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Likelihood estimate of treatment effects under
selection bias

Md. Moudud Alam, Maengseok Noh and Youngjo Lee
∗

We consider methods for estimating the causal effects of
treatment in the situation where the individuals in the treat-
ment and the control group are self selected, i.e., the selec-
tion mechanism is not randomized. In this case, a simple
comparison of treated and control outcomes will not gen-
erally yield valid estimates of casual effect. The propensity
score method is frequently used for the evaluation of treat-
ment effect. However, this method is based on some strong
assumptions, which are not directly testable. In this paper,
we present an alternative modelling approach to draw causal
inferences by using a shared random-effect model and the
computational algorithm to draw likelihood based inference
with such a model. With small numerical studies and a real
data analysis, we show that our approach gives not only
more efficient estimates but also is less sensitive to model
misspecifications, which we consider, than existing meth-
ods.
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1. INTRODUCTION

Econometric evaluation studies often have to deal with
the situation where the individuals in the treatment and
the control group are self selected [4], in other words the
selection mechanism is not randomized [35]. Often it is rea-
sonable to believe that the individuals with better (or worse)
potentiality (which may be partly unobservable) might be
selected to the treatment group. This is known as the sit-
uation of selection (selectivity) bias [8, 19]. In addition to
deal with the selection bias, an evaluation study also has
to deal with the identification of the causal effects of the
treatment [35].

The causal effect of a treatment (or an intervention or
action) is often defined as the difference between the poten-
tial outcomes (responses) under the treatment and under
a control (or non-treatment) environment [33]. However, a
practical difficulty with the “potential outcomes” approach
is that an individual can either be treated or not treated
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but one can not belong to both groups. As a consequence
we can observe one of the potential outcomes but not both.
Hence, it becomes a challenging task to identify the causal
effect from the observed data.

In literature on econometric evaluations, considering an
individual’s self selection into the treatment on one hand
and the relevant economic theory and the policy questions
of interest on the other hand [14], structural econometric
modelling approach [15], which is also known as the latent
index approach [19], latent variable framework [16] (here-
after HTV) and selectivity bias approach [8, 19], is com-
monly suggested. Recent applied papers on this approach
includes [7, 25]. However, these methods are criticized for
their highly sensitive distributional assumptions [17].

In general, the propensity score method (PSM) [33] is fre-
quently used for the evaluation of a treatment effect. Other
rather less popular approaches include the full Bayesian
method [25, 35], Graphical method [30] and Structural
Equations approach [1].

The PSM is constructed on some strong assumptions.
The most critical one being the so called strong ignorabil-
ity assumption (see Assumption-1; see also [18] for detailed
discussion). The strong ignorability assumption states that,
given a set of observable (background) covariates, the treat-
ment allocation is unconfounded (or ignorable) with the po-
tential outcomes. However, a direct test of the above as-
sumption is not offered in the literature [30]. Instead, sev-
eral indirect tests ([21] and the references cited therein) and
sensitivity analyses are suggested [33].

Based on the concept of potential outcomes (observed
and unobservable) we present an alternative modelling ap-
proach to draw causal inferences by using shared random
effects [24]. Our modelling framework is closely related to
those presented in [8, 17] yet more flexible and parsimo-
nious. We also present the computational algorithm to draw
likelihood based inference with such a model. The use of
shared random effects approach [24] enables us to provide
close-form solution of the marginal likelihood and greater
flexibility than the classical probit-normal models [7, 8]. The
likelihood framework enables us to draw inference on the in-
terest parameters and model selection in a straightforward
way.

By using simulations we show that the proposed method
produces a reasonable estimate of the average treatment ef-
fect (ATE). We also show that under our model assump-
tions, which is reasonable from an econometric point of
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view [14], the propensity score method cannot produce rea-
sonable estimates of the ATE while HTV’s and our method
can. For a probit-normal model [17] with no covariate in the
response model, our approach performs almost the same as
the HTV’s. However, as the number of covariates in the re-
sponse model increases our method becomes more efficient
(for a moderate sample size). Our approach is also found
to be less sensitive to certain model assumptions, compared
with HTV’s.

The rest of the paper is organized as follows. Section 2
presents the proposed causal model and outlines its compu-
tation. Section 3 presents a short overview of the propensity
score method and its extensions and discusses the similar-
ities and differences between our approach and the PSM
approach. Section 4 presents simulation studies to compare
the performance of our approach with the already existing
alternatives. Section 5 presents a real data application of
proposed models and methods by estimating the causal ef-
fect of Swedish teenagers’ summer job experience on their
income at a later age and Section 6 concludes.

2. CAUSAL MODELS AND H-LIKELIHOOD
INFERENCE

In this section we present two alternative ways to formu-
late a causal model. We also provide the explanations of the
model components and relate them to the components of al-
ready known approaches. The derivation of the h-likelihood
is also presented and computational methods are outlined.
In this paper we present only the situation of a binary treat-
ment allocation.

2.1 Observed data h-likelihood

Let us denote the outcome (response) of an individual

i (i = 1, 2, . . . , n) with y
(0)
i when individual i belongs to

the control group (non-treated) and y
(1)
i when individual i

belongs to the treatment group. Suppose that the parameter
of interest is

τ (x) = E
(
y
(1)
i − y

(0)
i |Xi

)
.

Let S denote the treatment indicator with Si = 1 when
individual i is in treatment group and Si = 0 when in
non-treated. However, one cannot be both treated and non-
treated at the same time. Therefore, we can observe either

y
(0)
i or y

(1)
i for an individual i but not the both.

Suppose that given individual characteristics (observed
confounding variables), Xi, and the random effect (latent
unobservable individual potentiality), ui, the response pro-
cess satisfies for j = 0, 1

(1) E
(
y
(j)
i |Xi, ui

)
=

{
α+Xiβ + ui if j = 0
α+ τ +Xiβ + ωui if j = 1

where α, β, τ and ω are fixed parameters ui ∼ N(0, σ2
u)

and V ar(y
(j)
i |Xi, ui) = φ. The parameter τ represents the

additive treatment effect, which is the only interesting pa-
rameter, any other parameter in the model is a nuisance
parameter. Let yi,o be the observed response, defined by

yi,o = Siy
(1)
i + (1− Si) y

(0)
i = y

(Si)
i .(2)

Here the random-effect model method cannot be used be-
cause V ar(ui) and φ are not separable. Note here that one
individual can only be either treated or not treated leaving

y
(Si)
i observable but not y

(1−Si)
i .

Model (1) leads to the following model for observed re-
sponse, given (Si,Xi,ui)

E (yi,o|Si, Xi, ui) = α+Xiβ+τSi + (1− (1− ω)Si)ui(3)

and V ar(yi,o|Xi, ui, Si) = φ. This model gives

E (yi,o|Si, Xi) = α+Xiβ + τSi(4)

and V ar(yi,o|Xi, Si) = φ+ (1− (1− ω)Si)
2σ2

u = κSi .
In order to complete the model specification we further

assume Pr(Si = 1|ui) = pi with

g (pi) = γ + Ziδ + ρui(5)

where Zi is a set of covariates which may share some columns
in Xi and g(·) is a monotonic link function.

In this paper the purpose of using random effects ui is
twofold. Here we assume the covariates Xi for the mean
outcome and Zi for the missingness indicator are known.
The availability of any such background information is an
advantage but it may not always be possible. In absence of
any background variables inXi∪Zi, the effect of the omitted
covariates is captured by ui [6]. Therefore, the random-effect
ui removes any hidden bias [33]. The random effects ensure
that the two potential outcomes for the same person are

correlated i.e. Cor(y
(0)
i , y

(1)
i ) �= 0 for σ2

u �= 0. For ω �= 0

the random effects also imply that Cor(y
(1)
i − y

(0)
i , Si) �= 0

meaning that individuals might be selected into the treat-
ment according to unobservable potential gains. The above
correlations are often a matter of concern for the obser-
vational studies where the individuals with better (worse)
potentiality can possibly be allocated to a certain (treat-
ment/control) group due to the lack of randomized treat-
ment allocation [15]. Consequently, models (4)–(5) can cap-
ture a possible correlation Cov(yi,o, Si|Xi); parameter, ρ,
incorporates a correlation between the treatment allocation
(Si) and observed outcome yi,o.

When ρ = 0 then the response process is uncorrelated
with the treatment allocation mechanism. In other words,
the treatment allocation is ignorable [35]. Under this situa-
tion τ can be estimated only by using the observed data (4).
This is the case when the treatment allocation is completely
randomized. However, in the lack of controlled randomiza-
tion, τ estimated from the observed data (4) only may not
necessarily represent the causal effect [35]. If ρ �= 0 then
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the treatment allocation mechanism is non-ignorable [35].
Therefore an ordinary least square (OLS) estimator of τ
from (4) is inconsistent. For the later case Rubin [34, 35]
suggested a Bayesian method but we present a likelihood
solution.

Let hi,O be the joint log-density of (yi,o, ui, Si). Based on
the observed data yi,o, the (log) h-likelihood [24] of ψ = (α,
β, τ , ω, φ, γ, δ, ρ, σ2

u) and u = (u1, u2, . . . , un)
T is given as

hO =

n∑
i=1

hi,O =

n∑
i=1

{log fτ,α,φ,σ2
u
(yi,o|ui, Si)

+ log fγ,ρ,,σ2
u
(Si|ui) + log fσ2

u
(ui)}

=− 2n log(2πφ)

− 1

2φ

n∑
i=1

{y − α−Xiβ − τSi − (1− (1− ω)Si)ui}2

+

n∑
i=1

{Si log(pi) + (1− Si) log (1− pi)}

− 2n log(2πσ2
u)−

1

2σ2
u

n∑
i=1

u2
i .(6)

Here, since f(yi,o|ui) =
∑1

s=0 f(yi,o|ui, Si = s)P (Si = s|ui),
it is clear that if f(yi,o|ui, Si) is normal then f(yi,o|ui) is a
mixture of two normal distributions. For presentational sim-
plicity we start with the case of ω = 1 and then we extend
it for ω �= 1. In order to estimate the model parameters, we
integrate out the random effects, ui’s, from (6) and obtain
the following marginal log-likelihood (see Appendix A.1 for
detailed derivation)

�o (θ) =− n

2
log (κ)− 1

2κ

n∑
i=1

(yi − α−Xiβ − Siτ)
2

+

n∑
i=1

Si log(p
∗
i ) +

n∑
i=1

(1− Si) log (1− p∗i )(7)

where θ = (τ, α, β, λ, ω, κ, γ, δ), g(p∗i ) = η∗i = 1
C (γ + Ziδ) +

(yi−α−Xiβ−Siτ), C =
√
1 + c2(

ρ2σ2
uφ

σ2
u+φ ) with c = ( 16

√
3

15π ) for

logit link and c = 1 for probit link, λ =
ρσ2

u

κC and κ = φ+σ2
u.

Here we notice that the individual parameters in (7) are not
estimable since C always comes as a product with γ and δ
and the variance components, φ and σ2

u, in κ = φ+σ2
u are not

separable. We will come back to this issue after extending
the likelihood function for ω �= 1.

For ω �= 1 the above marginal likelihood becomes

�o (θ
∗) =− 1

2

n∑
i=1

log (κSi)

−
n∑

i=1

1

2κSi

(yi − α−Xiβ − Siτ)
2

+

n∑
i=1

Si log(p
∗
i ) +

n∑
i=1

(1− Si) log (1− p∗i )(8)

where θ∗ = (τ, α, β, λ0, λ1, ω, κ0, κ1, γ, δ), g(p
∗
i ) = η∗i =

1
CSi

(γ + Ziδ) + λSi(yi − α − Xiβ − Siτ), CSi =√
1 + c2(

ρ2σ2
uφ(1−(1−ω)Si)2

1−(1−ω)Si)2σ2
u+φ ) with c = ( 16

√
3

15π ) for logit link

and c = 1 for probit link, λ0 =
ρσ2

u

κ0CSi=0
, λ1 =

ρσ2
u

κ1CSi=1
and

κSi = φ + σ2
u(1 − (1 − ω)Si)

2. Again, all the parameters in
(8) are not estimable for the same reason as they were for
ω = 1.

In order to estimate the parameters, as many as possi-
ble, we propose a Pseudo-likelihood approach [9]. From (7)
and (8) we notice that if θ0 = (γ, δ) are known then the rest
of the parameters in θ i.e. θ1 = (τ, α, β, λ0, λ1, ω0, ω1, κ0, κ1),
with θ = θ0 ∪ θ1, are estimable. Again, we see that after in-
tegrating out the random effects, the marginal model for the
selection process, Si, follows a binary model with the same
functional form if g is a logit or a probit link [27]. Thus, if
we estimate the selection model separately by using an ML
procedure, we can estimate the θ0 up to a proportionality
scale where the exact value of the proportionality constant
depends on the variance of the random effects and the link
function [27].

Notice that if we multiply θ0 with a constant and divide
CSi (or C, as applies) with the same constant the likelihood
function does not change. Hence, we can replace θ0 in (7)
and (8) with its maximum likelihood estimate (MLE), θ̃0,
obtained only from the marginal selection model and esti-
mate the remaining parameters by maximizing (7) or (8).
The resulting estimate of θ̃1 is a pseudo maximum likeli-
hood (PL) estimate (since θ̃0 is not the MLE of θ) but PL
is known to have similar properties like a full MLE [9, 29].
Therefore using PL with the reparameterization in θ we can
estimate the treatment effects parameters though the origi-
nal model is not estimable.

Following [28] we can derive the asymptotic variance of
θ̃1 as

Asy.V ar
(
θ̃1

)
= R−1

2 +R−1
2 (RT

3 R
−1
1 R3

−RT
4 R

−1
1 R3 −RT

3 R
−1
1 R4)R

−1
2(9)

where R1
−1 = Asy.V ar(θ̃0) base on the marginal likelihood

of θ0 only, R2 = Asy.V ar(θ̃1|θ0 = θ̃0), R3 = E( ∂�o∂θ0
( ∂�o∂θ1

)T )

and R4 = E(
∂lθ0
∂θ0

( ∂�o∂θ1
)T ) with lθ0 being the log-likelihood

function of the selection model, Model (5), after ignoring
the random effects. In practical application, Rk’s, k =
1, . . . , 4, are replaced by their observed data counterparts
(see e.g. [11], pp. 508–512).

In this paper, we also propose an approximate likeli-
hood method based on the h-likelihood, which almost offers
no computational difficulties. The idea is essentially to use
Laplace approximation to approximate the marginal likeli-
hood �o(θ

∗). It produces approximate MLEs of the mean
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parameters, restricted MLEs of the variance-covariance or
dispersion parameters, and approximate standard errors
based on an approximate Hessian matrix. Note that the h-
likelihood hO is equivalent to the Bayesian posterior with
uniform prior π(ψ) = 1, whose joint modes may not work
well. So Lee and Nelder [23] proposed various adjusted pro-
file h-likelihoods (APHLs) for estimation of fixed parame-
ters. Let ũi be the solution of equation ∂hi,O/∂ui = 0, and
let Di(hi,O, ui) = −∂2hi,O/∂ui

2. Then, the APHL

pu(hO) =
n∑

i=1

pui(hi,O)

≡
n∑

i=1

[
hi,O − 1

2
log det{Di(hi,O, ui)/(2π)}

] ∣∣∣
ui=ũi

(10)

can be shown to be the first-order Laplace approximation to
the marginal likelihood �o(θ

∗) by integrating out the random
effects ui.

Lee and Nelder [23] showed that the Laplace approxi-
mation (10) is identical to the Cox and Reid [5] adjusted
profile likelihood to eliminate fixed parameters. Thus, we
can use this form for the APHL to eliminate both fixed and
random parameters simultaneously, by eliminating fixed pa-
rameters by conditioning on their MLEs and random pa-
rameters by integration. This allows a generalization of the
restricted MLEs. Note that if we write ψ = (ψ1, ψ2) where
ψ1 contains the mean parameters and ψ2 contains the dis-
persion parameters. Then we typically use the Laplace ap-
proximation pu(hO) to the marginal likelihood �o(ψ) for
inference about the mean parameters ψ1. For inferences
about dispersion parameters ψ2, we use the restricted MLEs
by using pψ1,u(hO) =

∑N
i=1 pψ1,ui(hi,O), which is defined

similarly as in (10). Thus
∑N

i=1 pψ1,ui(hi) gives an ex-
tension of the restricted log-likelihood by eliminating the
mean parameters and missing covariates and random effects:
see [24] for comparisons between various marginal poste-
riors and APHLs. Penalized quasi-likelihood and marginal
quasi-likelihood methods [3] have been proposed, but they
can yield serious biases. The first-order Laplace approxima-
tion often reduces bias substantially even for extreme binary
data [24] and for small cluster size [12].

Because all dispersion parameters are not estimable, we
set the value of φ = 1. For the first-order approximation
HL(1), we use pu(hO) for ψ1 and pψ1,u(hO) for ψ2. Yun
and Lee [39] have found that HL(1) estimates for ψ1 works
well, provided that HL(1) estimates for ψ2 does not have
bias. However, HL(1) can give non-negligible biased esti-
mators in binary data with small cluster sizes and large
between-cluster variance components. In model considered
here, we have the binary data with cluster size being equal
to 1. For dispersion estimation Lee and Nelder [23] proposed
the second-order Laplace approximation

sψ1,u(hO) = pψ1,u(hO)−
n∑

i=1

Fi/24,

where Fi = [−3(∂4hi,O/∂ui
4)/D2

i (hi,O, ui) − 5(∂3hi,O/
∂ui

3)/D3
i (hi,O, ui)]|ui=ũi . Higher-order adjustment is useful

in reducing bias, but is computationally extensive because
of large number of extra terms. So it is advisable to use a
lower-order adjustment, unless it gives non-ignorable biases.
For HL(2) estimates, we use pu(hO) for ψ1 and sψ1,u(hO) for
ψ2.

2.2 Complete data h-likelihood

Let ycom = (yo,ym) be complete data, where yo =
(y1,o, y2,o, . . . , yn,o)

T is observed data and ym = (y1,m, y2,m,

. . . , yn,m)T with yi,m = y
(1−Si)
i is missing data. Let y

(1)
com =

{Siy
(1)
i + (1− Si)yi,m} and y

(0)
com = {Siyi,m + (1− Si)y

(0)
i },

then ycom = (ycom
(0)T ,ycom

(1)T )T . Now, causal inference
becomes a missing data problem where 50% of the data
are missing, possibly at random (MAR). Here, the complete
data h-likelihood is given as

hC =− 2nlog (φ)− 1

2φ

n∑
i=1

(
y
(1)
i,com − α−Xiβ − τSi − ui

)2
− 1

2φ

n∑
i=1

(
y
(0)
i,com − α−Xiβ − ui

)2
+

n∑
i=1

log fγ,ρ,φ1,σ2
u
(Si|ui) +

n∑
i=1

log fσ2
u
(ui) .(11)

It can be shown that exp[hO] ∝
∫
exp[hC ]dym (see

Appendix A.1 for proof). Therefore, any inferences about
model parameters, based upon (6) and (11), are identical.
Because σ2

u is not identifiable the h-likelihood procedure
cannot be applied to obtain the estimator of τ . However, in
the following we show that the h-likelihood estimator pro-
vides an interesting insight into the meaning of the causal
parameter.

Since

∂hC

∂α
= 0 ⇐⇒

n∑
i=1

(
y
(1)
i,com − α−Xiβ − τSi − ui

)
+

n∑
i=1

(
y
(0)
i,com − α−Xiβ − ui

)
= 0(12)

(13)
∂hC

∂τ
= 0 ⇐⇒

n∑
i=1

(
y
(1)
i,com − α−Xiβ − τ − ui

)
= 0,

we have
n∑

i=1

(
y
(0)
i,com − α−Xiβ − ui

)
= 0.

Substituting from (13) we have

n∑
i=1

(
y
(1)
i,com − y

(0)
i,com − τ

)
= 0.
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However, half of the complete data are missing, so that we

need to impute the missing data by ŷ
(1−Si)
i , the solution of

∂hO/∂y
(1−Si)
i = 0;

ŷ
(0)
i = α+Xiβ + ui and ŷ

(1)
i = α+Xiβ + τ + ui.

This gives the estimating equation for τ

(14)
n∑

i=1

(
Siy

(1)
i + (1− Si) ŷ

(1)
i − (1− Si) y

(0)
i − Siŷ

(0)
i − τ

)
= 0,

where Equation (14) is the missing data h-likelihood esti-
mating equation for the causal parameter, τ . Equation (14)
essentially says that the average treatment effect is simply
the mean of difference between the two potential outcomes
with the missing potential outcome being replaced by an
imputed value of it from the h-likelihood. Anyway this es-
timating equation cannot be used because ui’s are not es-
timable.

3. COMPARISON WITH THE PROPENSITY
SCORE METHODS

In the model (5), the marginal probability of getting the
treatment becomes

p(Zi) = Pr (Si = 1|Zi) =

∫
pifσ2

u
(ui)dui,

which is called the propensity score. In order to identify
the treatment effect τ(x), the PSM approach adopts the so
called “strong ignorability assumption” (see Assumption-1).

Assumption-1 (Strong ignorability assumption). Given a
set of background information, Zi, the potential outcomes
are unconfounded with the actual treatment assignment
i.e.

E(y
(0)
i |Zi, Xi, Si = 0) = E(y

(0)
i |Xi)

and

E(y
(1)
i |Zi, Xi, Si = 1) = E(y

(1)
i |Xi).

Assumption-1 is also known as “conditional indepen-
dence” and “unconfoundedness” assumption. It is worth
noting that a part of Assumption-1 is always implicit in

the model specification (2)–(5) in that E(y
(s)
i |Xi, Si =

s) = Eui(E(y
(s)
i |Xi, ui, Si = s)) = E(y

(s)
i |Xi) ∀s =

0, 1. Strong ignorability assumption implies the condi-

tional independence i.e., (y
(0)
i , y

(1)
i )⊥Si|(Xi, Zi) [18]. A

direct consequence of the conditional independence is

that, E(Si|y(Si)
i , Xi, Zi) = E(Si|Zi). This does not

hold for the model presented in Section 2, since

E(y
(Si)
i |Si, Xi, ui) and E(Si|Zi, ui) shares the same random

effect ui.

Under Assumption-1 τ(x) is estimated in the following
way.

E
(
y
(1)
i Si|Xi, Zi

)
= E(y

(1)
i |Si = 1)p(Zi),

E
(
y
(0)
i (1− Si)|Xi, Zi

)
= E

(
y
(0)
i |Xi, Si = 0

)
(1− p (Zi)) .

Since

E(y
(1)
i |Xi, Si = 1)− E(y

(0)
i |Xi, Si = 0)

= E(y
(1)
i |Xi)− E(y

(0)
i |Xi)

= E
(
y
(1)
i − y

(0)
i |Xi

)
= τ (x)

due to the strong ignorability assumption (Assumption-1),
we have the following unbiased estimating equation for τ(x)

(15)

n∑
i=1

(
y
(1)
i Si

p(Zi)
− (1− Si)y

(0)
i

1− p(Zi)
− τ (x)

)
= 0.

The resulting PSM estimator is also known as the inverse
propensity weighted (IPW) estimator [10, 32]. Standard er-
ror estimates of PSM estimator are given in [2, 20].

The PSM estimator from (15) avoids the unidentifiable

missing estimation ŷ
(1−Si)
i in (14). However, it requires us to

know p(Zi). If p(Zi) is unknown and is estimated from the
data, PSM estimating equation (15) does not necessarily
give an unbiased estimator, but the estimator is still effi-
cient and asymptotically normally distributed, under some
reasonable assumptions, along with the strong ignorability
assumption [20].

PSM is very easy to understand and implement. This is
why it has received so much attention. However, the strong
ignorability assumption is often criticized [30]. There is no
statistical tool to assess the validity of the strong ignorabil-
ity assumption. It is also found that the PSM can be biased
if we observe only Xi,o such that Xi,o ⊂ Xi while Si depends
on the whole set of covariates in Xi [37]. Moreover, it works
without requiring the strong ignorability condition.

In application, the PSM estimator often turns out to
be implausible, in that the estimator exceeds any reason-
able bound, if some observations have extreme (close to
0 or 1) propensity scores. In those cases the matching
method [33] and normalization of the inverse propensity
weight (NAIPW) [21], by restricting the sum of the weights
to one, are proposed in the literature. The normalization
approach gives the following estimator

τ̂NIPW (x) =

(
n∑

i=1

Si

p̂ (Xi)

)−1 n∑
i=1

(
y
(1)
i Si

p̂(Zi)

)

−
(

n∑
i=1

1− Si

1− p̂ (Xi)

)−1 n∑
i=1

(
(1− Si)y

(0)
i

1− p̂(Zi)

)
.
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Glynn and Quinn [10] suggested further improvement to
τNIPW by using the predictive information in Xi about
yi. They [10] call their estimator as the Augmented In-
verse Propensity Weighted (AIPW) estimator which is given
as

τ̂AIPW (x) =

1

n

n∑
i=1

[(
y
(1)
i Si

p̂(Zi)
− (1− Si)y

(0)
i

1−p̂(Zi)

)
− Si − p̂(Zi)

p̂(Zi) {1− p̂(Zi)}(
{1− p̂(Zi)} Ê

(
y
(1)
i |Xi, Si = 1

)
+p̂(Zi)Ê

(
y
(0)
i |Xi, Si = 0

))]
.(16)

In application, we might be unsure about the true Xi

and Zi. Therefore, Glynn and Quinn [10] suggested func-
tional models (e.g. generalized additive models (GAM)
[13]) for modelling Si|(Xi, Zi), y(0)|(Xi, Si = 0) and
y(1)|(Xi, Si = 1). Note that, for AIPW, the response and
the selection model do not have to be the true model.
Suffice it to have a selection model that ensures con-
sistent estimates of p(Zi) and that Assumption-1 holds.
The response model can only improve the estimation if it
has some predictive power, but it does not matter how
much.

AIPW has the following favourable properties. Firstly,
it preserves the so called doubly-robust property in that
it is consistent only if one of the processes, either the re-
sponse y or the selection S, is correctly modelled. Sec-
ondly, it overcomes the problems due to extreme p̂(Zi), to
some extent [10]. Thirdly, possible non-linearity in any of
the model’s components can be captured by using a suit-
able GAM. Finally, under the same conditions necessary
for the validity of the PSM estimator, the AIPW estimator
is asymptotically normally distributed and attains the so
called non-parametric efficiency bound [10]. However, if the
propensity score estimates are highly variable, the AIPW
can be inefficient in a small sample.

Our method does not need the strong igoreability as-
sumption i.e., it works under E(Si|yi,o, Zi) �= E(Si|Zi). The
ML estimator is efficient if the assumed model is true while
the PSM estimator is robust. The advantage of our method
over the full Bayesian method [34, 35, 25] is that we do not
need any subjective prior and we can estimate the parame-
ters, and their standard errors, analytically while a Bayesian
might have to rely on the time consuming Markov chain
Monte Carlo (MCMC) simulation [25, 26].

4. SIMULATION STUDY

In order to assess the performances of the different es-
timators of the causal effects, presented in Section 2 and
Section 3, we conducted a series of simulation studies. Since
our method is closely related to the HTV’s we started

Figure 1. Bias and variation in ATE estimates by different
methods.

with a simulation study consisting of the setting simi-
lar to HTV and then we examined situations with more
covariates and functional misspecification of the selection
model.

For the first simulation study, we generated data with
yi,o|S, ui ∼ N(α + τSi + (1 − (1 − ω)Si)ui, 1.5), Φ

−1(pi) =
γ+δ1X1,i+ρui, Xi ∼ N(0, 1), ui ∼ N(0, 0.75), (α, τ, γ, β) =
(2, 1, 0, 1) were chosen according to [17] and ω = 1.5. This
gives the same construction as HTV (see Appendix A.2)
except for the specific restrictions on the variance and

covariances (e.g. Cor(y
(0)
i , y

(1)
i ) = 0 in HTV). At each

Monte Carlo iteration we simulated n = 500 and 1,000
observations and we used 500 Monte Carlo replications.
The results are summarized in terms of τ̂ − τ in Fig-
ure 1.

All the simulations were conducted in R [31]. We used
our own programme to calculate the PL, PSM and HTV
estimates. AIPW was implemented via the estimate.ATE

function from the CausalGAM library [10]. We used the
default spline model for response and selection model in
estimate.ATE.

Figure 1 shows that the ATE estimate of PSM, AIPW
and OLS are highly biased. The other two methods HTV
and PL are unbiased and their performances are not distin-
guishable. The results are well-understandable. Since, the
strong ignorability condition does not hold, AIPW and PSM
are not expected to be unbiased. The OLS is also sup-
posed to be biased as the covariate Si in the linear model
yi,o = a+bSi+εi is correlated with the error term. However,
it is nice to see that both the PL and the HTV overcome any
bias. Since there are not many covariates, closeness between
HTV and PL is also understandable. This situation might
change as the number of covariates in the response models
increases.
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Table 1. Bias and MSE of PL and HTV under different misspecification of the link function in the selection model

True link/Assumed Link Method Bias MSE
n=250 n=500 n=1000 n=250 n=500 n=1000

Probit/Probit PL −0.15∗ 0.00 0.00 0.77 0.27 0.14
HTV −0.04 0.02 0.00 1.19 0.91 0.45
HL(1) −0.17∗ −0.14∗ −0.10∗ 0.11 0.079 0.041
HL(2) −0.07∗ −0.05∗ 0.01 0.14 0.071 0.057

Logit/Probit PL −0.38∗ −0.11∗ −0.10∗ 1.37 0.77 0.47
HTV −0.20∗ −0.15∗ −0.20∗ 6.09 2.82 1.34
HL(1) −0.14∗ −0.16∗ −0.13∗ 0.079 0.046 0.042
HL(2) 0.08∗ 0.07∗ 0.02 0.12 0.058 0.026

Logit/Logit PL −0.30∗ −0.09∗ −0.03 1.13 0.82 0.49
HTV −0.22∗ −0.14∗ −0.18∗ 6.50 2.58 1.24
HL(1) −0.07∗ −0.05∗ −0.04∗ 0.098 0.047 0.029
HL(2) 0.02 0.01 −0.01 0.15 0.087 0.051

∗ Significantly different from 0 at 5% level.

For the second simulation study, we generated data with
sample sizes n = 250, 500 and 1, 000, two independent
background variables, Xj ∼ N(0, 1); ∀j = 1, 2, α = 1.8
β = (−1.6, 0.8)T , τ = 1.9, φ = 1.5, σ2

u = 0.75, γ = −0.7,
δ = (1.4,−0.9)T and ρ = −0.7. In the simulation, we con-
sidered E(yi,o|Xi, Si, ui) = α + β1X1i + β2X2,i + τSi + ui

and Φ−1(pi) = γ+ δ1X1,i+ δ2X2,i+ ρui where Φ represents
a standard normal CDF. For the PSM method we estimated
the propensity score with a probit model with both X1 and
X2 as the covariates. We implemented improved IPW esti-
mate (AIPW) [10] with both the covariates through a spline
model for the means of yi and Si. We also carried out a sim-
ple regression (OLS) estimation of τ by regressing S, X1

and X2 on yo.

The results showed the same pattern as the one in Fig-
ure 1. Hence, we do not report all the detailed results. The
only difference in the results of the second simulation was
that the HTV turned out to be inefficient, in terms of higher
mean squared error (MSE; see MSE and Bias in Table 1)
compared to PL, HL(1) and HL(2). Other methods (AIPW
and OLS) were found biased, as expected.

For the third simulation, we generated data in the same
way as the second simulation except that we used a logit
link for the selection model where as a probit link was used
in second simulation. It is worth noting that HTV requires
the error-distributions of both the response and the selec-
tion models to be known. For the probit case, the errors
in response and selection models follow multivariate nor-
mal distribution. However, in logit cases we do not know
the joint distribution of the error terms. Therefore, we com-
puted the ATE for HTV by treating the error distribution
of the selection models to be both normal or logistic (nei-
ther is correct). We also examined the effect of the miss-
specification of the link function for the PL, HL(1) and
HL(2), too. Since we already knew, from the second sim-
ulation study, that the PSM, AIPW and OLS were biased
we did not include them in the third simulation. We only

report the bias and the mean squared errors of PL, HTV,
HL(1) and HL(2) under different specification of the link
function (Table 1).

In Table 1, the first case is from the second simulation
(True Link: Probit) and the rest from the third simula-
tion (True Link: Logit). When the true link is probit, the
HTV estimator is unbiased but the biases of PL, HTV and
HL(2) decrease rapidly as the sample size increases. HTV
has the largest MSE, while HL(1) tends to have the small-
est. When the link is misspecified, bias of HTV does not
decrease as n grows and has the largest MSE. HL(1) has a
generally good statistical property with computational effi-
ciency.

5. A REAL DATA APPLICATION:
ESTIMATION OF THE SUMMER JOB

EFFECTS

In most European countries, the unemployment rate of
the youths keeps growing. Since, one of the causes for high
youth unemployment rate would be the difficulty in getting
their first job. A remedy to provide the school leavers with
work experience is often suggested (see e.g. [36] and the ref-
erences cited therein). Therefore, it is interesting to examine
the causal effect of early summer job experience on the fu-
ture unemployment of high school graduates. To check this
hypothesis, we created a data set by merging several data
bases maintained by Statistics Sweden (SCB). Main source
was the LOUISE data base (renamed as LISA since 2004;
see http://www.scb.se/) which contains longitudinal in-
formation on earnings and demographics. We used a ran-
dom sample of 5% individuals from the LOUISE database
between 1995 and 2002. We defined a teenager (aged be-
tween 16 and 19 years) as a summer jobber if (s)he had
any gainful employment during June–July. We added fur-
ther information on a teenager’s middle and high school
grades and parents’ social and economic status from other
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Table 2. Estimated summer job effect

Age n OLS PL AIPW HL(1) HL(2)

19 10625 0.62 0.60 0.61 0.62 0.62
(0.046) (0.058) (0.049) (0.049) (0.049)

20 10593 0.25 0.19 0.24 0.25 0.25
(0.045) (0.056) (0.046) (0.047) (0.047)

21 8027 0.24 0.32 0.24 0.26 0.25
(0.050) (0.065) (0.052) (0.052) (0.052)

22 5340 0.16 −0.26 0.14 0.18 0.19
(0.062) (0.049) (0.063) (0.064) (0.064)

23 2657 0.16 0.20 0.15 0.16 0.16
(0.087) (0.228) (0.084) (0.089) (0.089)

Note: Values within the parenthesis show standard errors

databases maintained by SCB. We used OLS, PL, AIPW
and HL methods to estimate the average summer-job ef-
fect. The outcome variable was log(1 + income) with the
observed income being adjusted for inflation using the year
2002 as the base. We fitted a logistic model with 8 covari-
ates (measured at age 19) to obtain the probability to join
the summer job. Outcome model under OLS, PL, AIPW
and HL used 12 covariates (OLS also included a dummy for
summer job).

We split the data according to age in years (19–23). The
PL and the HL results (see Table 2) show that the summer
job experience has a short term positive effect on income
but this effect is wiped out after age 22. The OLS, PL and
HL estimates of summer job effect do not differ very much
from each other except for the age group 22 years where
PL shows a negative effect which again turns out positive
but insignificant in the next age group. Therefore, we may
conclude that summer job experience does not have a per-
sistent long term effect on future income. The results from
PL might look rather striking but it is consistent with the
results of [38] though they used experimental data from only
one municipality in Sweden.

6. CONCLUSION

In this paper, we present a shared random effects models
approach for drawing inferences under selection bias. The
proposed models include the Gaussian or “textbook selec-
tion” model [16] as a special case. We provide a close-form
solution for the model parameters and their asymptotic vari-
ance estimation by using the h-likelihood method. For com-
putation, we offer three algorithms: PL, HL(1) and HL(2).
The PL is computationally fast but the simulation results
indicate that it may not be as precise as the other alter-
natives. The HL(1) turns out to be the most efficient (in
terms of MSE) though it is computationally slower than the
PL, but faster than HL(2). Both the simulation study and
the real data application show that the proposed approach
can be a better alternative than the already existing ones in
drawing inferences on treatment effects under non-ignorable
treatment allocation.

APPENDIX A

A.1 Derivarion of equation (7)

Let Ti = 1− Si. First note that

exp (hO) =
n∏

i=1

∫
exp(hM )dy

(Ti)
i

=

n∏
i=1

∫
f
(
y
(0)
i,com|Si, ui

)
f
(
y
(1)
i,com|Si, ui

)
f (Si, ui) dy

(Ti)
i

=

n∏
i=1

∫
f
(
y
(Si)
i |Si, ui

)
f (Si, ui) f

(
y
(Ti)
i |Si, ui

)
dy

(Ti)
i

=

n∏
i=1

f
(
y
(Si)
i |Si, ui

)
f (Si, ui)

∫
f
(
y
(Ti)
i |Si, ui

)
dy

(Ti)
i

=

n∏
i=1

f
(
y
(Si)
i |Si, ui

)
f (Si|ui) f (ui) .

Secondly,

L = exp(�) =

∫
exphOdu

=

n∏
i=1

∫ ∞

−∞
f
(
y
(Si)
i |Si, ui

)
f (Si|ui) f (ui) dui.(17)

Now, with y
(Si)
i |ui, Si ∼ N(μi + ui, φ), μi = α+Xiβ + τSi,

Si|ui ∼ Bin(1, pi), g(pi) = ηi = γ + Ziδ + ρui and ui ∼
N(0, σ2

u), we have the following simplifications.

L = L
(
τ, α, φ, σ2

u, γ, ρ
)

=

n∏
i=1

∫
1√
2πφ

exp

⎡⎢⎣−
(
y
(Si)
i − μi − ui

)2
2φ

⎤⎥⎦
× 1√

2πσ2
u

exp

[
− u2

i

2σ2
u

]
f (Si|ui) dui

=

n∏
i=1

(
1√

2π (φ+ σ2
u)

exp

[
− 1

2 (φ+ σ2
u)

(
y
(Si)
i − μi

)2])

×
n∏

i=1

∫ √
(φ+ σ2

u)√
2πφσ2

u

exp

[
−
(
φ+ σ2

u

)
2φσ2

u(
ui −

σ2
u

(φ+ σ2
u)

(
y
(Si)
i − μi

))2
]
f (Si|ui) dui.

(18)

But, f(Si|ui) = pi if Si = 1 and f(Si|ui) = 1 − pi if
Si = 0. Hence, the integral term in (18) is (Eui(pi))

Si(1 −
Eui(pi))

Ti where the expectation is taken with respect to

the new distribution of ui being ui ∼ N(
σ2
u

(φ+σ2
u)
(y

(Si)
i −
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μi),
φσ2

u

(φ+σ2
u)
). For probit link, i.e. g(pi) = Φ−1(pi) with Φ

being a standard normal distribution function, we can cal-

culate the above expectation as

Eui (pi) = Eui (E (Si|ui))

= Eui (Φ (γ + Ziδ + ρui))

= Eui (Pr (γ + Ziδ + ρui ≥ εi))

= Pr (γ + Ziδ ≥ εi − ρui)

= Pr

(
γ + Ziδ +

ρσ2
u

(φ+ σ2
u)

(
y
(Si)
i − μi

)
≥ ε∗i

)
(19)

where

εi ∼ N(0, 1),

u∗
i =

(
ui −

σ2
u

(φ+ σ2
u)

(y
(Si)
i − μi)

)
∼ N

(
0,

φσ2
u

(φ+ σ2
u)

)
and

ε∗i = εi − ρu∗
i ∼ N

(
0, 1 +

ρ2φσ2
u

(φ+ σ2
u)

)
.

Hence we obtain from (21)

(20) Eui (pi) = Φ

⎛⎜⎜⎝γ + Ziδ +
ρσ2

u

(φ+σ2
u)

(
y
(Si)
i − μi

)
√(

1 +
ρ2φσ2

u

(φ+σ2
u)

)
⎞⎟⎟⎠

For logit link, i.e. when g(pi) = log( pi

1−pi
) = ηi, using

the relation between standard normal and standard logis-

tic CDF [22], i.e. (1 + exp[−πx/
√
3])−1 � Φ(16x/15), we

obtain

pi =

(
1 + exp

[
− π√

3

(
ηi
√
3

π

)])−1

= Φ

(
16

15

(
ηi
√
3

π

))

= Pr

(
γ + Ziδ + ρui ≥

15π

16
√
3
εi

)
so that

Eui (pi) = Φ
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ρσ2
u

(φ+σ2
u)

(
y
(Si)
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)
√((

15π
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√
3

)2
+

ρ2φσ2
u

(φ+σ2
u)

)
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= Φ
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15
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(
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(Si)
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15π
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3

)2
+

ρ2φσ2
u

(φ+σ2
u)
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⎛⎜⎜⎜⎜⎝1 + exp
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3

15
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γ + Ziδ +
ρσ2

u

(φ+σ2
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(
y
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=

⎛⎜⎜⎜⎜⎝1 + exp
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γ + Ziδ +

ρσ2
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(φ+σ2
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(
y
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)
√(

1 +
(

16
√
3

15π

)2
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u

(φ+σ2
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)
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−1

.

Substituting these results into (18) we obtain

L =

n∏
i=1

1√
2π (φ+ σ2

u)
exp

[
− (yi,o − μi)

2

2 (φ+ σ2
u)

]
(p∗i )

Si (1− p∗i )
Ti

where,

g (p∗i ) = η∗ =
1

C

(
η +

ρσ2
u

(φ+ σ2
u)

(yi,o − μi)

)

with C =
√
1 + c2

ρ2φσ2
u

(φ+σ2
u)

where c = 1 for probit link and

c = 16
√
3

15π for logit link. The integral for p∗i is exact for probit
link but it is an approximation, yet very accurate, for logit
link (see [40] for further discussion).

A.2 Heckman, Tobias and Vytlacil’s [16]
modeling framework and their
estimation technique (HTV)

Let,

y(1) = Xβ(1) + U (1),

y(0) = Xβ(0) + U (0),(21)

D∗
i = Zδ + UD

where β(0), β(1) and δ are model parameters and U (0),
U (1) and U (D) are zero mean error terms which follow
a joint tryvariate distribution. Denote V ar(U (0)) = σ1

0 ,
V ar(U (1)) = σ1

1 , Cor(U (0), UD) = �0, Cor(U (1), UD) = �1
and Cor(U (0), U (1)) = �10.

The selection rule assigns people to the treatment (Si =
1) if UD

i ≥ −Ziδ. This is equivalent to setting Si = 1 when
J(UD

i ) ≥ J(−Ziδ) for some strictly increasing function J .
Suppose that UD ∼ F , where F is an absolutely continuous
distribution function which can be non-normal but its den-
sity function is symmetric about 0. Define JΦ(U

D) ≈ ŨD
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and JΦ(u) = Φ−1F (u). The this model (21) gives the fol-
lowing selection-correction conditional mean functions

(22)

E
(
y(1)|S(Z) = 1, X = x, Z = z

)
= xβ(1)+�1σ1

φ (JΦ (Zδ))

F (Zδ)

and

(23)

E
(
y(0)|S(Z) = 1, X = x, Z = z

)
= xβ(0)+�0σ0

φ (JΦ (Zδ))

F (Zδ)

where, φ is the standard normal pdf. For F = Φ we have
φ(JΦ(Zδ)) = Φ(Zδ). If we also assume the other two error
terms to be normal, we have a tri-variate normal distribution
of the error terms leading to the same model as the one in
Section 2 with probit link.

The ATE is given as

ATE (x) = E
(
y(1) − y(0)|X = x

)
= x

(
β(1) − β(0)

)
(24)

Estimation of the model parameters is carried out in the
following way.

1. Obtain δ̂ from a binary choice model using F as the
distribution of UD.

2. Compute appropriate selection correction terms by us-
ing (22) and (23) evaluated at δ̂.

3. Run treatment-specific regression for groups S = 1 and
S = 0 separately.

4. Given, β̂(0), β̂(1), �̂1σ1 and �̂0σ0 from step 3 we estimate
the ATE as

̂ATE (x) =
1

n

n∑
i=1

xi

(
β̂(1) − β̂(0)

)
.(25)

This is the ATE of HTV implemented in the simulation.
Asymptotic variance estimate of this ATE estimator is given
in [16].

Notice that HTV estimate of ATE quickly becomes inef-
ficient as the number of columns in X increases with fixed
sample size. It requires the marginal distribution of UD to
be known exactly in order to compute the selection cor-
rected means in (22)–(23). Finally, if δ̂ is not an unbiased

estimator, which is the case if δ̂ is the MLE, and the sample
size is small, then (22) and (23) are not unbiased estimating
equations.
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