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A unified theory on empirical likelihood methods
for missing data

Sixia Chen

Efficient estimation with missing data is an important
practical problem with many application areas. Parameter
estimation under nonresponse is considered when the pa-
rameter is defined as a solution to an estimating equation.
Using a response probability model, a complete-response
empirical likelihood method can be constructed and the non-
parametric maximum likelihood estimator can be obtained
by solving the weighted estimating equation where the
weights are computed by maximizing the complete-response
empirical likelihood subject to the constraints that incorpo-
rate the auxiliary information obtained from the full sam-
ple. Often the constraints are constructed from the working
outcome regression model for the conditional distribution of
the estimating function given the observation. The proposed
method achieves the semi-parametric lower bound when we
correctly specify the conditional expectation of the estimat-
ing function, regardless of whether the response probabil-
ity is known or estimated. When the response probability
is estimated nonparametrically, the resulting empirical like-
lihood method automatically achieves the semi-parametric
lower bound without specifying the conditional distribution
of the estimating function. Asymptotic theories are derived
and simulation studies are also presented.

AMS 2000 subject classifications: Primary 60K35,
60K35; secondary 60K35.
Keywords and phrases: Missing at random, Nonpara-
metric estimation, Propensity score, Response mechanism.

1. INTRODUCTION

The empirical likelihood (EL) method, proposed by Owen
(1988, 1990), has become a very powerful tool for non-
parametric inference in statistics. It uses a likelihood-
based approach without having to make a parametric dis-
tributional assumption about the data observation. Thus,
the EL method often leads to efficient estimation and
enables likelihood-ratio type inference. Qin and Lawless
(1994) considered the situation when the parameter of in-
terest is the solution to a system of estimating equations.
Owen (2001) provide a comprehensive overview of the EL
method.

In the case of missing data, however, the EL method
is not directly applicable and some adjustment needs to

be made. Qin (1993) addressed this problem using a bi-
ased sampling argument of Vardi (1985). Wang and Rao
(2002) used regression-type imputation approaches to em-
pirical likelihood inference. Wang and Chen (2009) used
a nonparametric regression imputation approach to handle
missing data in the empirical likelihood inference. The im-
putation approach uses some assumptions about the miss-
ing data given the observed data and usually assumes that
the response mechanism is ignorable in the sense of Rubin
(1976). Under an ignorable missing mechanism, the explicit
modeling of the response model is avoided.

In this paper, we consider an alternative approach to han-
dling missing data using a model for response probability.
Use of a parametric response probability model in the em-
pirical likelihood inference has been considered in Qin and
Zhang (2007) and in Chen et al. (2008). Qin et al. (2009)
and Tan (2011) considered using EL to model the complete
likelihood, where the nonparametric likelihood function is
computed for the whole sample including the units with
missing data. The use of complete likelihood attains the full
efficiency and also provides a nice theory of the limiting chi-
squared distribution in the likelihood ratio test statistics.
However, as a practical matter, the unit-level information
for the complete likelihood is not always available and the
complete likelihood cannot be computed. For example, in
voluntary surveys, the individual values of auxiliary vari-
ables in the nonsampled part are not usually available. In
this case, the approach of using the complete likelihood may
not be applicable.

In the case in which the response mechanism is non-
parametrically modeled, the literature is somewhat sparse.
Cheng (1994) discussed some asymptotic properties of the
mean estimator using the kernel regression method to es-
timate the conditional outcome regression model under an
ignorable missing case. Recently, Kim and Yu (2011) ex-
tended the approach of Cheng (1994) to handle nonignorable
nonresponse. Xue (2009) discussed an empirical likelihood
method for linear models using the weights computed from a
nonparametric model where the kernel regression method is
used to estimate the response model. Da Silva and Opsomer
(2009) considered another type of nonparametric response
probability estimation using local polynomial regression. Hi-
rano et al. (2003) and Cattaneo (2010) discussed semipara-
metric efficiency of the nonparametric response propensity
estimators in the context of estimating average treatment
effect in econometrics.
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In this paper, we propose a unified approach of the EL
method with missing data that avoids using the complete
likelihood. Under the setup of estimating function in Qin
and Lawless (1994), the proposed method can handle the
situation regardless of whether the response probabilities
are known or estimated, parametrically or even nonpara-
metrically. When the response probabilities are estimated
from a parametric model, the proposed method under the
ignorable response mechanism is similar to the method of
Qin and Zhang (2007). The proposed method is directly
applicable to the problem of the propensity score weight-
ing method. The propensity score weighting method can be
found, for example, in Durrant and Skinner (2006), Kim
and Kim (2007), and Chang and Kott (2008). We show that
employing EL method using a suitable choice of control vari-
ables leads to efficient estimation in the sense that it achieves
the lower bound of the asymptotic variance. Optimal choice
of the control variable requires correct specification of the
conditional distribution of the missing data given the obser-
vation. Under the nonparametric propensity score method,
which will be discussed in Section 5, the lower bound of
the asymptotic variance can be achieved without correctly
specifying the conditional distribution.

In Section 2, we first review the existing methods of em-
pirical likelihood under missing data and discuss a unified
approach of the EL method. Asymptotic properties of the
proposed estimator under known response probabilities are
discussed in Section 3. The proposed EL estimator is dis-
cussed under estimated response probability in Section 4.
Use of the nonparametric response model for the EL ap-
proach is discussed in Section 5. Results from the simula-
tion study are reported in Section 6. Concluding remarks
are made in Section 7.

2. BASIC SETUP

Consider a multivariate random variable (X, Y ) with dis-
tribution function F (x, y) that is completely unspecified ex-
cept that E{U(X, Y ;θ0)} = 0 for some θ0. We are inter-
ested in estimating the parameter θ0 from a random sample
of the distribution. To avoid unnecessary details, we assume
that the solution to E{U(X, Y ;θ)} = 0 is unique. For sim-
plicity, we assume that the dimension of U is equal to the
dimension of θ.

If (xi, yi), i = 1, 2, . . . , n, are n independent realizations
of the random variable (X, Y ), a consistent estimator of θ0

can be obtained by solving

(1)

n∑
i=1

U(xi, yi;θ) = 0.

In this paper, we consider the problem of estimating θ0 when
x is always observed and y is subject to missingness. Let
ri = 1 if yi is observed and ri = 0 otherwise. We consider
an approach based on the empirical likelihood (EL) method.

To explain the idea, first note that the joint density of the
observed data can be written as

(2) pnr (1− p)n−nr ×
∏
ri=1

f(xi, yi|ri = 1)
∏
ri=0

f(xi|ri = 0),

where nr is the response sample size, p = Pr(r = 1),
f(x, y|r) is the conditional density of (X, Y ) given r, and
f(xi|ri = 0) =

∫
f(xi, yi|ri = 0)dyi is the marginal density

of X among r = 0.

In the empirical likelihood approach, the distribution is
assumed to have the support on the sample observation. Let
F1(x, y) = Pr(X ≤ x, Y ≤ y|r = 1) and F0(x, y) = Pr(X ≤
x, Y ≤ y|r = 0). Under the empirical likelihood approach,
we can express

(3) F1(x, y) =
∑
ri=1

ωiI(xi ≤ x, yi ≤ y),

where
∑

ri=1 ωi = 1, ωi is the point mass assigned to (xi, yi)
in the nonparametric distribution of F1(x, y), and I(B) is
an indicator function for event B. To express F0(x, y) using
ωi, note that we can write

f(xi, yi|ri = 0) = f(xi, yi|ri = 1)× Odd(xi, yi)

E{Odd(xi, yi)|ri = 1} ,

where

Odd(x, y) =
Pr(r = 0 | x, y)
Pr(r = 1 | x, y) .

Thus, we can express F0(x, y) = Pr(X ≤ x, Y ≤ y|r = 0) by

(4) F0(x, y) =

∑
ri=1 ωiOiI(xi ≤ x, yi ≤ y)∑

ri=1 ωiOi
,

where Oi = Odd(xi, yi). Note that F0(x, y) is completely
determined by two factors: ωi and Oi. The factor ωi is de-
termined by the distribution F1(x, y) and the factor Oi is
determined by the response mechanism. If Odd(x, y) is a
known function of (x, y), then we have only to determine
ωi.

From (4), the joint distribution of (x, y) can be written
as

Fw(x, y) = p×
∑
ri=1

ωiI(xi ≤ x, yi ≤ y)

+ (1− p)×
{∑

ri=1 ωiOiI(xi ≤ x, yi ≤ y)∑
ri=1 ωiOi

}

= p×
{ ∑

ri=1

ωiI(xi ≤ x, yi ≤ y)

+ (1/p− 1)

∑
ri=1 ωiOiI(xi ≤ x, yi ≤ y)∑

ri=1 ωiOi

}
.
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Note that (3) implies

∑
ri=1

ωi(Oi + 1) = E

{
1

π(X, Y )
|r = 1

}

=

∫
1

π(x, y)
f(x, y|r = 1)dxdy

=

∫
1

π(x, y)

π(x, y)f(x, y)

p
dxdy = 1/p.

Thus, we have
∑

ri=1 ωiOi = 1/p− 1 and

Fw(x, y) =

∑
ri=1 ωi(1 +Oi)I(xi ≤ x, yi ≤ y)∑

ri=1 ωi(Oi + 1)
.

We propose maximizing the pseudo-likelihood∏
ri=1 f(xi, yi|ri = 1) in (2) in constructing the em-

pirical likelihood. The proposed empirical likelihood
approach can be formulated as maximizing

(5) le(θ) =
∑
ri=1

log (ωi) ,

subject to

(6)
∑
ri=1

ωi = 1,
∑
ri=1

ωi(1 +Oi)U(xi, yi;θ) = 0.

Note that, in constraint (6), the observed values of xi with
ri = 0 are not used. To incorporate the partial information,
we can impose

(7)

∑
ri=1 ωi(1 +Oi)h(xi;θ)∑

ri=1 ωi(1 +Oi)
= n−1

n∑
i=1

h(xi;θ)

as an additional constraint for some h(xi;θ). The choice of
h(x;θ) will be discussed later.

There are several other approaches using the empirical
likelihood with missing data. Qin et al. (2002) considered us-
ing empirical likelihood for nonignorable nonresponse. Wang
and Rao (2002) proposed empirical likelihood-based infer-
ence under imputation for missing response data. Qin and
Zhang (2007) proposed an empirical likelihood method for
estimating the mean response under ignorable missing data
where the response probability πi = Pr(ri = 1|Xi) is para-
metrically modeled by πi = πi(φ0) for some φ0. Specifically,
they proposed maximizing

l =
∑
ri=1

log
{
πi(φ̂)pi/ν̂

}
,

subject to
(8)∑
ri=1

pi = 1,
∑
ri=1

piπi(φ̂) = ν̂,
∑
ri=1

pih(xi) = n−1
n∑

i=1

h(xi),

where φ̂ is the maximum likelihood estimator of φ0 in the
response probability, h(xi) is an arbitrary variable, and

ν̂ = n−1
∑n

i=1 πi(φ̂). Once the estimated probability p̂i is
computed by the above maximization procedure, the popu-
lation mean can be estimated by θ̂ =

∑
ri=1 p̂iyi. Chen et al.

(2008) built two empirical likelihoods for response and non-
response variables separately and formulated two estimating
equations based on these two empirical likelihoods. In the
context of the current setup, their proposed method can be
described as maximizing l =

∑
ri=1 log(pi) +

∑
rj=0 log(qj),

subject to
∑

ri=1 pi = 1, pi ≥ 0,
∑

rj=0 qj = 1, qj ≥ 0, and

(9)
∑
ri=1

pi
h(xi;θ)− μ

πi(φ̂)
= 0,

∑
rj=0

qj
h(xj ;θ)− μ

1− πj(φ̂)
= 0,

where φ̂ is the maximum likelihood estimator. Qin et al.
(2009) considered maximizing the complete likelihood lc =∑n

i=1 log(ωi) subject to

(10)

n∑
i=1

ωi = 1,

n∑
i=1

ωi
ri

πi(φ̂)
Ui(θ) = 0,

and

(11)

n∑
i=1

ωi

{
ri

πi(φ̂)
− 1

}
hi(θ) = 0,

where φ̂ is the maximum likelihood estimator. The compu-
tation requires that the individual values of xi for ri = 0 be
available, which is not always possible, as discussed in Sec-
tion 1. For example, in survey sampling problem, we only
observe (xi, yi) for ri = 1 and the aggregate information
x̄n = n−1

∑n
i=1 xi is available. In this case, the method of

Qin et al. (2009) is not applicable.

In Section 3, some asymptotic properties of the proposed
EL estimator described in (5)–(7) are developed for the case
when πi = Pr(ri = 1 | xi, yi) is a known function of (xi, yi).
In particular, we show that the optimal choice of h(xi;θ)
that minimizes the asymptotic variance of the resulting EL
estimator of θ is

h∗(xi;θ) = Ũ(xi;θ) ≡ E {U(xi, yi;θ) | xi} .

In Section 4, we consider the case where πi = Pr(ri = 1 |
xi, yi) is a parametric model of the form Pr(r = 1 | x, y) =
π(x;φ0) for some φ0. By plugging estimator φ̂ of φ0 into
the empirical likelihood procedure, we can find the empiri-
cal likelihood estimator. The asymptotical properties of this
estimator are discussed in Section 4. If a parametric form
of π is unknown, we can use a nonparametric model for π.
Asymptotical properties of the EL estimator using a non-
parametric estimator of π are discussed in Section 5.
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3. ESTIMATION WITH KNOWN
RESPONSE PROBABILITY

In this section, we assume that the true response prob-
ability π = Pr(r = 1|X, Y ) is known, which is often the
case with survey sampling where πi denotes the first-order
inclusion probability and the response indicator r represents
the sampling indicator. The regularity conditions of this sec-
tion can be found in Appendix A.1. Our proposed estimator
introduced in Section 2, (5)–(7), can be described as maxi-
mizing

(12) l =
∑
ri=1

log(ωi),

subject to

∑
ri=1

ωi = 1,
∑
ri=1

ωiπ
−1
i

{
hi(θ)− n−1

n∑
i=1

hi(θ)

}
= 0,

(13)

∑
ri=1

ωiπ
−1
i Ui(θ) = 0.

The choice of hi(θ) depends on two factors: One is the
statistical efficiency and the other is the availability of
n−1

∑n
i=1 hi(θ) in the sample. In some situations, indi-

vidual values of xi are not available in the sample, and
x̄n = n−1

∑n
i=1 xi is the only available information. In

this case, hi(θ) = xi can be used in (13), even though
it may not be the optimal choice for minimizing the
variance. The EL estimator of θ is then obtained by
θ̂h1 =

∑
ri=1 w

∗
i π

−1
i yi/

∑
ri=1 w

∗
i π

−1
i where w∗

i = n−1
r {1 +

λ̂π−1
i (xi − x̄n)}−1, x̄n = n−1

∑n
i=1 xi, and λ̂ is constructed

to satisfy
∑

ri=1 w
∗
i π

−1
i (xi − x̄n) = 0.

The following theorem presents some asymptotic prop-
erties of the EL estimator θ̂h1. The proof is presented in
Appendix A.2.

Theorem 3.1. Let θ̂h1 be the solution to the maximization
above. Then, under the regularity conditions (C1)–(C5) in
Appendix A.1, we have

θ̂h1 − θ0

(14)

= τ
1

n

n∑
i=1

{
ri
πi

Ui(θ0)−B

(
ri
πi

− 1

)
h̃i(θ0)

}
+op(n

−1/2),

where h̃i(θ0) = hi(θ0) − μh, μh = E(h), B =
E(Uh̃�/π){E(h̃h̃�/π)}−1, and τ = −{E(∂U/∂θ)}−1 eval-
uated at θ = θ0. Hence, we have

(15)
√
n
(
θ̂h1 − θ0

)
→d N(0,Vh1),

where →d denotes convergence in distribution, Vh1 =
τΩh1τ

� and

Ωh1 = V
{ r

π
(U−Bh̃) +Bh̃

}
= E

{(
1

π
− 1

)
(U−Bh̃)⊗2

}
+V(U),(16)

and A⊗2 = AA�.

Because Ωh1 = E{(π−1 − 1)(U−Bh̃)⊗2}+V(U), we al-

ways have V(θ̂h1) ≥ V(θ̂n), where θ̂n is the solution to (1).
According to the above theorem, we can get the consistent
variance estimator by using V̂h1 = τ̂ Ω̂h1τ̂

�, where τ̂ =
−{n−1

∑n
i=1 riπ

−1
i (∂Ui(θ̂h1)/∂θ)}−1 and Ω̂h1=(n−1)−1 ×∑n

i=1(ηi − η̄)⊗2, where ηi = riπ
−1
i {Ui(θ̂h1)− B̂h̃i(θ̂h1)}+

B̂h̃i(θ̂h1), B̂ = Ê(Uh̃�/π){Ê(h̃h̃�/π)}−1, Ê(Uh̃�/π) =

n−1
∑n

i=1 riπ
−2
i Ui(θ̂h1)h̃

�
i (θ̂h1), and Ê(h̃h̃�/π) =

n−1
∑n

i=1 riπ
−2
i h̃i(θ̂h1)h̃

�
i (θ̂h1), with h̃i(θ̂h1) = hi(θ̂h1) −

μ̂h and μ̂h = n−1
∑n

i=1 hi(θ̂h1).
For the special case of θ = E(Y ) and h = x, after some

algebra, we have

θ̂h1 = ˆ̄yd − B̂1B̂
−1
2 (ˆ̄xd − x̄n) + op(n

−1/2),

where (ˆ̄yd, ˆ̄xd) = (
∑

ri=1 π
−1
i )−1(

∑
ri=1 π

−1
i yi,

∑
ri=1 π

−1
i xi),

B̂1 = n−1
∑

ri=1 π
−2
i (xi − ˆ̄xd)(yi − ˆ̄yd), and B̂2 =

n−1
∑

ri=1 π
−2
i (xi − ˆ̄xd)

2, which is close to the optimal
estimator within the linear class. The resulting estimator
is asymptotically equivalent to the optimal EL estimator
considered in Kim (2009).

Remark 3.1. The EL estimator of Chen et al. (2008) satisfies

√
n(θ̂c − θ0) →d N(0,Vc),

where Vc = τΩhcτ
�, and Ωhc = V{rπ−1U − B∗(r −

π)π−1(1 − π)−1h̃} with B∗ = E(π−1Uh̃�)[E{π−1(1 −
π)−1h̃h̃�}]−1. Thus, the estimator of Chen et al. (2008)
achieves the minimum variance when h/(1− π) ∝ E(U | x)
while the asymptotic variance of the proposed EL estimator
is minimized when h ∝ E(U | x). The Qin-Zhang-Leung

(QZL) estimator θ̂QZL defined in (10) and (11) satisfies

√
n(θ̂hq − θ0) →d N(0,Vq),

where Vq = τΩhqτ
�, Ωhq = V

{
rπ−1U− (r − π)π−1Bqh

}
and Bq = E{(π−1 − 1)Uh�}[E{(π−1 − 1)hh�}]−1. Note
that the choice of B = Bq minimizes the variance of
rπ−1U − (rπ−1 − 1)Bh and the QZL estimator is optimal
in the sense that it minimizes the variance among its class.
This is because the QZL estimator uses the complete like-
lihood

∑n
i=1 log(ωi) while our proposed estimator uses only

pseudo-likelihood. If h ∝ E(U|X), then all the estimators,
excluding the estimator of Chen et al. (2008), achieve the
same asymptotic variance. A numerical comparison is also
made through a simulation study in Section 6.
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In the following corollary, we find an optimal constraint
that minimizes the asymptotic variance in (15). The proof
is presented in Appendix A.3.

Corollary 3.1. Under the setup of Theorem 3.1, the asymp-
totic variance of θ̂h1 is minimized when h ∝ h∗ = E(U|X).
The asymptotic variance satisfies

(17) Vh1 ≥ τ

{
E

(
UU�

π

)
− E

(
1− π

π
h∗U�

)}
τ�.

The lower bound in (17) is the same as the semi-
parametric lower bound for the asymptotic variance dis-
cussed in Robins et al. (1994) and Chen et al. (2008).

Remark 3.2. To compute the solution to the constrained
optimization problem of maximizing (12) subject to (13),
the following two-step algorithm can be used. In the first
step, the optimal weight that maximizes (12) subject to∑

ri=1 ωi = 1 and
∑

ri=1 ωiπ
−1
i (ĥi − n−1

∑n
j=1 ĥj) = 0

are computed, where ĥi = hi(θ̂0) and θ̂0 is the solution
to

∑
ri=1 π

−1
i Ui(θ) = 0. In the second step, we can get the

resulting EL estimator θ̂h1 by solving∑
ri=1

ω̂iπ
−1
i Ui(θ) = 0.

Such a two-step algorithm was discussed in Chaudhuri et
al. (2008) when the control function hi does not depend on

θ. Using ĥi = h(xi; θ̂), where θ̂ is any
√
n-consistent esti-

mator of θ, in the two-step optimization is asymptotically
equivalent to the original solution.

4. ESTIMATION WITH UNKNOWN
RESPONSE PROBABILITY

We now consider the case when the response probability
is known up to some parameter and has the known form

Pr(r = 1|X, Y ) = π(X;φ0),

for some φ0. Thus, we assume that the response mechanism

is ignorable. We also assume that there exists φ̂ such that

(18) φ̂− φ0 =
1

n

n∑
i=1

b(xi, ri;φ0) + op(n
−1/2),

for some function b with E {b(Xi, ri;φ0)} = 0 and
V {b(Xi, ri;φ0)} = Vb, where Vb is positive definite.

If the true response probability πi = πi(φ0) is estimated

by π̂i = πi(φ̂), then the proposed EL estimator can be de-
scribed as maximizing (12) subject to
(19)∑

ri=1

ωi = 1,
∑
ri=1

ωiπ̂
−1
i

{
hi(θ)− n−1

n∑
i=1

hi(θ)

}
= 0,

and

(20)
∑
ri=1

ωiπ̂
−1
i U(θ;xi, yi) = 0.

The following theorem presents some asymptotic proper-
ties of the proposed EL estimator.

Theorem 4.1. Let φ̂ be a
√
n-consistent estimator of φ0,

satisfying (18). Let θ̂h2 be obtained by maximizing (12) sub-
ject to the constraints (19) and (20). Under the same regu-
larity conditions as Theorem 3.1 and (18), we have

θ̂h2 − θ0

(21)

= τ
1

n

n∑
i=1

{
ri
πi

Ui(θ0)−B

(
ri
πi

− 1

)
h̃i(θ0)−Cbi(φ0)

}

+ op(n
−1/2),

where B is defined in (14), τ = −{E(∂U/∂θ)}, C =
E{π−1(U−Bh̃)(∂π/∂φ)�}, and bi(φ0) = b(xi, ri;φ0) de-
fined in (18). Hence, we have

√
n(θ̂h2 − θ0) →d N(0,Vh2),

where Vh2 = τΩh2τ
� and Ωh2 = V{rπ−1(U−Bh̃)+Bh̃−

Cb}.

A consistent variance estimator of Vh2 can be con-
structed by

V̂h2 = τ̂ Ω̂h2τ̂
�,

where τ̂ = −[n−1
∑n

i=1 riπ̂
−1
i {∂Ui(θ̂h2)/∂θ}]−1 and Ω̂h2 =

(n − 1)−1
∑n

i=1(ηi − η̄)⊗2, where ηi = riπ̂
−1
i {Ui(θ̂h2) −

B̂h̃i(θ̂h2)}+ B̂h̃i(θ̂h2)− Ĉbi(φ̂),

Ĉ = n−1
n∑

i=1

riπ̂
−2
i

{
Ui(θ̂h2)− B̂h̃i(θ̂h2)

}
(∂π̂i/∂φ)

�,

B̂ = Ê(Uh�/π)
{
Ê(h̃h̃�/π)

}−1

,

where

Ê(Uh̃�/π) = n−1
n∑

i=1

riπ̂
−2
i Ui(θ̂h2)h̃

�
i (θ̂h2),

Ê(h̃h̃�/π) = n−1
n∑

i=1

riπ̂
−2
i h̃i(θ̂h2)h̃

�
i (θ̂h2),

with h̃i(θ̂h2) = hi(θ̂h2) − μ̂h and μ̂h = n−1
∑n

i=1 hi(θ̂h2).
Comparing (21) with (14), we have an extra term,
−Cbi(φ0), in the linearization. This is because we have ad-
ditional randomness due to estimating parameter φ0.
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Remark 4.1. If we use h = ah∗ = aE(U|X) in the con-
straint (19) for some constant a �= 0, we have B =
E(Uh�/π)E−1(hh�/π) = a−1I and

C = E
{
π−1(U−Bh)(∂π/∂φ)�

}
= E

[
E
{
π−1(U− h∗)(∂π/∂φ)�|X

}]
= 0.

Thus, the asymptotic variance is equal to

Vh2 = τ

{
E

(
UU�

π

)
− E

(
1− π

π
h∗U�

)}
τ�,

which is equal to the lower bound in (17) when the propen-
sity score is known. Under the optimal choice of h, the lower
bound for the asymptotic variance is achieved regardless of
whether the propensity score is known or estimated.

According to Remark 4.1, the choice of φ̂ does not make
any difference in the asymptotic variance of θ̂h2, as long as
h ∝ E(U | X) is used in (19). If h ∝ E(U | X) does not

hold, then the choice of φ̂ makes a difference. While the
MLE of φ0 is a popular choice, it does not necessarily lead

to the optimal estimator. To see this, let φ̂q be a consistent
estimator of φ0 that can be obtained by solving the following
equation:

(22)
1

n

n∑
i=1

{
ri

πi(φ)
− 1

}
qi(φ) = 0,

where qi(φ) is an arbitrary function to make the solution
of (22) unique. Note that equation (22) can be called the
calibration equation in the sense that the estimator for the
mean of qi, using the propensity score, is equal to the sample
mean of qi. The MLE of φ0 also belongs to the class because
it satisfies (22) with qi = πilogit(πi). Under some regularity

conditions, we have φ̂q →p φ0, regardless of the choice of
qi. For example, instead of using the maximum likelihood
method, we can use qi(φ) = (1,x�

i )
� in (22) to estimate

φ0. Such estimation is particularly useful when individual
values of xi are not available outside the respondents, but
the sample mean of xi is available from an external source.

The following theorem discusses the optimal choice of q
in the calibration equation (22).

Theorem 4.2. Let φ̂q be the estimator which solves (22)

and satisfies φ̂q →p φ0. Under the same regularity condi-
tions as Theorem 4.1, we have

θ̂h2 − θ0(23)

= τ
1

n

n∑
i=1

[ ri
πi

Ui(θ0)− (
ri
πi

− 1)
{
Bh̃i(θ0)

+CS−1q(φ0)
}]

+ op(n
−1/2),

where B is defined in (14), τ = −{E(∂U/∂θ)}, S =
E{π−1q(∂π/∂φ)�}, C = E{π−1(U − Bh̃)(∂π/∂φ)�}.

Hence, we have

√
n(θ̂h2 − θ0) →d N(0,Vh2),

where Vh2 = τΩh2τ
�, and Ωh2 = V{rπ−1U − (rπ−1 −

1)(Bh̃+CS−1q)}. In addition, we have

Vh2 ≥ τV
{
rπ−1U− (rπ−1 − 1)h∗} τ�

with equality if α�q = h∗ −Bh̃ for some α.

In Theorem 4.2, the meaning of h∗ −Bh̃ is the residual
for the regression of h∗ = E(U|X) on h̃. If h ∝ h∗, then the
residual is equal to zero and the lower bound is achieved,
as discussed in Remark 4.1. If h ∝ h∗ does not hold, we
cannot achieve the lower bound and the efficiency can be
improved by how well q explains the conditional expectation
E(U | X). In the extreme case of h ≡ 0, the choice of q ∝ h∗

achieves the lower bound while the choice of qi ∝ πih
∗,

which corresponds to the maximum likelihood estimation of
φ0, does not achieve the lower bound and thus leads to less
efficient estimation.

5. NONPARAMETRIC ESTIMATION OF
THE RESPONSE MECHANISM

In this section, we consider nonparametric estimation of
the response probability. For simplicity, we assume the re-
sponse mechanism is ignorable, π(x) = Pr(r = 1|x), and
consider estimation of π nonparametrically. To this end, we
consider kernel estimation of the response model as below:

(24) π̂H(x) =

∑n
i=1 KH(x−Xi)ri∑n
j=1 KH(x−Xj)

,

where KH(s) is the kernel function which satisfies certain
regularity conditions and H is the bandwidth. In addition,
we define KH(s, t) = K {(s− t)/H} . Let f(x) be the prob-
ability density function of X. In addition to regularity con-
ditions (C1)–(C5) in Appendix A.1, we also assume the fol-
lowing regularity conditions:

(C6) f(x) and π(x) have bounded partial derivatives with
respect to x up to an order q with q ≥ 2, 2q > dx
almost surely, where dx is the dimension of x.

(C7) The kernel functionK(s) is a probability density func-
tion such that

(a) It is bounded and has compact support.

(b)
∫
K(s1, . . . , sdx)ds1 · · · dsdx = 1,

(c)
∫
sliK(s1, . . . , sdx)ds1 · · · dsdx = 0 for any i =

1, . . . , dx and 1 ≤ l < q.

(d)
∫
sqiK(s1, . . . , sdx)ds1 · · · dsdx �= 0.

(C8) nH2dx → ∞,
√
nHq → 0, as n → ∞.

(C9) 1 > π(x) > d > 0 almost surely.
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Conditions (C6)–(C8) are common conditions used
for nonparametric problems. In condition (C8), we used√
nHq → 0 to control the bias due to kernel smoothing,

and nH2dx → ∞ is used to produce consistent estima-
tion of the conditional distribution as well as control the
convergence rate of response probability estimation. Condi-
tion (C9) is used to avoid extreme propensity scores. Wang
and Chen (2009) used the kernel smoothing method to esti-
mate the conditional distribution function. They claimed
that even though the curse of dimensionality is an issue
for estimating the conditional distribution function, it does
not play a leading order effect on estimating the finite di-
mensional parameter θ as long as the bias of the kernel es-
timator is controlled. Similar results will hold in our EL
method when estimating propensity scores nonparametri-
cally.

Under those regularity conditions, the proposed empirical
likelihood method can be constructed similarly by maximiz-
ing (12) subject to

∑
ri=1

ωi = 1,
∑
ri=1

ωiπ̂
−1
i,H

{
hi(θ)− n−1

n∑
i=1

hi(θ)
}
= 0,

(25)

∑
ri=1

ωiπ̂
−1
i,HUi(θ) = 0,

where π̂i,H = π̂H(xi).
The following theorem presents some asymptotic proper-

ties of the proposed EL estimator of θ0 using nonparametric
response probability (24).

Theorem 5.1. Let θ̂h3 be the empirical likelihood estimator
that is obtained by maximizing (12) subject to (25). Under
the regularity conditions (C1)–(C9), we have

θ̂h3 − θ0

(26)

= −τ

{
1

n

n∑
i=1

ri
πi

Ui(θ0)−
1

n

n∑
i=1

(
ri
πi

− 1

)
h∗
i (θ0)

}

+ op(n
−1/2),

where h∗(θ0) = E {U(θ0)|X} and τ = −{E(∂U/∂θ)}−1

evaluated at θ = θ0. Furthermore, we have

√
n(θ̂h3 − θ0) →d N(0,Vh3),

where Vh3 = τΩh3τ
� and Ωh3 = V{rπ−1(U− h∗) + h∗}.

By Theorem 5.1, the asymptotic variance of θ̂h3 using
nonparametric π̂i,H is equal to the semiparametric lower
bound in (17). Note that the linearization in (26) does not
depend on the choice of h in (25). This means that the same
result (26) can be achieved for different choices of h. This

is because, according to (40) in the proof of Theorem 5.1 in
Appendix A.6, we have

1

n

n∑
i=1

ri
π̂i,H

h̃i −
1

n

n∑
i=1

h̃i = op(n
−1/2),

where h̃ = h − μh and h is any arbitrary function of x
with some moment conditions described in Appendix A.1.
In addition, the second constraint in (25) can be written as∑

ri=1 ωiπ̂
−1
i,H(h̃i−n−1

∑n
i=1 h̃i) = 0, which implies that we

can safely remove it. As was also pointed out by Hirano et al.
(2003), the inverse probability weighted estimator is globally
semiparametrically efficient and the calibration step does
not improve the efficiency. Thus, using the nonparametric
estimator (24) of the response probability, the EL solution
can be written as maximizing (12) subject to

(27)
∑
ri=1

ωi = 1,
∑
ri=1

ωiπ̂
−1
i,HUi(θ) = 0,

which is equivalent to obtain θ̂h3 by solving
n−1

∑n
i=1 riπ̂

−1
i,HUi(θ) = 0.

According to Theorem 5.1, a consistent variance es-
timator for Vh3 is V̂h3 = τ̂ Ω̂h3τ̂

�, where τ̂ =
−{n−1

∑n
i=1 riπ̂

−1
i,H∂Ui(θ̂h3)/∂θ}−1 and Ω̂h3 = (n −

1)−1
∑n

i=1(ηi − η̄)⊗2, where ηi = riπ̂
−1
i,H(Ui(θ̂h3) − ĥ∗

i ) +

ĥ∗
i , where ĥ∗

i is a consistent estimator of E(U|X) under
the working model. In the special case when θ0 satisfies
E{U(θ0)|X} = 0, then a version of Wilk’s Theorem can be
established as below.

Theorem 5.2. Assume that the regularity conditions in
Theorem 5.1 hold and θ0 satisfies E{U(θ0)|X} = 0. Let

Rn(θ0) = 2{l(θ̂h3)− l(θ0)}, where l(θ) =
∑

ri=1 log{ωi(θ)}
with ωi(θ) obtained by maximizing (12) subject to (27).
Then, as n → ∞,

Rn(θ0) →d χ2
p,

where p is the dimension of θ.

According to Theorem 5.2, we can construct a Wilk-
type confidence region for θ0 without calculating the vari-
ance estimator, if E {U(θ0)|X} = 0 holds. For exam-
ple, if E(Y |X) = X�θ, then U = (Y − X�θ)X sat-
isfies E {U(θ0)|X} = 0. If E(U|X) �= 0, but we know
E(U|X), the result for Theorem 5.2 holds by replacing U
withU∗ = U−E(U|X). Alternatively, a resampling method,
such as bootstrap or jackknife, can be used to construct a
confidence region for θ0.

6. SIMULATION STUDY

In the simulation study, the following two models were
considered to generate the samples:

[A] xi
iid∼ N(1, 1), zi

iid∼ N(0, 1), ei ∼iid exp(1)− 1, and
yi = 0.5 + 0.5xi + 0.5zi + ei.
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[B] (xi, zi, ei) are the same as in [A] and yi = 0.8(xi −
0.5)2 + 0.8ei.

For each model, B = 2, 000 Monte Carlo samples of size
n = 200 were independently generated. In addition, two
different response mechanisms were used to generate ri, the
response indicator function for yi. The response mechanisms
are

[M1] P (r = 1|x, y) = exp(−0.5 + x)/[1 + exp(−0.5 + x)].
[M2] P (r = 1|x, y) = (0.3 + 0.175|x|)I(|x| < 1.5) + I(|x| ≥

1.5).

Thus, the two models are ignorable and the response rate is
about 0.6 in both response mechanisms. We are interested
in estimating θ0 = E(Y ), which is the population mean
of Y. Thus, we use U(θ) = Y − θ. We assume that the
working model for E(y | x, z) is linear in x and z. That
is, E(y | x, z) = β0 + β1x + β2z. Also, the working model
for π(x) = E(r | x) is the logistic regression model with
logit{π(x)} = φ0+φ1x. That is, even when the true response
mechanism is [M2], we use the logistic regression model to

obtain π̂i = exp(φ̂0 + φ̂1xi)/{1+ exp(φ̂0 + φ̂1xi)}. Thus, we
have the following four possible scenarios:

1: Both working models are correct. That is, the samples
are generated by [A] and [M1].

2: Only the outcome regression model, the model for E(y |
x), is correct. That is, the samples are generated by [A]
and [M2].

3: Only the response probability model, the model for E(r |
x), is correct. That is, the samples are generated by [B]
and [M1].

4: Both models are incorrect. That is, the samples are gen-
erated by [B] and [M2].

Under this setup, we considered eight estimators of θ0.

1. QZ: The EL estimator of Qin and Zhang (2007) using
hi = (xi, zi)

� in (8).
2. CLQ: The EL estimator of Chen et al. (2008) using hi =

(xi, zi)
� in (9).

3. QZL: The EL estimator of Qin et al. (2009), which
is obtained by maximizing

∑n
i=1 log(ωi), subject to∑n

i=1 ωi = 1,
∑n

i=1 ωiriπ̂
−1
i (yi − θ) = 0, and∑n

i=1 ωi(riπ̂
−1
i − 1)hi = 0, with hi = (xi, zi)

� and π̂i

computed by the MLE of φ.
4. NEW (MLE): The proposed EL estimator using hi =

(xi, zi)
� in (19), where π̂i is computed by the MLE of φ.

5. NEW (CAL): The proposed EL estimator using hi =
(xi, zi)

� in (19), where π̂i is computed by the calibration

method on (1, x). That is, φ̂ is computed by solving (22)
with qi = (1, xi)

�.
6. NEW (NP1): The proposed EL estimator using non-

parametric estimator (24) of π(x) = P (r = 1 | x) and
hi = (xi, zi)

� in (19). In addition, we used the Gaussian
kernel and the reference bandwidth H = 1.06σ̂xn

−1/5,
where σ̂x is the estimated standard deviation of xi in
the sample.

7. NEW (NP2): The proposed EL estimator using non-
parametric estimator (24) of π(x) = P (r = 1 | x) with-
out using hi = (xi, zi)

� in (19). We used the same kernel
density and bandwidth as NEW (NP1).

Table 1 presents the Monte Carlo biases, variances, and
mean square errors of the eight estimators under the four
difference scenarios. Under Scenario 1, when both the out-
come regression model and the response probability model
are correct, the simulation results in Table 1 show that all
the estimators are comparable since they all achieve the
semiparametric lower bound except for CLQ, as discussed in
Remark 3.1 and Remark 4.1. The NP2 method also shows
some efficiency loss because the nonparametric propensity
estimator does not make use of zi information. Under Sce-
nario 2, when only the outcome regression model is correct,
the CLQ estimator shows a large bias, suggesting that the
CLQ estimator is not robust against the failure of the re-
sponse model. In terms of efficiency, the QZ method, QZL
method, and the proposed EL estimators show the small-
est variances. Under Scenario 3, when only the response
probability model is correct, the biases are all negligible.
The QZL estimator is more efficient than the proposed EL
estimator using maximum-likelihood estimation, which is
discussed in Remark 3.1. The nonparametric estimators,
NEW (NP1) and NEW (NP2), show good efficiency because
they automatically achieve the lower bound in (17) without
correctly specifying the outcome regression model, which
is consistent with the theory in Theorem 5.1. The NEW
(NP2) is slightly more efficient than NEW (NP1) because
it does not use calibration on the wrong outcome regression
model. When both models are incorrect, as in Scenario 4,
the nonparametric estimators still show negligible bias be-
cause they estimate the response probability consistently. In
terms of efficiency, the nonparametric estimators are quite
comparable because they achieve the semi-parametric lower
bound.

7. CONCLUDING REMARKS

We have considered a respondent’s weighting approach
of empirical likelihood in the sense that the empirical like-
lihood weights are created only for the respondents, rather
than being created for the entire original sample. Unlike
the full-sample-weighting approach considered in Qin et al.
(2009), the proposed method does not enjoy the nice prop-
erty of the limiting chi-squared distribution of the likelihood
ratio statistics. However, because the empirical likelihood
weights are created only for the respondents, the proposed
method is more useful in the situations where the individual
values of the auxiliary variable are not available outside the
respondents. For example, in voluntary surveys, the demo-
graphic information of the population can be easily incorpo-
rated into the proposed empirical likelihood method. Real
data application using the proposed empirical likelihood ap-
proach will be presented elsewhere.
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Table 1. Biases, variances and mean squared errors (MSE) of
the estimators under four different scenarios in

simulation study

Scenario Method Bias Var MSE

1

QZ 0.00 0.0129 0.0130
CLQ −0.00 0.0147 0.0147
QZL 0.00 0.0130 0.0131
NEW(MLE) 0.00 0.0130 0.0130
NEW(CAL) 0.00 0.0130 0.0130
NEW(NP1) 0.00 0.0130 0.0131
NEW(NP2) 0.04 0.0129 0.0147

2

QZ 0.00 0.0119 0.0119
CLQ −0.16 0.0189 0.0467
QZL 0.01 0.0116 0.0118
NEW(MLE) 0.00 0.0119 0.0119
NEW(CAL) 0.00 0.0119 0.0119
NEW(NP1) 0.00 0.0120 0.0120
NEW(NP2) 0.01 0.0128 0.0130

3

QZ −0.03 0.0231 0.0247
CLQ −0.01 0.0210 0.0213
QZL −0.02 0.0197 0.0202
NEW(MLE) −0.02 0.0220 0.0227
NEW(CAL) −0.02 0.0216 0.0221
NEW(NP1) −0.05 0.0169 0.0196
NEW(NP2) −0.00 0.0156 0.0157

4

QZ 0.26 0.0307 0.0988
CLQ 0.39 0.0602 0.2140
QZL 0.22 0.0240 0.0762
NEW(MLE) 0.29 0.0285 0.1150
NEW(CAL) 0.30 0.0319 0.1255
NEW(NP1) 0.03 0.0169 0.0180
NEW(NP2) 0.04 0.0168 0.0189

APPENDIX A. APPENDIX SECTION

In the following appendix section, we provide the regu-
larity conditions as well as the proofs of Theorems 3.1, 4.1,
4.2, 5.1, 5.2, and Corollary 3.1.

A.1 Regularity conditions for Theorem 3.1

(C1) θ0 ∈ Θ is the unique solution to E {U(X, Y ;θ)} =
0, and Θ is compact; ∂U(θ)/∂θ is continuous
at each θ ∈ Θ and E {supθ∈Θ ‖g(X, Y ;θ)‖α}
is finite for some α > 2, where g(X, Y ;θ) =
(U�(X, Y ;θ),h�(X;θ))�.

(C2) The partial derivative ∂h(θ)/∂θ is a continuous func-
tions of θ in the neighborhood of θ0 almost every-
where.

(C3) ‖g(X, Y ;θ)‖3, ‖∂g(X, Y ;θ)/∂θ‖, ‖∂2g(X, Y ;θ)/
(∂θ∂θ�)‖, are bounded by some integrable function
G(X, Y ).

(C4) The p × p matrix E {∂U(X, Y ;θ0)/∂θ} has full col-
umn rank p. Also, V{U(X, Y ;θ)} and E(hh�/π) are
positive definite in the neighborhood of θ0.

(C5) π(x, y) > d > 0, p(x) = E {π(x, y)|x} �= 1 almost
surely.

A.2 Proof of Theorem 3.1

To discuss the asymptotic properties of the EL estimator,
we write

(28)

Q̂1(θ,λ) =
1

n

∑
ri=1

π−1
i Ui(θ)

1 + λ�π−1
i {hi(θ)− n−1

∑n
i=1 hi(θ)}

,

and
(29)

Q̂2(θ,λ) =
1

n

∑
ri=1

π−1
i

{
hi(θ)− n−1

∑n
i=1 hi(θ)

}
1 + λ�π−1

i {hi(θ)− n−1
∑n

i=1 hi(θ)}
.

By using a similar argument of Lemma 1 of Qin and Law-

less (1994), it can be shown that (θ̂
�
h1, λ̂

�
)� →p (θ�

0 ,0
�)�.

To prove the asymptotic normality of θ̂h1, by (28) and
(29), we have

Q̂1(θ0,0) =
1

n

∑
ri=1

π−1
i Ui(θ0),

Q̂2(θ0,0) =
1

n

∑
ri=1

π−1
i

{
hi(θ0)− n−1

n∑
i=1

hi(θ0)

}
,

∂Q̂1(θ0,0)

∂θ
=

1

n

∑
ri=1

π−1
i

∂Ui

∂θ
,

∂Q̂1(θ0,0)

∂λ
= − 1

n

∑
ri=1

1

π2
i

Ui

{
hi(θ0)− n−1

n∑
i=1

hi(θ0)

}�

,

∂Q̂2(θ0,0)

∂θ
= 0,

∂Q̂2(θ0,0)

∂λ
= − 1

n

∑
ri=1

1

π2
i

{
hi(θ0)− n−1

n∑
i=1

hi(θ0)

}⊗2

.

According to conditions (C1)–(C5) and (θ̂
�
h1, λ̂

�
)� →p

(θ�
0 ,0

�)�, we can apply the standard arguments using Tay-
lor expansion to get

0 = Q̂1(θ̂h1, λ̂) = Q̂1(θ0,0) +
∂Q̂1(θ0,0)

∂θ� (θ̂h1 − θ0)

+
∂Q̂1(θ0,0)

∂λ� (λ̂− 0) + op(δn),

and

0 = Q̂2(θ̂h1, λ̂) = Q̂2(θ0,0) +
∂Q̂2(θ0,0)

∂θ� (θ̂h1 − θ0)

+
∂Q̂2(θ0,0)

∂λ� (λ̂− 0) + op(δn),
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where δn = ‖θ̂h1 − θ0‖+ ‖λ̂‖. Thus, we have

(
θ̂h1 − θ0

λ̂− 0

)
= −S−1

n

(
Q̂1(θ0,0) + op(δn)

Q̂2(θ0,0) + op(δn)

)
,

where

Sn =

(
∂Q̂1(θ0,0)/∂θ ∂Q̂1(θ0,0)/∂λ

∂Q̂2(θ0,0)/∂θ ∂Q̂2(θ0,0)/∂λ

)
.

Because of the existence of moments, we have

Sn →p

(
E(∂U/∂θ) −E(Uh̃�/π)

0 −E(h̃h̃�/π)

)
=

(
S11 S12

S21 S22

)
.

Since Q̂1(θ0,0) = n−1
∑

ri=1 π
−1
i Ui = Op(n

− 1
2 ) and

Q̂2 (θ0,0) = n−1
∑

ri=1 π
−1
i (hi−n−1

∑n
i=1 hi) = Op(n

− 1
2 ),

we have δn = Op(n
− 1

2 ) and

(
θ̂h1 − θ0

λ̂− 0

)
= −

(
S11 S12

S21 S22

)−1 (
Q̂1(θ0,0)

Q̂2(θ0,0)

)
+ op(δn).

So, after some algebra, we have

θ̂h1 − θ0 = S−1
11

{
−Q̂1(θ0,0) + S12S

−1
22 Q̂2(θ0,0)

}
+ op(n

−1/2).

Hence, by the existence of second moments, we get

√
n(θ̂h1 − θ0) →d N(0,Vh1),

where Vh1 = τΩh1τ
� with τ = {E(∂U/∂θ)}−1, Ωh1 =

V{r(U−Bh̃)/π+Bh̃} and B = E(Uh̃�/π){E(h̃h̃�/π)}−1.

A.3 Proof of Corollary 3.1

Note that Ωh1 in (16) satisfies

Ωh1 = E
{
rU/π −B(r/π − 1)h̃

}⊗2

= E
{
rU/π − (r/π − 1)E(U|X) + (r/π − 1)E(U|X)

−B(r/π − 1)h̃
}⊗2

= E {rU/π − (r/π − 1)E(U|X)}⊗2

+ E
[ {

rπ−1U− (rπ−1 − 1)E(U|X)
}

× (rπ−1 − 1)
{
E(U�|X)− h̃�B�

}]
+ E

[
(rπ−1 − 1)

{
E(U|X)−Bh̃

}
×

{
rπ−1U� − (rπ−1 − 1)E(U�|X)

} ]
+ E

{
(r/π − 1)E(U|X)−B(r/π − 1)h̃

}⊗2

= E {rU/π − (r/π − 1)E(U|X)}⊗2

+ E
{
(r/π − 1)E(U|X)−B(r/π − 1)h̃

}⊗2

≥ E {rU/π − (r/π − 1)E(U|X)}⊗2
,

where the equality is achieved when h ∝ h∗ = E(U|X). The

asymptotic variance of θ̂h1 achieved at h ∝ h∗ = E(U|X)
is equal to

Vh∗ = τ

{
E

(
UU�

π

)
− E

(
1− π

π
h∗U�

)}
τ�.

A.4 Proof of Theorem 4.1

To discuss the asymptotic properties of the EL estimator,
we write

Q̂1(θ,λ,φ)

(30)

=
1

n

∑
ri=1

πi(φ)
−1Ui(θ)

1 + λ�πi(φ)−1 {hi(θ)− n−1
∑n

i=1 hi(θ)}
,

and

Q̂2(θ,λ,φ)

(31)

=
1

n

∑
ri=1

πi(φ)
−1

{
hi(θ)− n−1

∑n
i=1 hi(θ)

}
1 + λ�πi(φ)−1 {hi(θ)− n−1

∑n
i=1 hi(θ)}

.

Hence (θ̂h2, λ̂) is the solution defined by equation

Q̂1(θ̂h2, λ̂, φ̂) = 0 and Q̂2(θ̂h2, λ̂, φ̂) = 0, where φ̂ is de-
fined in (18). By using a similar argument as that for The-

orem 3.1, we can prove (θ̂
�
h2, λ̂

�
)� →p (θ�

0 ,0
�)�. Next, we

want to prove the asymptotic normality of θ̂h2. According
to (30) and (31), we have

Q̂1(θ0,0,φ0) =
1

n

∑
ri=1

π−1
i Ui(θ0),

Q̂2(θ0,0,φ0) =
1

n

∑
ri=1

π−1
i

{
hi(θ0)− n−1

n∑
i=1

hi(θ0)

}
,

∂Q̂1(θ0,0,φ0)

∂θ
=

1

n

∑
ri=1

π−1
i

∂Ui

∂θ
,

∂Q̂1(θ0,0,φ0)

∂λ
= − 1

n

∑
ri=1

1

π2
i

Ui

{
hi(θ0)−n−1

n∑
i=1

hi(θ0)

}�
,

∂Q̂1(θ0,0,φ0)

∂φ
= − 1

n

∑
ri=1

1

π2
i

∂πi

∂φ
UiU

�
i ,
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∂Q̂2(θ0,0,φ0)

∂θ
= 0,

∂Q̂2(θ0,0,φ0)

∂λ

= − 1

n

∑
ri=1

1

π2
i

{
hi(θ0)− n−1

n∑
i=1

hi(θ0)

}⊗2

,

∂Q̂2(θ0,0,φ0)

∂φ

= − 1

n

∑
ri=1

1

π2
i

∂πi

∂φ

{
hi(θ0)− n−1

n∑
i=1

hi(θ0)

}⊗2

.

By using Taylor expansion around (θ0,0,φ0), we have

0 = Q̂1(θ̂h2, λ̂, φ̂)

= Q̂1(θ0,0,φ0) +
∂Q̂1(θ0,0,φ0)

∂θ� (θ̂h2 − θ0)

+
∂Q̂1(θ0,0,φ0)

∂λ� (λ̂− 0) +
∂Q̂1(θ0,0,φ0)

∂φ� (φ̂− φ0)

+ op(δn),

and

0 = Q̂2(θ̂, λ̂, φ̂)

= Q̂2(θ0,0,φ0) +
∂Q̂2(θ0,0,φ0)

∂θ� (θ̂h2 − θ0)

+
∂Q̂2(θ0,0,φ0)

∂λ� (λ̂− 0) +
∂Q̂2(θ0,0,φ0)

∂φ� (φ̂− φ0)

+ op(δn),

where δn = ‖θ̂h2−θ0‖+‖λ̂‖+‖φ̂−φ0‖. By using a similar
argument as the proof of Theorem 3.1 and by (18), after
some algebra, we have

θ̂h2 − θ0 = −S−1
11 n

−1
n∑

i=1

{ ri
πi

Ui(θ0)−B(
ri
πi

− 1)h̃i(θ0)

−Cbi(φ0)
}
+ op(n

−1/2),

where B = S12S
−1
22 , C = E{π−1(U − Bh̃)(∂π/∂φ)

′}
and S11 = E(∂U/∂θ), S12 = −E(Uh̃�/π) and S22 =
−E(h̃h̃�/π). Hence, we have

√
n(θ̂h2 − θ0) →d N(0,Vh2),

where Vh2 = S−1
11 V

{
rπ−1U−B(rπ−1 − 1)h̃−Cb

}
S−1
11 .

A.5 Proof of Theorem 4.2

Because φ̂q →p φ0, under some moment conditions, by
using Taylor expansion, we have

φ̂q − φ0 =
1

n

n∑
i=1

bi(φ0) + op(n
−1/2),

where bi(φ0) = S−1(riπ
−1
i − 1)qi, and S =

E{π−1q(∂π/∂φ)�}. Using the result of Theorem 4.1,
we can get (23). So, under the existence of moments, we
have

√
n(θ̂h2 − θ0) →d N(0,Vh2),

where Vh2 = τΩh2τ
� and Ωh2 = V{rπ−1U − (rπ−1 −

1)(Bh̃+CS−1q)}. Using a similar argument as the proof of
Corollary 3.1, we have

Ωh2 = V
{
rπ−1U− (rπ−1 − 1)(Bh̃+CS−1q)

}
= E

{
rπ−1U− (rπ−1 − 1)(Bh̃+CS−1q)

}⊗2

= E
{
rπ−1U− (rπ−1 − 1)h∗ + (rπ−1 − 1)h∗

− (rπ−1 − 1)(Bh̃+CS−1q)
}⊗2

= E
{
rπ−1U− (rπ−1 − 1)h∗}⊗2

+ E
{
(rπ−1 − 1)h∗ − (rπ−1 − 1)(Bh̃+CS−1q)

}⊗2

≥ E
{
rπ−1U− (rπ−1 − 1)h∗}⊗2

.

The equality holds when h∗ − Bh̃ − CS−1q = 0, which
implies q = S(C�C)−1C�(h∗ − Bh̃). Hence, the optimal
choice of q is α�q = h∗ −Bh̃ for some α.

A.6 Proof of Theorem 5.1

For simplicity, we assume r = 1, q = 2 and dx = 1 in the
following proof. A similar proof can be obtained for other
cases. In order to prove Theorem 5.1, we first prove the
following Lemma:

Lemma A.1. Let π̂i,H be the kernel estimator of π(xi)
which is defined in (24). For the choice of h∗ = E(U |X),
where U is the estimating function defined in (1), we have
(32)

1

n

n∑
i=1

ri
π̂i,H

Ui =
1

n

n∑
i=1

ri
πi

(Ui − h∗
i ) +

1

n

n∑
i=1

h∗
i + op(n

−1/2).

Proof. By using the standard arguments in the kernel
smoothing method, we have

(33) E

⎧⎨
⎩ 1

n

n∑
j=1

KH(Xi, Xj)

⎫⎬
⎭ = f(Xi) +O(H2)

and

(34) E

⎧⎨
⎩ 1

n

n∑
j=1

rjKH(Xi, Xj)

⎫⎬
⎭ = π(Xi)f(Xi) +O(H2).

According to (33), (34) and by using Taylor expansion, we
have
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∑n
j=1 KH(Xi, Xj)∑n

j=1 rjKH(Xi, Xj)

(35)

=
1

π(Xi)
+

1

π(Xi)f(Xi)

⎧⎨
⎩1

n

n∑
j=1

KH(Xi, Xj)− f(Xi)

⎫⎬
⎭

− 1

π2(Xi)f(Xi)

⎧⎨
⎩1

n

n∑
j=1

rjKH(Xi, Xj)− π(Xi)f(Xi)

⎫⎬
⎭

+O(H2)

=
1

π(Xi)
+

1

n

n∑
j=1

KH(Xi, Xj)

π(Xi)f(Xi)

{
1− rj

π(Xi)

}
+O(H2).

By (35) and because of nH4 → 0, nH2 → ∞, we have

1

n

n∑
i=1

ri
π̂i,H

Ui

=
1

n

n∑
i=1

ri

∑n
j=1 KH(Xi, Xj)∑n

j=1 rjKH(Xi, Xj)
Ui

=
1

n

n∑
i=1

riUi

π(Xi)
+

1

n2

n∑
i=1

n∑
j=1

riUi
KH(Xi, Xj)

π(Xi)f(Xi)

×
{
1− rj

π(Xi)

}
+O(H2)

=
1

n

n∑
i=1

riUi

π(Xi)
+

1

n2H

n∑
i=1

Ui
K(0)

π(Xi)f(Xi)

×
{
ri −

ri
π(Xi)

}

+
1

n(n− 1)

∑
i �=j

riUi
KH(Xi, Xj)

π(Xi)f(Xi)

{
1− rj

π(Xi)

}

+O(H2)

=
1

n

n∑
i=1

riUi

π(Xi)
+

1

n(n− 1)

∑
i �=j

riUi
KH(Xi, Xj)

π(Xi)f(Xi)

×
{
1− rj

π(Xi)

}
+ op(n

−1/2)

so,

1

n

n∑
i=1

ri
π̂i,H

Ui

(36)

=
1

n

n∑
i=1

riUi

π(Xi)
+

1

n(n− 1)

∑
i �=j

h(Zi, Zj) + op(n
−1/2),

where Zi = (Xi, Yi, ri) and

h(Zi, Zj) =
1

2

[
riUi

KH(Xi, Xj)

π(Xi)f(Xi)

{
1− rj

π(Xi)

}
(37)

+ rjUj
KH(Xj , Xi)

π(Xj)f(Xj)

{
1− ri

π(Xj)

}]
� 1

2
(ζij + ζji).

According to (36) and (37), we know that∑
i �=j h(Zi, Zj)/ {n(n− 1)} is the U-statistics. Let

s = (Xj − Xi)/H, by nH2 → ∞, nH4 → 0 and ac-
cording to Taylor expansion, we have

E(ζij |Zi)(38)

=
riUi

π(Xi)f(Xi)

1

H

∫
K

(
Xj −Xi

H

){
1− π(Xj)

π(Xi)

}
× f(Xj)dXj

=
riUi

π(Xi)f(Xi)

∫
K (s)

{
1− π(Xi +Hs)

π(Xi)

}
× f(Xi +Hs)ds

= O(H2),

and

E(ζji|Zi)(39)

=
1

H

∫
Uj

f(Xj)
K

(
Xj −Xi

H

){
1− ri

π(Xj)

}
× f(Xj , Yj)dXjdYj

=

∫
Uj

f(Xi +Hs)
K(s)

{
1− ri

π(Xi +Hs)

}
× f(Xi +Hs, Yj)dsdYj

=

{
1− ri

π(Xi)

}
h∗
i +O(H2).

According to (36), (37), (38), (39) and by the theory of U-
statistics, see Serfling (1980), Chapter 5, we have

1

n

n∑
i=1

ri
π̂i,H

Ui =
1

n

n∑
i=1

riUi

π(Xi)
+

1

n

n∑
i=1

{
1− ri

π(Xi)

}
h∗
i

+ op(n
−1/2).

Similarly to Lemma A.1, it can be shown that

(40)
1

n

n∑
i=1

ri
π̂i,H

h̃i =
1

n

n∑
i=1

h̃i + op(n
−1/2).

By the same argument for proof of Theorem 4.1, under cer-
tain conditions, it can be shown that θ̂h3 →p θ0, and the
asymptotic normality property:

θ̂h3 − θ0

= S−1
11

{
− 1

n

n∑
i=1

ri
π̂i,H

Ui(θ0) +B
1

n

n∑
i=1

(
ri

π̂i,H
− 1

)
h̃i(θ0)

}

+ op(n
−1/2),
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where B and S11 are defined in the proof of Theorem 4.1.
By using (32) and (40), we have

θ̂h3 − θ0 = S−1
11

{
− 1

n

n∑
i=1

ri
πi

Ui(θ0) +
1

n

n∑
i=1

(
ri
πi

− 1

)
h∗
i (θ0)

}

+ op(n
−1/2).

A.7 Proof of Theorem 5.2

Let

Q̂3(θ,λ) =
1

n

∑
ri=1

π̂−1
i,HUi(θ)

1 + λ�π̂−1
i,HUi(θ)

.

We can write

Rn(θ0) = 2

[ ∑
ri=1

log
{
1 + λ�

0 π̂
−1
i,HUi(θ0)

}

−
∑
ri=1

log
{
1 + λ̂

�
π̂−1
i,HUi(θ̂h3)

}]
,

where λ0 is the solution of Q̂3(θ0,λ) = 0, by using a similar
argument from Theorem 3.1, we have λ0 →p 0. Thus, by
using Taylor expansion around 0, we have

0 = Q̂3(θ0,λ0) = Q̂3(θ0,0) +
∂Q̂3(θ0,0)

∂λ0
λ0 + op(‖λ0‖).

According to Lemma A.1 in the proof of Theorem 5.1, we
have Q̂3(θ0,0) = n−1

∑
ri=1 π̂

−1
i,HUi(θ0) = Op(n

−1/2), so

‖λ0‖ = Op(n
−1/2). Hence, we have

(41) λ0 = −S∗−1
11 Q̂3(θ0,0) + op(n

−1/2),

where S∗
11 = −E(UU�/π). Also, by using Taylor expansion

around λ0 = 0, we have

2
∑
ri=1

log
{
1 + λ�

0 π̂
−1
i,HUi(θ0)

}
(42)

= 2
∑
ri=1

λ�
0 π̂

−1
i,HUi(θ0)

−
∑
ri=1

λ�
0 π̂

−2
i,HUi(θ0)U

�
i (θ0)λ0 + op(1).

By the existence of moments, we have
(43)

∂Q̂(θ0,0)/∂λ = −n−1
∑
ri=1

π̂−2
i,HUi(θ0)U

�
i (θ0) →p S∗

11.

By plugging (41) into (42) and according to (43), we have

2
∑
ri=1

log
{
1 + λ�

0 π̂
−1
i,HUi(θ0)

}
(44)

= −nQ̂�
3 (θ0,0)S

∗−1
11 Q̂3(θ0,0) + op(1).

Similarly, by the same argument of Qin and Lawless (1994)

and by using Taylor expansion around λ̂ = 0, we have

2
∑
ri=1

log
{
1 + λ̂

�
π̂−1
i,HUi(θ̂)

}
(45)

= −nQ̂�
3 (θ0,0)S

∗−1
11 Q̂3(θ0,0)

+ nQ̂�
3 (θ0,0)S

∗−1
11 S∗

12S
∗−1
22.1S

∗
21S

∗−1
11 Q̂3(θ0,0)

+ op(1),

where S∗
12 = E {∂U(θ0)/∂θ} ,S∗

21 = S∗�
12 , and S∗

22.1 =
S∗
21S

∗−1
11 S∗

12. So, by (44) and (45), we have

Rn(θ0) = −nQ̂�
3 (θ0,0)S

∗−1
11 S∗

12S
∗−1
22.1S

∗
21S

∗−1
11 Q̂3(θ0,0)

+ op(1).

In addition, by the existence of moments and h∗ =
E {U(θ0)|X} = 0, we have

√
nQ̂3(θ0,0) →d N(0,VQ3),

where VQ3 = E(UU�/π) = −S∗
11. Hence, we have

Rn(θ0) = −
√
nQ̂�

3 (θ0,0)S
∗−1/2
11 S

∗−1/2
11 S∗

12S
∗−1
22.1S

∗
21S

∗−1/2
11

×
√
nS

∗−1/2
11 Q̂3(θ0,0) + op(1).

Because −√
nS

∗−1/2
11 Q̂3(θ0,0) →d N(0, I), and

−S
∗−1/2
11 S∗

12S
∗−1
22.1S

∗
21S

∗−1/2
11 is an idempotent matrix

with trace p, we have Rn(θ0) →d χ2
p.
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