci|zi)xix
′
i].

However, the estimator θ̂ in (10) may not be efficient espe-
cially when the dimension of u is not small, since observed
data in ui are not used whenever ui has at least one missing
component (ci = 0). Because of the nonignorable missing y

value assumption (4), it is difficult to improve θ̂, unless some
more assumptions are added.

Once θ is estimated, we can estimate μ by

(11) μ̂ = θ̂′

(
1

n

n∑
i=1

x̂i

)
,

which is based on the facts that

μ = E(y) = E[E(y|u, z)] = E(θ′x) = θ′E(x)

and, in the estimation of E(x), we can treat imputed covari-
ate values as observed data since (3) is an ignorable missing
data assumption.

4.2 Imputation

Imputation results in a “complete” data set, which is of-
ten adopted for practical reasons. A basic requirement on
the imputation method is that, after missing values are im-
puted, the sample means of u and y based on imputed data
(treating imputed values as observed data) are valid (asymp-
totically unbiased and consistent) estimators of E(u) and
μ = E(y), respectively. Missing u values can be imputed as
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discussed in Section 3, and the resulting sample mean of u is
valid as discussed in the end of Section 4.1. How to impute
missing y values, however, is a challenge problem because of
the nonignorable missingness (4).

To illustrate, we first consider the case of univariate u = u
with a univariate indicator b of whether u is observed. The
set of all sampled subjects can be divided into four subsets
according to the values of ai and bi:

Ak,l = {i : ai = k, bi = l}, k = 0, 1, l = 0, 1.

No imputation is needed in A1,1. Imputation in A0,1 is sim-

ple: a missing yi with an observed ui is imputed by θ̂′xi. It
seems that there is no need for imputation in A1,0 since yi
is observed, but it is not simple to impute missing y values
in A0,0, as we explain as follows. It is shown in Section 4.3
that

(i) E(y|z, a = 1, b = 1) = E(y|z, a = 1, b = 0) =
E(y|z, a = 1);

(ii) E(y|z, a = 0, b = 1) = E(y|z, a = 0, b = 0) =
E(y|z, a = 0);

(iii) E(y|z, a = 0) �= E(y|z, a = 1);
(iv) E(y|z, a = 0) is nonparametric in general, and is non-

linear in z even when a parametric model on the missing
data mechanism is imposed.

Since missing y values in A0,0 should be imputed by an
estimated conditional expectation E(y|z, a = 0, b = 0) =
E(y|z, a = 0), it is very difficult to impute when the condi-
tional expectation is nonparametric or nonlinear.

We next show that this difficulty can be overcome, i.e.,
valid imputation can be made without fitting nonparametric
regression if we give up the observed y values in set A1,0.
We still first illustrate the idea in the case of univariate u
and b.

After giving up observed y values in A1,0, we merge A1,0

into A0,0. More importantly, this changes the missing y data
mechanism, i.e., bi = 0 now implies ai = 0. Consequently,

E(y|z, a = 0, b = 0) = E(y|z, b = 0).

But (3) implies

E(y|z, b = 0) = E(y|z, b = 1) = E(y|z),

which is linear in z. Thus, we can impute each yi in A1,0 ∪
A0,0 by an estimated E(yi|zi). By (1)–(2),

E(yi|zi) = α+ (β′
uΓ + β′

z)zi = ξ′z̃i,

where ξ = (α, β′
uΓ + β′

z)
′ and z̃i = (1, z′

i)
′. Since ξ is a

function of θ and Γ, it can be estimated by ξ̂ with θ and
Γ replaced by θ̂ and Γ̂, respectively, where each row of Γ̂ is
in the form of (6). Each yi in A1,0 ∪ A0,0 is then imputed

by ξ̂′z̃i.

After imputation, the sample mean of imputed y data,

n∑
i=1

[aibiyi + (1− ai)biθ̂
′xi + (1− bi)ξ̂

′z̃i],

is asymptotically unbiased and consistent for μ. We would
like to emphasize that one should not include the observed
y data in A1,0 when calculating the sample mean, i.e.,

n∑
i=1

[aibiyi+(1−ai)biθ̂
′xi+ai(1−bi)yi+(1−ai)(1−bi)ξ̂

′z̃i]

is an asymptotically biased estimator of μ, for the reasons
(i)–(iv) previously given.

We now describe this imputation procedure for a general
multivariate u with dimension q ≥ 1. First, we divide the
set of all sampled subjects into 2q subsets according to the
vector values of b, i.e.,

Bk1,...,kq = {i : b′i = (k1, . . . , kq)}, kj = 0, 1, j = 1, . . . , q.

Note that these B subsets are similar to the previously de-
fined A subsets, but the indicator a for y is not involved in
the B subsets.

Let Bc denote the subset corresponding to b
′ = (1, . . . , 1),

i.e., Bc contains subjects with completed ui’s. A missing yi
in Bc can be imputed by θ̂′xi, as discussed previously. In any
subset B that is not Bc, we give up observed y values in B.
For a fixed B, we denote the corresponding b vector as b

B
,

the sub-vector containing observed components of u as uo,
and the sub-vector containing missing components of u as
um. Note that uo contains components of u corresponding
to components of bB that are equal to 1 and um contains
components of u corresponding to components of b

B
that

are equal 0. In subset B, we may impute each y value by an
estimated E(y|uo, z, b = bB ). We now show that this condi-
tional expectation is equal to E(y|uo, z, b = 1), where 1 is
the vector whose components are all equal to 1. Under (3),

p(um|uo, z, b) =
p(um, b|uo, z)

p(b|uo, z)

=
p(b|um,uo, z)p(um|uo, z)

p(b|uo, z)

= p(um|uo, z).

Consequently,

E(y|uo, z, b) =

∫
E(y|um,uo, z, b)p(um|uo, z, b)dum

=

∫
E(y|um,uo, z)p(um|uo, z)dum

= E(y|uo, z).

Therefore,

E(y|uo, z, b = b
B
) = E(y|uo, z) = E(y|uo, z, b = 1).
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If we impute each y in B using this conditional expectation,

then we need more assumptions. From (1),

E(y|uo, z) = α+ β′
uE(u|uo, z) + β′

zz

= α+ β′
uouo + β′

umE(um|uo, z) + β′
zz,

where βuo and βum are the sub-vectors of βu correspond-

ing to uo and um, respectively. Thus, an assumption on

E(um|uo, z) is needed. For example, we may assume that

E(um|uo, z) is linear in uo and z, which is true when p(u|z)
is multivariate normal. That is,

(12) E(um|uo, z) = α
B
+Ψ

B
uo + Γ

B
z,

where α
B
is an unknown vector and Ψ

B
and Γ

B
are unknown

matrices, which are different in different B. Then, we may

fit a linear regression based on model (12) using u and z

data in the subset Bc. After we obtain estimators α̂
B
, Ψ̂

B
,

Γ̂B and estimators α̂, β̂u, β̂z based on θ̂, each yi in B is

imputed by

ŷi = α̂+ β̂′
uouoi + β̂′

um(α̂B + Ψ̂Buoi + Γ̂Bzi) + β̂′
zzi.

Once imputation is completed, the mean μ can be esti-

mated by the sample mean of yi’s with imputed y values

treated as observed data, i.e.,

(13)
∑
i∈Bc

[aiyi + (1− ai)θ̂
′xi] +

∑
B

∑
i∈B

ŷi,

where
∑

B is the sum over all possible subsets B’s that are

not Bc. This estimator is asymptotically unbiased and con-

sistent. Again, one should not use any observed yi to replace

imputed value ŷi in B �= Bc, i.e., the biased estimator

(14)
∑
i∈Bc

[aiyi + (1− ai)θ̂
′xi] +

∑
B

∑
i∈B

[aiyi + (1− ai)ŷi].

An empirical confirmation is given in Section 5, where it is

shown by simulation that the sample mean in (13) is almost

unbiased but the sample mean in (14) is seriously biased.

4.3 Proof of (i)–(iv) in Section 4.2

Under (3)–(4), result (5) implies that

(15) p(y|z, a, b) = p(b|y, z, a)p(y|z, a)
p(b|z, a) = p(y|z, a).

These results hold for general multivariate u and b so that

they also hold in the special case of univariate u and b. In

particular, (i)–(ii) in Section 4.2 follow directly from (15).

To show (iii), we note that

E(y|z, a = 0) =

∫
E(y|u, z, a = 0)p(u|z, a = 0)du

=

∫
E(y|u, z)p(u|z, a = 0)du

=

∫
(α+ βuu+ β′

zz)p(u|z, a = 0)du

= α+ β′
zz + βu

∫
up(u|z, a = 0)du

= α+ β′
zz +

βu

∫
uP (a = 0|u, z)p(u|z)du∫
P (a = 0|u, z)p(u|z)du

Let

g(z) =

∫
(u− γ′z)P (a = 0|u, z)p(u|z)du

and

h(z) =

∫
P (a = 0|u, z)p(u|z)du.

Then

E(y|z, a = 0) = α+ (β′
z + βuγ

′)z + βu
g(z)

h(z)
.

Similarly,

E(y|z, a = 1) = α+ (β′
z + βuγ

′)z − βu
g(z)

1− h(z)
.

Therefore, E(y|z, a = 0) = E(y|z, a = 1) if and only if
βug(z) = 0.

We now give a counter example in which g(z) �= 0, which
is sufficient for showing E(y|z, a = 0) �= E(y|z, a = 1) in
general. Assume that conditional on z, u ∼ N(γ′z, σ2

u) and
P (a = 0|u, z) = Φ(κu), where Φ is the standard normal
distribution function and κ and σ2

u are some constants that
are not 0. Using integration by parts, we obtain that

g(z) =
1√
2πσu

∫
(u− γ′z)Φ(κu) exp

{
− (u− γ′z)2

2σ2
U

}
du

=
κσ2

U

2πσu

∫
exp

{
−κ2u2

2

}
exp

{
− (u− γ′z)2

2σ2
U

}
du

=
κσ2

U√
2π(1 + κ2σ2

u)
exp

{
− (κγ′z)2

2(1 + κ2σ2
u)

}
.

Clearly, g(z) �= 0.
It is clear from the form of g(z)/h(z) that it is is non-

parametric when either P (a = 0|u, z) or p(u|z) is non-
parametric. Thus E(y|z, a = 0) is nonparametric when
either P (a = 0|u, z) or p(u|z) is nonparametric. When
both P (a = 0|u, z) and p(u|z) are parametric, the previ-
ous counter example shows that g(z)/h(z) is nonlinear in z
unless γ = 0, because

h(z) = Φ
(
κγ′z/

√
1 + κ2σ2

u

)
.

This shows (iv) in Section 4.2.
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5. SIMULATION RESULTS

A simulation study was conducted to check finite sample
performance of estimators of θ and μ discussed in the pre-
vious sections, under (1)–(4). These simulation results also
provide an empirical confirmation for the results derived in
the previous sections.

5.1 Simulation setting

The simulation setting is described as follows.

1. The covariate z = z is univariate and normally dis-
tributed with mean 2 and variance 1. All values of z
are observed.

2. The covariate u = (u1, u2)
′ is 2-dimensional and, con-

ditional on z, u has the bivariate normal distribution
with E(u1|z) = z, E(u2|z) = 0.5z, and covariance ma-
trix (

1 0.2
0.2 1

)
.

3. Let b = (b1, b2)
′ be the vector of indicators of whether

two components u1 and u2 are observed. Conditional
on u and z, b1 and b2 are independent and

P (b1 = 1|u, z) = P (b2 = 1|u, z) = 1

1 + exp(1− 0.7z)
.

4. Conditional on u and z, y is normally distributed with
mean

E(y|u, z) = α+ βu1u1 + βu2u2 + βzz

and variance 1. The true values of the parameters in the
simulation are α = 1, βu1 = 4, βu2 = 6, and βz = 3.

5. Conditional on y, u, z, and b, the indicator a of whether
y is observed follows

P (a = 1|y,u, z, b) = 1

1 + exp(2 + u1 − 3u2 − z)
.

The missing data mechanisms were chosen so that the
unconditional probabilities for b1, b2, and a were given in
the following table.

b1 b2 a Probability

0 0 0 0.10

1 0 0 0.09

0 1 0 0.09

1 1 0 0.12

0 0 1 0.10

1 0 1 0.13

0 1 1 0.13

1 1 1 0.24

5.2 Estimation of θ

The following three methods for estimating θ = (α, βu1,
βu2, βz)

′ were considered in the simulation.

Method I. The estimator of θ based on model (1) and data
without any missing value, which was used as a stan-
dard.

Method II. The estimator θ̃ defined in (7).

Method III. The estimator θ̂ defined in (10).

The sample size considered was n = 1, 000. Based on a
simulation of 1,000 runs, the following table gives the sim-
ulation bias and standard error (SD) for estimators of θ
based on the three methods. For comparison, true values of
parameters to be estimated are included in the table.

Parameter Method Bias SD

α = 1 I −0.003 0.002
II 3.090 0.019
III 0.003 0.007

βu1 = 4 I −0.001 0.001
II 0.578 0.006
III −0.002 0.002

βu2 = 6 I 0.000 0.001
II −0.425 0.007
III 0.004 0.003

βz = 3 I 0.003 0.001
II −1.194 0.008
III −0.000 0.003

Obviously, θ̃ defined in (7) is seriously biased, which con-
firms our theoretical finding in Section 3.1, i.e., treating im-
puted covariate values as observed data in the estimation of
θ leads to a bias. The estimator θ̂ in (10), which is shown to
be asymptotically unbiased in Section 4.1, has a negligible
bias although it is less efficient than the estimator based on
full data.

5.3 Estimation of μ

The following six estimators of μ = E(y) (with true value
21) were considered.

Method I. The sample mean of y based on data without
any missing value, which was used as a standard.

Method II. The estimator μ̃ defined in (9).
Method IIa. The estimator defined in (9) but with θ̃ in (7)

replaced by θ̂ in (10).
Method III. The estimator μ̂ defined in (11).
Method IIIa. The sample mean of imputed y data given

by formula (13) with imputation as described in Sec-
tion 4.2.

Method IIIb. The sample mean given by formula (14).

Based on the same 1,000 simulation runs as in Section 5.2,
the following table gives the simulation bias and standard
error (SD) for estimators of μ based on the six methods.

Clearly, treating imputed covariate values as observed
data (methods II and IIa) provides biased estimators of μ,

Estimation and imputation in linear regression 367



Parameter Method Bias SD

μ = 21 I −0.015 0.013
II 1.433 0.013
IIa 0.653 0.013
III −0.003 0.014
IIIa −0.004 0.014
IIIb 3.081 0.015

which confirms our theory in Section 3.2. Note that this is
still true even when we use a valid estimator θ̂ to estimate θ.
Although method IIa provides less biased estimation than
method II, the bias for method IIa is still significant.

On the other hand, methods III and IIIa produce nearly
unbiased estimators of μ, and they are comparable. In this
case, the estimators by methods III and IIIa have almost
the same efficiency as the estimator based on no missing
data, probably because, although there are many missing
y values, most information is recovered through imputation
using covariates.

Finally, method IIIb provides a biased estimator with a
bias even larger than those for method II. This confirms
our discussion in Section 4.2, i.e., the imputation procedure
is valid when observed yi’s with missing u covariate values
are discarded so that a bias is created if we include these
observed yi’s in the computation of the sample mean. It is
possible to not discard any observed yi’s in the estimation
of μ, but a much more complicated imputation procedure
(which is based on nonparametric or nonlinear regression)
has to be developed.

6. DISCUSSION

In the previous sections we focus on point estimation
of θ or μ only. To assess statistical accuracy or make in-
ference, we also need estimators of the variability of the
asymptotically unbiased point estimators. In general, there
are two ways to obtain variance estimators. The first one
is based on theoretical derivation. We first establish the
asymptotic normality of the asymptotically unbiased point
estimators and then obtain variance estimators by substitut-
ing unknown quantities in the derived asymptotic variances
with consistent estimators. The second method is to apply
the bootstrap or other resampling methods by adding a re-
imputation or adjustment step when point estimators are
computed using imputed data. Details can be found in Shao
and Sitter (1996), Shao (2001), or Kim and Shao (2013).

It can be shown that, for the estimation of μ, the esti-
mator μ̂ in (11) is asymptotically more efficient than the
estimator in (13), provided that all models are correct. In
our simulation study, however, these two estimators are al-
most the same.

Although we focus on a univariate y, extensions to mul-
tivariate y can be made. If we want to estimate correlations
among different y components, however, the imputation has
to be carefully done in the presence of nonignorable missing
values. Also, we may add random noises to imputed values
for the purpose of estimating quantiles. Further research will
be carried out on these topics.
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