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A note on the relationships between multiple
imputation, maximum likelihood and fully
Bayesian methods for missing responses in linear
regression models
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Multiple Imputation, Maximum Likelihood and Fully
Bayesian methods are the three most commonly used model-
based approaches in missing data problems. Although it is
easy to show that when the responses are missing at ran-
dom (MAR), the complete case analysis is unbiased and ef-
ficient, the aforementioned methods are still commonly used
in practice for this setting. To examine the performance of
and relationships between these three methods in this set-
ting, we derive and investigate small sample and asymptotic
expressions of the estimates and standard errors, and fully
examine how these estimates are related for the three ap-
proaches in the linear regression model when the responses
are MAR. We show that when the responses are MAR in
the linear model, the estimates of the regression coefficients
using these three methods are asymptotically equivalent to
the complete case estimates under general conditions. One
simulation and a real data set from a liver cancer clinical
trial are given to compare the properties of these methods
when the responses are MAR.

Keywords and phrases: Missing data, Multiple imputa-
tion, Maximum likelihood, Fully Bayesian, Missing response,
Missing at random.

1. INTRODUCTION

Missing data is very common in various experimental set-
tings, including clinical trials, sample surveys and environ-
mental studies. There are essentially three major likelihood-
based approaches for handling missing data in a regression
problem. These are i) Maximum Likelihood (ML), ii) Mul-
tiple Imputation (MI), and iii) Fully Bayesian (FB). The
EM algorithm is a technique often used to obtain ML es-
timates and is useful when the likelihood function of the
observed data has no closed form. The recent developments
of missing data approaches also include empirical likelihood
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method [18], parametric fractional imputation [10], among
others. In this paper, we investigate theoretical connections
between MI, ML (especially within the EM framework), and
FB approaches in the linear regression model when the re-
sponse variable is missing at random (MAR).

It is well known that when the response variable is MAR
and the covariates are fully observed, the likelihood function
of the observed data is the same as the complete case likeli-
hood (i.e. the likelihood obtained by omitting all cases with
missing values), and therefore the ML estimates are iden-
tical to the complete case (CC) estimates. However, this
result is not obvious under the MI and FB approaches. Al-
though the CC estimates are unbiased and efficient under
MAR responses, the MI and FB methods are still used in
practice since many researchers are unaware of this special
property of the CC estimates. To study the relationships be-
tween the three methods in this context, we consider MAR
responses in the linear model and investigate the small and
large sample properties of the estimates, and derive analytic
and asymptotic expressions of the estimates and standard
errors for the MI, ML and FB approaches. Under nonin-
formative priors for the MI and FB methods, we show that
the estimates and their standard errors under these three ap-
proaches are asymptotically equivalent to the CC estimates.

There is much literature on MI, ML and FB, respectively.
[21] provide asymptotic results for MI with MAR responses
in linear models. [17], [15], and [20] discuss theoretical prop-
erties of proper and improper MI. [22] and [19] propose a
consistent variance estimator for MI. For ML, one of the
earliest references is [12]. [6], [11], and [8] proposes the “EM
by the method of weights” and the Monte Carlo EM algo-
rithm (MCEM) for the ML framework in generalized linear
models (GLM). [16] examine the problem of using EM to
obtain the asymptotic covariance matrix of the parameter
estimates. [7] discuss FB methods for MAR covariates in
GLM’s. There are two major differences of our work in this
paper from previous literature. First, for MAR responses,
we derive both the small and large sample properties of the
estimates, while the previous work mainly focuses on large
sample properties. Secondly, the main purpose of this pa-
per is to investigate the theoretical relationships between
MI, ML and FB, as this was only investigated only through
simulations before.
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The rest of this paper is organized as follows. In Sec-
tion 2.1, we derive the small sample and asymptotic expres-
sions of the estimates and standard errors for proper MI. In
Section 2.2, we derive the expressions for ML via the EM al-
gorithm. The expressions for FB are derived in Section 2.3.
In Section 3, we conduct a simulation to demonstrate our
results. A real data analysis of a liver cancer clinical trial is
given in Section 4, and we conclude the paper with a brief
discussion in Section 5.

2. MAR RESPONSES IN THE LINEAR
MODEL

Consider the linear model

y = Xβ + e,(1)

where β is a p × 1 vector of unknown parameters, X is an
n× p full rank matrix of explanatory variables including an
intercept, and e is an n × 1 vector of random errors with
e ∼ Nn(0, σ

2I), where σ2 is assumed unknown through-
out. We assume throughout that X is fully observed and
the components of y are MAR. For simplicity, we rearrange
the data so that y1 = (y1, . . . , yn1)

′ are fully observed and
y2 = (yn1+1, . . . , yn)

′ are MAR, and assume that the corre-
sponding n1 × p and n2 × p matrices of fixed covariates X1

and X2 for y1 and y2 are full-rank, n1+n2 = n and p < n1.
Therefore, we write y = (y′

1,y
′
2)

′ and X = (X′
1,X

′
2)

′.
As shown in [13], the maximum likelihood estimates of β

and σ2 are the same as the CC estimates in the linear regres-
sion model, in which cases with any missing values are sim-
ply discarded. In fact, this is true for any regression model
with MAR responses satisfying conditional independence
between y1 and y2 given X and γ, where γ = (β, σ2), since
the likelihood function of the observed data Dobs = (y1,X)
is given by

L(γ|Dobs) =

∫
p(y1,y2|X, γ) dy2

= p(y1|X, γ)

∫
p(y2|X, γ) dy2

= p(y1|X, γ),

which is the CC likelihood.
The standard results for the linear regression model with

MAR responses are

β̂ML = β̂CC = (X′
1X1)

−1X′
1y1,(2)

which is independent of

σ̂2
ML = σ̂2

CC = y′
1(I−X1(X

′
1X1)

−1X′
1)y1/n1(3)

with E(β̂) = β and E(σ̂2
ML) = (n1−p)σ2/n1. The variances

of the estimates are

Var(β̂ML) = σ2(X′
1X1)

−1(4)

and

Var(σ̂2
ML) = 2(n1 − p)σ4/n2

1.(5)

Clearly, we can adjust the estimate of σ2 to get an unbiased
estimate by letting σ̃2

ML = n1σ̂
2
ML/(n1 − p). It is worth not-

ing that if we apply the EM algorithm in this setting and
use Louis’s method [14] to get the variance estimates, we get

same variance estimates of β̂ML as in Eq. (4), and the vari-
ance estimate of σ̂2

ML is equal to 2σ̂4
ML/n1, which is larger

than Eq. (5) in small samples but asymptotically equivalent
when n1 → ∞. In the next three subsections, we explore the
small and large sample properties of the estimators under
MI, ML via the EM algorithm, and FB methods for MAR
responses under model (1).

2.1 Multiple imputation (MI)

Multiple imputation has emerged as a very popular tech-
nique for inference in missing data problems. In this section,
we consider the precision parameter instead of the variance
parameter for the development of MI. Therefore, we assume
γ∗ = (β, τ), where τ = 1/σ2. Proper MI is based on creating
imputed datasets in which the missing values are sampled
from the posterior predictive distribution of the missing data
given the observed data, given by

(6) p(Dmis |Dobs) =

∫
p(Dmis |Dobs , γ

∗)π(γ∗|Dobs) dγ
∗,

where Dobs = (y1,X1,X2), and Dmis = y2 for the
current setting. π(γ∗|Dobs) is the posterior distribution
of γ∗ based on the observed data, given by π(γ∗|Dobs) ∝
{
∫
L(γ∗|Dmis ,Dobs)dDmis}π(γ∗), where L(γ∗|Dmis ,Dobs)

is the likelihood function of the complete-data,∫
L(γ∗|Dmis ,Dobs)dDmis is the likelihood based on

the observed data, and π(γ∗) is the prior distribution of

γ∗. Assume D
(l)
mis , l = 1, . . . ,m, are draws of Dmis from

the posterior predictive distribution p(Dmis |Dobs) given
in Eq. (6). Let γ̂∗

l and Vl denote the posterior mean and
covariance matrix of γ∗ based on π(γ∗|Dobs) calculated for

the lth imputed data set (y1,y
(l)
2 ). Then, the MI estimate

of γ∗ is γ̂∗
MI = m−1

∑m
l=1 γ̂

∗
l , and the estimate of the

variance of γ̂∗
MI is

(7) V̂ar(γ̂∗
MI) = V̂ +

(
1 +

1

m

)
B̂,

where V̂ = m−1
∑m

l=1 V̂l and B̂ =
∑m

l=1(γ̂
∗
l − γ̂∗

MI)(γ̂
∗
l −

γ̂∗
MI)

′/(m − 1) is the between-imputation variance. There
are several imputation methods that have been proposed
for the MI method. In this paper, we concentrate on proper
MI using the improper prior,

(8) π(γ∗) ∝ τ−1.

316 Q. Chen and J. G. Ibrahim



We note that in MI, the imputation model can be different
from the analysis model, but in this paper we only consider
the case in which the two models are the same.

Theorem 1 gives the small sample behavior of the esti-
mates of β and σ2 for proper MI assuming the improper
prior π(γ∗) ∝ τ−1. Large sample properties of the estimates
are also given under some general conditions. To derive these
properties, we need the following lemma.

Lemma 2.1. If the n×1 random vector z has a multivariate
t distribution, denoted Sn(v, μ,V), with density proportional

to [1+ 1
v (z−μ)′V−1(z−μ)]−

(v+n)
2 , and A and B are matrices

of constants, then

(1) E(z′Az) = v
v−2 tr(AV) + μ′Aμ, when v > 2

(2) E(zz′Az) = v
v−2 [VA

′μ + VAμ + μtr(AV)] + μμ′Aμ,
when v > 2

(3) E[(z′Az)(z′Bz)] = v2

(v−2)(v−4) [tr(AV)tr(BV) +

tr(AVBV) + tr(AVB′V)] + v
(v−2) [tr(AV)μ′Bμ +

μ′Aμtr(BV)+μ′(AVB+A′VB+AVB′+A′VB′)μ]+
μ′Aμμ′Bμ, when v > 4.

The proof of Lemma 2.1 is given in the Appendix. For
the linear regression model (1) with prior as Eq. (8), the
posterior distribution of γ∗ based on the observed data is

p(γ∗|y1) ∝ p(y1|γ∗)π(γ∗)

∝ τn1/2−1 exp

{
−τ

2
(y1 −X1β)

′(y1 −X1β)

}

and the posterior predictive distribution is

p(y2|y1) =

∫ ∫
p(y2|y1, γ

∗)p(γ∗|y1) dβdτ

∝
[
1 +

(y2 − ŷ2)
′H(y2 − ŷ2)

(n1 − p)s2

]−n1+n2−p
2

where ŷ2 = X2(X
′
1X1)

−1X′
1y1, s2 = y′

1(I −
X1(X

′
1X1)

−1X′
1)y1/(n1 − p) and H = I − X2(X

′X)−1X′
2.

Since X′X = X′
1X1 + X′

2X2, and X′
1X1 are of full-rank,

it can be shown that H is positive definite with inverse
H−1 = I + X2(X

′
1X1)

−1X′
2. Hence, the posterior predic-

tive distribution of [y2|y1] is a multivariate t distribution
given by

(9) y2|y1 ∼ Sn−n1(n1 − p,X2(X
′
1X1)

−1X′
1y1, s

2H−1).

Theorem 2.1 establishes the small and large sample prop-
erties of the estimates based on the MI method.

Theorem 2.1. For the linear regression model (1) with

prior (8), let y
(l)
2 , l = 1, . . . ,m, be the samples of y2 from

[y2|y1] in Eq. (9). Then

(i) the multiple imputation (MI) estimate of β is

(10) β̂MI =
1

m

m∑
l=1

(X′X)−1(X′
1y1 +X′

2y
(l)
2 ),

with mean E(β̂MI ) = β and variance

Var(β̂MI ) = σ2(X′
1X1)

−1

(11)

+
σ2(n1 − p)

m(n1 − p− 2)
[(X′

1X1)
−1 − (X′X)−1].

(ii) The MI estimate of σ2 is

(12) σ̂2
MI =

1

m

m∑
l=1

y(l)′(I−X(X′X)−1X′)y(l)/(n−2),

with mean

E(σ̂2
MI ) =

(n− p− 2)(n1 − p)

(n− 2)(n1 − p− 2)
σ2

and variance

(13) Var(σ̂2
MI ) =

2(n1 − p)(n− p− 2)2

(n− 2)2(n1 − p− 2)2
σ4 + a1σ

4/m,

where a1 = 2(n−n1)(n−p−2)(n1−p)(n1−p+2)
(n−2)2(n1−p−2)2(n1−p−4) .

From Theorem 2.1, it can be shown that the MI estimate
of β and σ2 as well as their variances are asymptotically
equivalent to the CC estimates. Furthermore, after some
algebra, we can show that when n > n1 > p+ 2

E(σ̂2
MI |y1) =

n1(n− p− 2)

(n− 2)(n1 − p− 2)
σ̂2
CC > σ̂2

CC ,

and

Var(σ̂2
MI ) =

n2
1(n− p− 2)2

(n1 − p− 2)2(n− 2)2
Var(σ̂2

CC )

+
2(n− p+ 2)(n− n1)

m(n1 − p+ 2)(n+ 2)
σ4

> Var(σ̂2
CC ),

where σ̂2
CC is given in Eq. (3). We note here that through-

out this paper, we do not consider the situation in which
the number of regression coefficients p increases as n in-
creases, so p is either fixed or increases at a slower rate
than n.

Remark 2.1. E(σ̂2
MI ) is independent from m while

Var(σ̂2
MI ) is a function of m, therefore, increasing the num-

ber of imputations, m, does not reduce the bias of σ̂2
MI , but

it reduces the variance of σ̂2
MI .

Remark 2.2. (β̂MI |y1)/β̂CC → 1, (σ̃2
MI |y1)/σ̃

2
CC → 1

as m → ∞, where σ̃2
MI = (n−2)(n1−p−2)

(n−p−2)(n1−p) σ̂
2
MI and σ̃2

CC =
n1

n1−p σ̂
2
CC are unbiased estimates of σ2. However, this is not

true for a fixed m.
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We also note that Var(β̂MI ) > Var(β̂CC ) and Var(σ̃2
MI ) >

Var(σ̃2
CC ), which imply that the MI estimates are less effi-

cient than the CC estimates. This is because the ML esti-
mates for MAR responses in the linear model are the same as
the CC estimates, and the ML estimates are most efficient if
the model is correct. The extra variability of the MI estimate
is induced by the sampling involved in finding the estimator.
Even though we are able to improve the MI estimates un-
der the setting of MAR responses in linear regression with
small samples, this is not the main aim of this paper. The
goal of this paper is to investigate the relationships between
MI, ML, and FB approaches. The small sample properties
of MI have been studied under more general settings in [1]
and [9].

2.2 Maximum likelihood (ML)

As shown in equations (2) and (3), there are closed form
estimates of β and σ2 using the ML method when the re-
sponse variable is MAR in the linear model, and those es-
timates are precisely the CC estimates. However, the ML
method is more generally carried out using the EM algo-
rithm, which can be either directly solved when the E-step
has a closed form, or it may be obtained using Monte Carlo
methods when it does not have a closed form. This latter ver-
sion of the EM algorithm is referred to as the Monte Carlo
EM (MCEM) algorithm and is a more general method of
carrying out ML since for most regression models with miss-
ing data, the E-step does not have a closed form. We will
study ML via MCEM in this subsection in order to study the
connections between ML, MI, and FB, and to shed light on
examining the properties of the MCEM method when closed
form estimates under ML do not exist. ML via MCEM will
be the basis of our development in this subsection. In partic-
ular, we will derive expressions for the estimates, and their
associated variances for both the small sample and large
sample situations using MCEM. Following [6] and [8], the
Monte Carlo E-Step at the (t + 1)st EM iteration can be
written as

Q(γ | γ(t))

=

∫
l(γ | Dobs ,Dmis , γ

(t))p(Dmis | Dobs , γ
(t)) dDmis

≈ 1

m

m∑
j=1

l(γ | Dobs ,D
(j)
mis , γ

(t)),

where l(γ | Dobs ,Dmis , γ
(t)) is the log-likelihood function

based on the complete data given the parameter estimates
at the tth iteration, Dobs = (y1,X1,X2) is the observed

data, Dmis = y2 and the D
(j)
mis ’s are the missing values

replaced by their jth sampled values from the full conditional
distribution p(Dmis | Dobs , γ

(t)). The M-Step at the (t+1)st

EM iteration maximizes Q(γ | γ(t)). Standard errors can
be calculated by using Louis’s method and the estimated
observed information matrix of γ based on Louis’s method

is given by

I(γ̂)=−Q̈(γ̂ | γ̂)− 1

m

m∑
j=1

S(γ̂;Dobs ,D
(j)
mis)S(γ̂;Dobs ,D

(j)
mis)

′

where γ̂ is the ML estimate at MCEM convergence and
Q̈(γ̂ | γ̂) is the second derivative matrix of the Q function.
The estimate of the asymptotic covariance matrix of γ̂ is
therefore [I(γ̂)]−1.

Note that unlike the MI method, which creates m pseudo
complete datasets by replacing the missing values with each
of the m sets of imputed values, ML via MCEM calculates
the estimates from a single dataset and assigns a weight of 1
for complete observations and a weight of 1/m for each sam-
pled value. In order to explore the connections between MI
and ML, we consider the imputation distribution [y2|y1, β̂]
of MCEM, given by

(14)

y2|y1, β̂ ∼ Nn−n1

(
X2(X

′
1X1)

−1X′
1y1,

(
n1 − p

n1

)
s2I

)
,

where s2 = y′
1(I−X1(X

′
1X1)

−1X′
1)y1/(n1−p). Theorem 2.2

gives the estimates of β and σ2 along with their small and
large sample properties.

Theorem 2.2. For the linear regression model (1), let y
(l)
2 ,

l = 1, . . . ,m, be the Gibbs samples of y2 from [y2|y1, β̂] in
Eq. (14). Then

(i) the maximum likelihood estimate of β using MCEM is

(15) β̂ML2 =
1

m

m∑
l=1

(X′X)−1(X′
1y1 +X′

2y
(l)
2 ),

with variance

Var(β̂ML2 ) = σ2(X′
1X1)

−1

(16)

+
σ2(n1 − p)

mn1
(X′X)−1(X′

2X2)(X
′X)−1.

(ii) β̂ML2 is an unbiased estimator of β.
(iii) The ML estimate of σ2 is

(17) σ̂2
ML2 =

1

m

m∑
l=1

(y(l)−Xβ̂ML2 )
′(y(l)−Xβ̂ML2 )/n

with mean

E(σ̂2
ML2 ) =

(
n1 − p

n1
− (n1 − p)tr(M)

mnn1

)
σ2

and variance

(18) Var(σ̂2
ML2 ) =

2(n1 − p)

n2
1

σ4 +
2(n1 − p)

n2n2
1

a2σ
4,
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where a2 = tr2(M)+(n1−p+2)tr(M2)−2(n1−p+2)tr(M)
m2

+ (n−n1)(n1−p+2)−2ntr(M)
m and M = (X ′

2X2)(X
′X)−1.

(iv) σ̂2
ML2

P−→ σ2, as n1 → ∞ and m → ∞.

Again from Theorem 2.2, it can be easily shown that the
estimate of β and its variance based on MCEM are asymp-
totically equivalent to the CC estimates. In particular, after
some algebra, it can be shown that

E(σ̂2
ML2 |y1)

σ̂2
CC

= 1− tr(M)

mn
→ 1,

as n1 or m → ∞. The condition that tr(M) → K, 0 ≤
K < ∞, as n → ∞, implies that the information contained
in the covariates corresponding to the missing responses is
finite compared to the total information in the covariates.
The variance of σ̂2

ML2 in Eq. (18) can also be written as

Var(σ̂2
ML2 ) = Var(σ̂2

CC ) +O

(
1

mn1

)
σ4,

and hence Var(σ̂2
ML2 )/Var(σ̂

2
CC ) → 1 as n1 or m go to in-

finity.
Note that the variance of β̂ML2 in Eq. (16) is smaller

than the variance of β̂MI in Eq. (11), however, the deriva-
tion of Theorem 2.2 is based on the assumption that the
imputation distribution of the missing responses yields the
ML estimates, which may not be true in practice. Again,
note that although we write the estimates of (β, σ2) and
their variance as if there were m data sets in order to com-
pare the MI and ML methods, in practice, ML via MCEM
calculates the estimates from only one dataset with differ-
ent weights assigned to the observed and sampled values. In
this sense, MCEM augments the data “vertically” and MI
augments the data “horizontally”.

Remark 2.3. Both E(σ̂2
ML2 ) and Var(σ̂2

ML2 ) are functions
ofm, the number of Gibbs samples, and therefore, increasing
m reduces the bias and variance of σ̂2

ML2 .

2.3 Fully Bayesian (FB)

FB methods for the missing data problem are based on
specifying priors for all of the parameters and then the miss-
ing data are sampled from their full conditional distribu-
tions within the Gibbs sampler. Clearly, ML and MI have
Bayesian connections, since ML can be viewed as a large
sample Bayesian method, and in many cases, the implemen-
tation of Bayesian methods using uniform improper priors
on all parameters leads to ML estimates. In this subsection,
we consider the FB method under conjugate priors, which
yield closed form expressions for the posterior mean and
variance of the parameters.

Note that observed data likelihood for MAR responses
is the CC likelihood and thus the posterior distribu-
tion of γ∗ based on the observed data is p(γ∗|y1,X) ∝
p(y1|X; γ∗)π(γ∗). Theorem 2.3 provides the properties of
the fully Bayesian estimates of β and τ .

Theorem 2.3. For the linear regression model (1), assume
that the prior for γ∗ = (β, τ) is π(γ∗) = π(β|τ)π(τ), where
π(β|τ) = N(μ0, τ

−1Σ0) and π(τ) = Gamma(δ0/2, λ0/2).
Then

(i) the fully Bayesian estimate of β is

β̂FB =
1

m

m∑
l=1

β(m),

where βm is the m sample from the posterior distribu-
tion

p(β|Dobs) ∼ Sp(n1 + δ0, β̃, s̃
2((X′

1X1 +Σ0)
−1))

with β̃ = Λμ0 + (I − Λ)β̂, Λ = (X′
1X1 + Σ−1

0 )−1Σ−1
0 ,

β̂ = (X′
1X1)

−1X′
1y1, and s̃2 = (n1 + δ0)

−1[y′
1(I −

X1(X
′
1X1)

−1X′
1)y1+(β̂−μ0)

′(Λ′X′
1X1)(β̂−μ0)+λ0].

(ii) The posterior mean and variance of β based on the ob-
served data are

E(β|Dobs) = β̃

and

Var(β|Dobs) = (n1+δ0)s̃
2(X′

1X1+Σ0)
−1/(n1+δ0−2).

(iii) The fully Bayesian estimate of τ = 1/σ2 is

τ̂FB =
1

m

m∑
l=1

τ (m)

where p(τ |Dobs) ∼ Gamma((n1 + δ0)/2, (n1 + δ0)s̃
2/2)

with s̃2 defined in (i).
(iv) The posterior mean and variance of τ are

E(τ |Dobs) = 1/s̃2 and Var(τ |Dobs) = 2(n1+δ0)
−1s̃−4.

The proof of Theorem 2.3 is straightforward and can be
found in most Bayesian textbooks. We state it as a Theorem
here only to be consistent with other sections.

Remark 2.4. When the prior for γ∗ is an improper prior,
π(γ∗) ∝ τ−1, s̃2 reduces to y′

1(I − X1(X
′
1X1)

−1X′
1)y1/n1

and the posterior mean and variance of (β, τ) are then equal
to the CC estimates given in equations (2) and (3).

Therefore, the CC analysis is recommended over the MI,
MCEM, and FB methods for MAR responses in the linear
regression model, unless additional information is available
to specify informative priors for the MI and FB methods, or
the imputation model of MI includes covariates not specified
in the analysis model. On the other hand, the loss of effi-
ciency of MI, MCEM, and FB methods can be significantly
reduced by increasing the number of imputations for MI or
the number of Gibbs samples for MCEM and FB.
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Table 1. Simulation with MAR responses in the linear regression model. The 95% CR is the coverage rate of a 95%
confidence interval. γ̂F (full data), γ̂∗

MI (Multiple Imputation with covariance matrix as Eq. (7), γ̂†
MI (Multiple Imputation

with covariance matrix as Eq. (11) and Eq. (13), γ̂CC (CC estimates), γ̂∗
ML2 (MCEM with covariance matrix using Louis’s

method, γ̂†
ML2 (MCEM with covariance matrix as Eq. (16) and Eq. (18), and γ̂FB (fully Bayesian). The number m is defined

in the section discussing the corresponding method

Method m Estimate (var(×10−3))[95% CR]
β0 = 1.00 β1 = 1.50 β2 = −1.00 σ2 = 1.0

γ̂F - 0.994(12)[94] 1.499(8)[96] −0.998(4)[96] 0.989(8)[94]

γ̂∗
MI 30 0.995(14)[95] 1.496(11)[95] −0.998(5)[95] 1.000(10)[95]

γ̂†
MI 30 0.995(14)[95] 1.496(10)[95] −0.998(5)[95] 1.000(10)[95]

γ̂∗
MI 3 0.993(14)[95] 1.496(11)[95] −0.998(6)[94] 1.002(11)[94]

γ̂†
MI 3 0.993(14)[95] 1.496(11)[96] −0.998(6)[95] 1.002(10)[94]

γ̂CC - 0.995(14)[95] 1.497(10)[95] −0.9984(5)[95] 0.987(10)[94]

γ̂∗
ML2 30 0.995(14)[95] 1.497(10)[95] −0.998(5)[95] 0.987(10)[94]

γ̂†
ML2 30 0.995(14)[95] 1.497(10)[95] −0.998(5)[95] 0.987(10)[94]

γ̂∗
ML2 3 0.993(14)[92] 1.497(10)[90] −0.998(5)[89] 0.987(10)[90]

γ̂†
ML2 3 0.993(14)[95] 1.497(10)[95] −0.998(5)[93] 0.987(10)[93]

γ̂FB - 0.995(14)[95] 1.497(10)[95] −0.998(5)[95] 0.992(10)[95]

3. SIMULATION STUDY

In this section, we will compare inferences about β using
the four methods, MI, CC, MCEM and FB using the for-
mulas we developed in Section 2 for a small sample size n
and various values of m for MI and MCEM.

We generate N = 1,000 replicates with each simulation
consisting of n = 250 independent response variables yi from
the linear regression model as

yi = β0 + β1xi1 + β2xi2 + ei,

where the ei’s are independent and identically distributed
(i.i.d.) as N(0, σ2). The values chosen for the parameters are
(β0, β1, β2) = (1.0, 1.5,−1.0) and σ2 = 1.0. The covariates
(xi1, xi2) are i.i.d. and simulated as

xi1 ∼ N(1.0, 1.0) and xi2|xi1 ∼ N(α0 + α1xi1, σ
2
x)

where (α0, α1) = (1.0, 1.0) and σ2
x = 1.0.

We assume that yi is MAR for some i’s and xi1 and xi2 are
completely observed throughout. In this setting, the model
for the missing data mechanism of yi is given by

p(ri1 = 1 | xi1, xi2, φ) =
exp (φ0 + φ1xi1 + φ2xi2)

1 + exp (φ0 + φ1xi1 + φ2xi2)
,

where (φ01, φ11, φ21) = (−5.5, 1.0, 1.0) and ri1 = 1 if yi is
missing, 0 otherwise.

Table 1 gives the results using the four methods, MI, CC,
MCEM and FB, and also gives the estimates based on the
full data (i.e., no missing values), as these estimates serve
as a benchmark for comparison. From the N = 1,000 simu-
lations, the average number of observations with yi missing
is 19%. We chose the number of samples m equal to 30 and
3 in both the MI and MCEM methods in order to compare
the results. [13] note that for proper MI, m, the number of

imputed datasets, can be as small as m = 5. However, m
in MCEM, the number of Gibbs samples, is usually large,
say m = 100 or more, in order to accurately represent the
sampling distribution in the E-step, especially in complex
models with large missing data fractions. This is consistent
with the simulation results. When m = 3 in the MI method,
the two forms of the variance estimates give similar cov-
erage rates because both of them adjust well for small m,
and when m = 3 in MCEM, equations (16) and (18) give
much better coverage rates than the Louis method. On the
other hand, for the MI method, considering that the esti-
mates with m = 30 always have smaller variances than the
estimates with m = 3 with better coverage probabilities,
larger values of m may need to be considered if the compu-
tational burden is not heavy. The simulation results confirm
the theorems in Section 2, and show that the three methods
(MI, ML via MCEM, FB) produce consistent estimates with
valid inferences and all are asymptotically equivalent to the
CC estimates when the response variable is MAR.

4. LIVER CANCER DATA

To further illustrate the CC, MI, ML and FB methods, we
consider a real dataset on n = 174 patients from two East-
ern Cooperative Oncology Group clinical trials, EST 2282
[3] and EST 1286 [4]. We are interested in how the number
of cancerous liver nodes (CNT) when entering the trials is
predicted by six other baseline characteristics: body mass
index (BMI, defined as weight in kilograms divided by the
square of height in meters); age (in years); associated jaun-
dice (yes, no); and time since diagnosis of the disease (TSD,
in weeks). Thirty four out of 174 (19.5%) patients have a
missing response variable (CNT). Throughout, we assume
that the response variable CNT is MAR. The square root
transformation on CNT and TSD was used in the analyses.
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Table 2. Estimates for liver cancer data

Effect Method β̂ Std P-value

Intercept CC 2.826 0.445 < .001
MI m = 3 2.801 0.446 < .001
MI m = 30 2.763 0.408 < .001
ML2 m = 30 2.782 0.440 < .001
ML2 m = 300 2.766 0.395 < .001
FB 2.770 0.408 < .001

BMI CC −0.008 0.015 0.595
MI m = 3 −0.007 0.015 0.632
MI m = 30 −0.005 0.013 0.726
ML2 m = 30 −0.005 0.014 0.740
ML2 m = 300 −0.005 0.013 0.715
FB −0.005 0.013 0.720

Age CC −0.012 0.005 0.018
MI m = 3 −0.012 0.005 0.016
MI m = 30 −0.012 0.005 0.007
ML2 m = 30 −0.012 0.005 0.012
ML2 m = 300 −0.012 0.004 0.006
FB −0.012 0.005 0.008

Jaundice CC 0.190 0.152 0.212
MI m = 3 0.231 0.146 0.115
MI m = 30 0.217 0.134 0.107
ML2 m = 30 0.210 0.144 0.147
ML2 m = 300 0.204 0.129 0.116
FB 0.204 0.134 0.129√

TSD CC 0.002 0.034 0.964
MI m = 3 0.000 0.034 0.998
MI m = 30 −0.002 0.032 0.957
ML2 m = 30 −0.003 0.034 0.933
ML2 m = 300 −0.003 0.030 0.926
FB −0.002 0.032 0.943

We use linear regression to model the response variable,√
CNT , as

√
CNTi = β0+β1BMIi+β2Agei+β3Jaundicei+

β4

√
TSDi+ei, where the ei’s are i.i.d. normally distributed

as ei ∼ N(0, σ2).
Table 2 show the results for the CC analysis, MI with

m = 3 and m = 30 using equations (11) and (13), MCEM
with m = 30 and m = 300 using equations (16) and (18),
and the FB method discussed in Section 3. Moreover, the
variance estimates are 0.775, 0.715, 0.715, 0.724, 0.739, and
0.712 for CC, MI with m = 3 and m = 30, ML via MCEM
with m = 30 and m = 300, and FB, respectively. As shown
in the table, the MI, MCEM and FB methods yield very
similar estimates with very little differences from the CC
estimates. In particular, the p-values of all the covariates
except Age are smaller with larger m. The results show that
the age of the patients is significantly associated with the
number of cancerous liver nodes controlling for body mass
index, associated jaundice, and time since diagnosis.

5. DISCUSSION

It is known in the missing data literature that when the
responses are MAR, the CC analysis is unbiased and effi-

cient. However, MI, ML via MCEM, and FB are still com-
monly used in practice in this setting. This may be due
to the fact that (a) the unbiasedness and efficiency prop-
erties of the CC method in this setting is not known to
general researchers; (b) MI, ML, and FB, as well as some
other methods including parametric fractional imputation
[10] and empirical likelihood [18] outperform CC in a gen-
eral setting. To overcome these barriers, it is important to
inform researchers and practitioners about these important
results. Moreover, we also showed in this paper that the
loss of efficiency of MI, ML via MCEM, and FB can be sig-
nificantly reduced by increasing the number of imputations
for MI and the number of Gibbs samples for MCEM and
FB. It would be of interest to extend our theoretical results
to MAR responses for models other than linear regression.
This is a topic of current investigation. It would also be
interesting to accommodate missingness in the predictors.
Unfortunately, even for linear regression models with nor-
mally distributed MAR covariates, no closed form expres-
sions are available for the estimates of the three methods,
which makes the comparisons between the methods very
hard. A special scenario of it, assuming unit variances for
response variable and missing covariates, was investigated
in [2] for the maximum likelihood approach.

APPENDIX

Proof of Lemma 2.1

If the n × 1 random vector z has a multivariate t distri-
bution as Sn(v, μ,V), then we can write z = x/

√
y/v + μ,

where x is an n × 1 random vector that has a multivariate
normal distribution N(0,V), y is a random variable which
has a χ2

v distribution, x and y are independent. Therefore,
(i) is straightforward and, to get (ii), we have

E(zz′Az)

= E

[
E

(
xx′Ax

(y/v)3/2
+

xμ′Ax+ xx′Aμ+ μx′Ax

(y/v)

+
μμ′Ax+ μx′Aμ

(y/v)1/2
+ μμ′Aμ|y

)]
= 0+ E[vy−1(VA′μ+VAμ+ μtr(AV))] + 0+ μμ′Aμ

=
v

v − 2
[VA′μ+VAμ+ μtr(AV)] + μμ′Aμ.

We substitute z = x/
√
y/v + μ and calculate the double

expectation in the first equality. Because of independence
between x and y, we can substitute in expressions for mul-
tivariate normal moments in the second equality, and there-
fore

E[(z′Az)(z′Bz)]

= E[E((x/
√
y/v + μ)′A(x/

√
y/v + μ)(x/

√
y/v + μ)′

×B(x/
√
y/v + μ)|y)]
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= E[(v/y)2E(x′Axx′Bx)] + E[(v/y)3/2 × 0]

+ E[(v/y)E(x′Axμ′Bμ+ μ′Axμ′Bx+ μ′Axx′Bμ

+ μ′Axx′Bμ+ x′Aμμ′Bx+ x′Aμx′Bμ

+ μ′Aμx′Bx)] +E[(v/y)1/2 × 0] + μ′Aμμ′Bμ

=
v2

(v − 2)(v − 4)
[tr(AV)tr(BV) + tr(AVBV)

+ tr(AVB′V)] +
v

(v − 2)
[tr(AV)μ′Bμ+ μ′Aμtr(BV)

+ μ′(AVB+A′VB+AVB′ +A′VB′)μ]

+ μ′Aμμ′Bμ.

In the second equality, the two zero components correspond
to the first and third moments of x. In the last equality, we
use the second and fourth moments of x, which are avail-
able in [5] with a modification for nonsymmetric matrices A
and B.

Proof of Theorem 2.1

(i) and (ii): It is straightforward to get the estimate of
β as in Eq. (10). It is also straightforward to use double

expectations to get E(β̂MI ) = β. To find the variance of

β̂MI , we have

Var(β̂MI )

= E(Var(β̂|y1)) + Var(E(β̂|y1))

=
n1 − p

m(n1 − p− 2)

× E((X′X)−1X′
2s

2(I+X2(X
′
1X1)

−1X′
2)X2(X

′X)−1)

+ Var((X′X)−1X′
1y1

+ (X′X)−1(X′
2X2)(X

′
1X1)

−1X′
1y1)

=
σ2(n1 − p)

m(n1 − p− 2)
(X′X)−1(X′

2X2)(X
′
1X1)

−1

+Var((X′
1X1)

−1X′
1y1)

=
σ2(n1 − p)

m(n1 − p− 2)
(X′X)−1(X′

2X2)(X
′
1X1)

−1

+ σ2(X′
1X1)

−1.

(iii) and (iv): It is straightforward to get the estimate of
σ2 as in Eq. (12). In order to find E(σ̂2

MI ), we write (n −
2)σ̂2

MI = y′
1Ay1−2y′

1Bȳ2+
1
m

∑m
l=1 y

(l)′

2 Cy
(l)
2 , where ȳ2 =∑m

l=1 y
(l)
2 /m, A = I −X1(X

′X)−1X′
1, B = X1(XX)−1X′

2,
and C = I−X2(X

′X)−1X′
2. Let PX1 = I−X1(X

′
1X1)

−1X′
1

and D = X1(X
′
1X1)(X

′
2X2) (X′X)−1X′

1. Then after some
algebra, we have

E(σ̂2
MI )

= E[E(σ̂2
MI |y1)]

= E[y′
1(A−D+

(n− n1)

(n1 − p− 2)
PX1)y1]/(n− 2)

=
(n− p− 2)

(n1 − p− 2)(n− 2)
E(y′

1PX1y1)

=
(n− p− 2)(n1 − p)

(n− 2)(n1 − p− 2)
σ2

→ σ2,

by noting that y1 ∼ N(X1β, σ
2I), A − D = PX1 , P

2
X1

=
PX1 and X′

1PX1X1 = 0.
To find Var(σ̂2

MI ), we write Var((n−2)σ̂2
MI ) = Var[E((n−

2)σ̂2
MI |y1)] + E[Var((n− 2)σ̂2

MI |y1)]. First we have

Var[E((n− 2)σ̂2
MI |y1)]

=
(n− p− 2)2

(n1 − p− 2)2
Var((n1 − p)s2)

=
2(n1 − p)(n− p− 2)2

(n1 − p− 2)2
σ4.

Then we obtain

Var((n− 2)σ̂2
MI |y1)

= Var(−2y′
1Bȳ2 +

1

m

m∑
l=1

y
(l)′

2 Cy
(l)
2 |y1)

=
4y′

1BVar(y2|y1)B
′y1

m
+

Var(y′
2Cy2|y1)

m

−
m∑
l=1

m∑
k=1

4Cov(y′
1By

(k)
2 ,y

(l)
2 Cy

(l)
2 |y1)

m2

=
4(n1 − p)

m(n1 − p− 2)
y′
1BΣB′y1 +

1

m
Var(y′

2Cy2|y1)

− 4

m
Cov(y′

1By2,y2Cy2|y1),

where Σ = s2(I +X2(X
′
1X1)

−1X′
2) and s2 is defined as in

Theorem 2.1. The last equality holds because y
(j)
2 is inde-

pendent of y
(k)
2 given y1, when j 	= k. Then we use Lem-

ma 2.1 and get

E[Var((n− 2)σ̂2
MI |y1)]

=
2(n1 − p)(n− n1)(n− p− 2)

(n1 − p− 2)2(n1 − p− 4)
E

[
y′
1PX1y1y

′
1PX1y1

m

]

=
2(n1 − p)(n− n1)(n− p− 2)(n1 − p+ 2)

m(n1 − p− 2)2(n1 − p− 4)
σ4,

and therefore, we can get Var(σ̂2
MI ) as in (13). Since

Var(σ̂2
MI ) → 0, σ̂2

MI
P−→ σ2.

Proof of Theorem 2.2

(i) and (ii): It is straightforward to get the estimate of β as
in Eq. (15). It is straightforward to use double expectations

to get E(β̂MI ) = β. To find the variance of β̂ML2 , we have

Var(β̂ML2 )

= E(Var(β̂|y1)) + Var(E(β̂|y1))
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=
n1 − p

mn1
E((X′X)−1X′

2s
2IX2(X

′X)−1)

+ Var((X′X)−1X′
1y1

+ (X′X)−1(X′
2X2)(X

′
1X1)

−1X′
1y1)

=
σ2(n1 − p)

mn1
(X′X)−1(X′

2X2)(X
′X)−1

+Var((X′
1X1)

−1X′
1y1)

=
σ2(n1 − p)

mn1
(X′X)−1(X′

2X2)(X
′X)−1 + σ2(X′

1X1)
−1.

(iii) and (iv): It is straightforward to get the estimate of σ2

as in Eq. (17). In order to find E(σ̂2
MI ), we write nσ̂2

ML2 =

y′
1Ay1+

∑m
l=1 y

(l)′

2 y
(l)
2 /m−2y′

1Bȳ2−ȳ
(l)′

2 (I−C)ȳ
(l)
2 , where

the symbols are same as the proof of Theorem 2.2. Then we
have

E(σ̂2
ML2 )

= E[E(σ̂2
MI |y1)]

= E

[
y′
1(A−D+

n− n1

n1
PX1 −

tr(M)

mn1
PX1)y1

]
/n

=

(
n1 − p

n1
− (n1 − p)tr(M)

mnn1

)
σ2

→ σ2,

where M = (X ′
2X2)(X

′X)−1. To find Var(σ̂2
ML2 ), we have

Var((n+ 2)σ̂2
MI )

= Var[E((n+ 2)σ̂2
MI |y1)] + E[Var((n+ 2)σ̂2

MI |y1)].

Then we have

Var[E(nσ̂2
ML2 |y1)]

= Var

((
n

n1
− tr(M)

mn

)
y′
1PX1y1

)

= 2

(
n

n1
− tr(M)

mn

)2

(n1 − p)σ4.

Using Chapter 10.9 of [5] and after some algebra, we get

Var(nσ̂2
ML2 |y1)

= 2

(
n− n1

mn2
1

+
tr(M2)

m2n2
1

− 2tr(M)

m2n2
1

)
(y′

1PX1y1)
2.

Therefore, after some algebra, we can get Var(σ̂2
ML2 ) as in

Eq. (18), and therefore σ̂2
ML2

P−→ σ2.
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