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Estimation in longitudinal studies with
nonignorable dropout

Jun Shao
∗,†

and Jiwei Zhao

A sampled subject with repeated measurements often
drops out prior to the study end. Data observed from such a
subject is longitudinal with monotone missing. If dropout at
a time point t is only related to past observed data from the
response variable, then it is ignorable and statistical meth-
ods are well developed. When dropout is related to the pos-
sibly missing response at t even after conditioning on all past
observed data, it is nonignorable and statistical analysis is
difficult. Without any further assumption, unknown param-
eters may not be identifiable when dropout is nonignorable.
We develop a semiparametric pseudo likelihood method that
produces consistent and asymptotically normal estimators
under nonignorable dropout with the assumption that there
exists a dropout instrument, a covariate related to the re-
sponse variable but not related to the dropout conditioned
on the response and other covariates. Although consistency
and asymptotic normality for the proposed estimators can
be established using a standard argument, their asymptotic
covariance matrices are very complicated because the esti-
mation at t uses estimators from all time prior to t. Our main
effort is to derive easy-to-compute consistent estimators of
the asymptotic covariance matrices for assessing variability
or inference. For illustration, we present an example using
the HIV-CD4 data and some simulation results.
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1. INTRODUCTION

Longitudinal data or repeated measurements are often
encountered in medical, health, economical, and social stud-
ies. For a sampled subject, let Y = (Y1, . . . , YT ) be a T -
dimensional longitudinal response vector and X be a cross-
sectional or longitudinal covariate vector associated with Y .
We focus on the estimation or inference on some unknown
parameters in p(Y |X) or p(Y ), where p(·|·) is a generic no-
tation for the conditional density and p(·) is for the un-
conditional density. In many studies, values of X are com-
pletely observed but a subject may dropout at t ≤ T so
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that (Y1, . . . , Yt−1) is observed and (Yt, . . . , YT ) is missing.
This is referred to as monotone missing, but we use the
term dropout for monotone missing throughout this paper.
Let R = (R1, . . . , RT ), where Rt = 1 if Yt is observed and
Rt = 0 if Yt is missing, t = 1, . . . , T . If the subject drops out
at time t, then R1 = · · · = Rt−1 = 1 and Rt = · · · = RT = 0.
Also, if Rt−1 = 0, then Rt = 0 with certainty, t = 1, . . . , T .

For longitudinal data, it is natural that dropout at time t
is not related to future values Yt+1, . . . , YT (e.g., Diggle and
Kenward, 1994) and, thus,

P (Rt = 1|Y,X,Rt−1 = 1) = P (Rt = 1|Y1, . . . , Yt, X,Rt−1 = 1),
(0)

t = 1, . . . , T.

If dropout is not related to the current value Yt, i.e.,

P (Rt = 1|Y,X,Rt−1 = 1) = P (Rt = 1|Y1, . . . , Yt−1, X,Rt−1 = 1),

t = 1, . . . , T,

then the dropout is ignorable (e.g., Little, 1995; Little
and Rubin, 2002), which is a much stronger assumption
than (0) because the dropout propensity only depends on
(Y1, . . . , Yt−1, X) that is observed. Estimation methods un-
der ignorable dropout are well developed (e.g., Little and
Rubin, 2002; Paik, 1997). However, in many longitudinal
studies dropout depends on not only (Y1, . . . , Yt−1, X) but
also Yt that may be missing and, hence, is nonignorable.
Nonignorable dropout presents a great challenge in the esti-
mation of unknown parameters in p(Y |X) or p(Y ) (see, e.g.,
Robins, Rotnitzky and Zhao, 1995; Troxel, Harrington and
Lipsitz, 1998; Troxel, Lipsitz and Harrington, 1998).

The purpose of our study is to develop an estimation
method under nonignorable dropout. Without any further
assumption, however, some unknown parameters in p(Y |X)
or p(Y ) are not identifiable. To identify the unknown pa-
rameters, we need to assume that some component of Vt =
(Y1, . . . , Yt, X) is not related to dropout, conditioned on the
other components. Note that the ignorable dropout assump-
tion assumes that Yt is not related to dropout, conditional on
the rest of the components of Vt. For nonignorable dropout,
we assume that X = (U,Z) and the component Z is not
related to dropout conditional on other components of Vt,
i.e.,

P (Rt = 1|Y,X,Rt−1 = 1) = P (Rt = 1|Y1, . . . , Yt, U,Rt−1 = 1),
(1)

t = 1, . . . , T.
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The difference between (0) and (1) is that the covariate Z
is not present on the right-hand side of (1), which makes
it possible for us to identify and estimate unknown pa-
rameters, provided that Y and Z are dependent condi-
tioned on U , i.e., Z is a useful covariate. Such a covari-
ate Z is referred to as an instrument for dropout. Further-
more, we need to assume that at least one of p(Y |X) and
P (Rt = 1|Y1, . . . , Yt, U,Rt−1 = 1) is parametric. Otherwise
some unknown parameters are not identifiable (Robins and
Ritov, 1997). In this paper, we follow Tang, Little, and
Raghunathan (2003) and assume a parametric model on
p(Y |X):

(2) p(Y |X) =

T∏
t=1

ft(Yt|Vt−1, θt),

where ft(Yt|Vt−1, θt) is the probability density of Yt given
Vt−1 = (Y1, . . . , Yt−1, X), t > 1, or V0 = X, ft’s are known
functions, and θt’s are distinct unknown parameter vectors.

The approach in Tang et al. (2003) is for a general mul-
tivariate Y under the assumption p(R|Y,X) = p(R|Y ) that
allows us to estimate p(X|Y ) using the observed (X,Y ), as
well as the parameters in p(Y |X) through the Bayes for-
mula p(X|Y ) = p(Y |X)p(X)/

∫
p(Y |x)p(x)dx. Tang et al.

(2003) proposed both parametric and nonparametric meth-
ods to estimate p(X). However, this approach has the follow-
ing two problems. First, it discards observed but incomplete
data from dropped out subjects. Second, the dimension of
X is required to be as large as the dimension of Y , which
limits the application scope. For longitudinal Y , Tang et
al. (2003) actually improved their approach regarding the
previously discussed problems, but under the following as-
sumption much stronger than (1):

P (Rt = 1|Y,X,Rt−1 = 1) = P (Rt = 1|Yt, Rt−1 = 1),

t = 1, . . . , T,

that is, conditioned on Yt, the dropout propensity depends
on neither past responses Y1, . . . , Yt−1 nor the entire covari-
ate vector X.

Assuming (1) with no model on P (Rt = 1|Y1, . . . ,
Yt, U,Rt−1 = 1) and assuming (2), we derive a semiparamet-
ric pseudo likelihood for estimating parameters in p(Y |X)
or p(Y ). We are able to utilize all observed data. Since our
method is based on pseudo likelihoods constructed sequen-
tially as t = 1, . . . , T , we do not require a high-dimensional
covariate X to identify parameters. Also, at each step the
maximization in our method is carried out with a low dimen-
sional vector of parameters and, hence, the computation is
sensible.

The methodology is developed in Section 2. Consistency
and asymptotic normality of the proposed estimators are
shown in Section 3. Although the asymptotic normality fol-
lows from a standard argument, the asymptotic covariance
matrices of the proposed estimators are very complicated,

because of the use of previously estimated parameters in the
pseudo likelihoods. We establish an asymptotic representa-
tion that allows us to obtain easy-to-compute consistent esti-
mators of the asymptotic covariance matrices. Section 4 con-
tains some empirical results. A discussion on assumptions is
given in Section 5. The Appendix contains technical details.

2. ESTIMATION BASED ON PSEUDO
LIKELIHOODS

Under assumptions (1) and (2), we consider the estima-
tion of θ = (θ1, . . . , θT ) based on an independent and identi-

cally distributed sample (Y
(i)
1 , . . . , Y

(i)
T , R

(i)
1 , . . . , R

(i)
T , X(i)),

i = 1, . . . , n, from the population p(Y,R,X), where Y
(i)
t is

observed if and only if R
(i)
t = 1.

2.1 The case where X is a dropout
instrument

We first consider the case of X = Z and U = 0 in (1),
i.e., conditioned on (Y1, . . . , Yt), the dropout propensity does
not depend on the entire covariate vector X so that X is a
dropout instrument. When t = 1, we consider the likelihood∏

R
(i)
1 =1

p(X(i)|Y (i)
1 , R

(i)
1 = 1)

=
∏

R
(i)
1 =1

p(X(i)|Y (i)
1 )

=
∏

R
(i)
1 =1

p(Y
(i)
1 |X(i))p(X(i))∫
p(Y

(i)
1 |x)p(x)dx

=
∏

R
(i)
1 =1

f1(Y
(i)
1 |X(i))p(X(i))∫

f1(Y
(i)
1 |x)p(x)dx

,

where the first equality follows from assumption (1) with
U = 0, the second equality follows from the Bayes formula,
and the last equality follows from assumption (2). Substi-
tuting p(X) by the nonparametric empirical distribution of
X putting mass n−1 to each X(j), we obtain an estimator
θ̂1 by maximizing the pseudo likelihood

∏
R

(i)
1 =1

f1(Y
(i)
1 |X(i), θ1)∑n

j=1 f1(Y
(i)
1 |X(j), θ1)

.

Note that we can also assume a parametric model p(X) =
hϕ(X) and replace the previous expression by

∏
R

(i)
1 =1

f1(Y
(i)
1 |X(i), θ1)hϕ̂(X

(i))∫
f1(Y

(i)
1 |x, θ1)hϕ̂(x)dx

,

where ϕ̂ is an estimator of φ using X-data. However, the in-
tegral may not have an explicit form and using the empirical
distribution of X is more robust.
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For t = 2, . . . , T , suppose that θ̂1, . . . , θ̂t−1 have been ob-
tained. Consider the likelihood∏

R
(i)
t =1

p(X(i)|Y (i)
1 , . . . , Y

(i)
t , R

(i)
t = 1)

=
∏

R
(i)
t =1

p(Y
(i)
1 , . . . , Y

(i)
t |X(i))p(X(i))∫

p(Y
(i)
1 , . . . , Y

(i)
t |x)p(x)dx

.

Under (2),

p(Y
(i)
1 , . . . , Y

(i)
t |X(i)) = ft(Y

(i)
t |V (i)

t−1, θt)
t−1∏
s=1

fs(Y
(i)
s |V (i)

s−1, θs),

where V
(i)
s = (Y

(i)
1 , . . . , Y

(i)
s , X(i)). Replacing each θs by the

previously obtained θ̂s and p(X(i)) by the nonparametric
empirical distribution of X, we estimate θt by maximizing
the pseudo likelihood
(3)

∏

R
(i)
t =1

ft(Y
(i)
t |V (i)

t−1, θt)
∏t−1

s=1 fs(Y
(i)
s |V (i)

s−1, θ̂s)∑n
j=1 ft(Y

(i)
t |X(j), �Y

(i)
t−1, θt)

∏t−1
s=1 fs(Y

(i)
s |X(j), �Y

(i)
s−1, θ̂s)

,

where �Y
(i)
t−1 = (Y

(i)
1 , . . . , Y

(i)
t−1). Note that all observed values

up to time t are included in this likelihood.
It is implicitly assumed that ft(Yt|Vt−1, θt) depends on

X, i.e., X is a useful covariate. Otherwise, ft(Y
(i)
t |V (i)

t−1, θt)
can be canceled in (3) and the likelihood does not contain
θt.

Let the number of covariates be K ≥ 1. If X is cross-
sectional, then X is K-dimensional. If X is longitudinal,
then X = (X1, . . . , XT ) and each Xt is K-dimensional so
that the dimension of X is KT . For many longitudinal stud-
ies, Yt is statistically related toX1, . . . , Xt only, t = 1, . . . , T .
In such cases,

p(Yt|Vt−1) = p(Yt|X1, . . . , Xt, Y1, . . . , Yt−1)

= ft(Yt|X1, . . . , Xt, Y1, . . . , Yt−1, θt)

and the proposed pseudo likelihood (3) can be used

with ft(Y
(i)
t |V (i)

t−1, θt) replaced by ft(Y
(i)
t |X(i)

1 , . . . , X
(i)
t ,

Y
(i)
1 , . . . , Y

(i)
t−1, θt), t = 1, . . . , T .

Maximizing (3) can be done using an efficient algorithm
(see our discussion in Section 4). If we do not substitute
θ1, . . . , θt−1 by their estimates, in theory we can estimate
(θ1, . . . , θt) by maximizing (3) with θ̂s replaced by θs, s =
1, . . . , t− 1. However, the computation may not be feasible
because the dimension of (θ1, . . . , θt) is much higher than
that of θt.

The original approach in Tang et al. (2003) requires a
check on whether we can identify θ from the parameters in
p(X|Y ) because we estimate parameters in p(Y |X) through
estimating parameters in p(X|Y ) and the Bayes formula.
When (Y,X) is multivariate normal, the requirement is that

the dimension of X has to be at least T . This restrictive re-
quirement is not needed in our proposed approach under
assumption (1), because we estimate θt’s one at a time. In
fact, when p(Y |X) is normal, a one-dimensional continu-
ous X or discrete X taking at least 3 values is sufficient
for estimating θ. This can be shown using induction. For
t = 1, Y1 is one-dimensional and the result in Tang et al.
(2003) showed that θ1 in p(Y1|X) = f1(Y1|X, θ1) can be es-
timated with a one-dimensional continuous X or discrete X
taking at least 3 values when X is related to Y1. Assuming
that θ1, . . . , θt−1 are estimated, we want to show that θt in
p(Yt|Vt−1) = ft(Yt|Vt−1, θt) can be estimated. Since param-
eters in p(Y1, . . . , Yt−1|X) have been estimated, we can treat
(Y1, . . . , Yt−1, X) as a covariate vector and, thus, θt can be
estimated based on the result in Tang et al. (2003).

2.2 The case where a sub-vector of X is a
dropout instrument

Let X = (U,Z) as in (1). Note that

p(Z|Y1, . . . , Yt, U,Rt = 1)

= p(Z|Y1, . . . , Yt, U)

=
p(Y1, . . . , Yt, U |Z)p(Z)∫
p(Y1, . . . , Yt, U |z)p(z)dz

=
p(Y1, . . . , Yt|U,Z)p(U |Z)p(Z)∫
p(Y1, . . . , Yt|U, z)p(U |z)p(z)dz

=
p(Y1, . . . , Yt|U,Z)p(Z|U)∫
p(Y1, . . . , Yt|U, z)p(z|U)dz

.

First, if U is a discrete covariate, then we can substitute
p(Z|U = u) by the empirical distribution of Z conditioned
on U = u, which results in the following likelihood for the
estimation of θt:

∏

u, U(i)=u

R
(i)
t =1

ft(Y
(i)
t |V (i)

t−1, θt)
∏t−1

s=1fs(Y
(i)
s |V (i)

s−1, θ̂s)∑
U(j)=uft(Y

(i)
t |X(j), �Y

(i)
t−1, θt)

∏t−1
s=1fs(Y

(i)
s |X(j), �Y

(i)
s−1, θ̂s)

,

where θ̂1, . . . , θ̂t−1 are estimators from the previous steps.
Next, consider the case where U is continuous and a para-
metric model on p(Z|U) = gξ(Z|U) is assumed, where ξ is
an unknown parameter vector. Since U and Z have no miss-

ing data, ξ can be estimated by ξ̂ using the likelihood based
on X(1), . . . , X(n), which leads to the following likelihood
for the estimation of θt:

∏

R
(i)
t =1

ft(Y
(i)
t |V (i)

t−1, θt)
∏t−1

s=1 fs(Y
(i)
s |V (i)

s−1, θ̂s)gξ̂(Z
(i)|U (i))

∫
ft(Y

(i)
t |C(i)

t−1, z, θt)
∏t−1

s=1 fs(Y
(i)
s |C(i)

s−1, z, θ̂s)gξ̂(z|U (i))dz
,

where C
(i)
t = (U (i), Y

(i)
1 , . . . , Y

(i)
t ). Finally, consider the case

where U is continuous, a parametric model on p(U |Z) =
hζ(U |Z) is assumed, where ζ is an unknown parameter vec-

tor, and ζ is estimated by ζ̂ using the likelihood based on
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X(1), . . . , X(n). Then, the following likelihood can be used
for the estimation of θt:

∏

R
(i)
t =1

ft(Y
(i)
t |V (i)

t−1, θt)
∏t−1

s=1fs(Y
(i)
s |V (i)

s−1, θ̂s)hζ̂(U
(i)|Z(i))

∑n
j=1ft(Y

(i)
t |W (i,j)

t−1 , θt)
∏t−1

s=1fs(Y
(i)
s |W (i,j)

s−1 , θ̂s)hζ̂(U
(i)|Z(j))

,

where W
(i,j)
t = (U (i), Z(j), Y

(i)
1 , . . . , Y

(i)
t ). In any case it is

assumed that ft(Yt|Vt−1, θt) depends on Z, i.e., Z is a useful
covariate, although ft(Yt|Vt−1, θt) may not depend on U .

3. ASYMPTOTIC PROPERTIES

Under some regularity conditions, we now show that θ̂t,
t = 1, . . . , T , are consistent and asymptotically normal as
n → ∞. For simplicity, we focus on the situation where
X = Z (Section 2.1). Results for the situations described in
Section 2.2 can be similarly derived. In addition to (1) and
(2), the following are two key conditions for the consistency

of θ̂t:

(4) πt = P (Rt = 1) > 0, t = 1, . . . , T,

and, for any θt in the parameter space that is not the
same as the true parameter value θ0t and any function φ
of (Y1, . . . , Yt, θt),

(5) P

(
�Yt :

ft(Yt|Vt−1, θt)

ft(Yt|Vt−1, θ0t )
= φ(�Yt, θt) for any X

)
< 1,

where �Yt = (Y1, . . . , Yt). We now explain why θ̂t is consistent
under (4)–(5). Let F denote the distribution of X and, for
any t, ϕt = (θ1, . . . , θt, F ) (ϕ0 = F ),

Gt(ϕt) =
ft(Yt|Vt−1, θt)

∏t−1
s=1 fs(Ys|Vs−1, θs)dF (X)∫

ft(Yt|x, �Yt−1, θt)
∏t−1

s=1 fs(Ys|x, �Ys−1, θs)dF (x)
,

and Ht(ϕt) = Rt logGt(ϕt). Let ϕ0
t = (θ01, . . . , θ

0
t , F

0) be
the true value of ϕt. Then

E[Ht(θt, ϕ
0
t−1)]− E[Ht(ϕ

0
t )]

= E

{
Rt log

Gt(θt, ϕ
0
t−1)

Gt(ϕ0
t )

}

= πtE

{
log

Gt(θt, ϕ
0
t−1)

Gt(ϕ0
t )

}

≤ πt logE

{
Gt(θt, ϕ

0
t−1)

Gt(ϕ0
t )

}
= 0

with the equality holds if and only if (since πt > 0)

Gt(θt, ϕ
0
t−1)

Gt(ϕ0
t )

= 1 a.s.,

which is, by the definition of Gt function, equivalent to that,
almost surely,

ft(Yt|Vt−1, θt)

ft(Yt|Vt−1, θ0t )

=

∫
ft(Yt|x, �Yt−1, θt)

∏t−1
s=1 fs(Ys|x, �Ys−1, θ

0
s)dF

0(x)∫
ft(Yt|x, �Yt−1, θ0t )

∏t−1
s=1 fs(Ys|x, �Ys−1, θ0s)dF

0(x)
,

a function of (Y1, . . . , Yt, θt). Therefore, conditions (4) and
(5) ensure that

E[Ht(θt, ϕ
0
t−1)] < E[Ht(ϕ

0
t )].

This means that the expectation of the log of the likeli-
hood function in (3) has a unique maximum at θt = θ0t . Let

H
(i)
t (ϕt) be defined as Ht(ϕt) but based on data from the

ith subject. Then, the estimator θ̂t obtained by maximizing
(3) satisfies

n∑
i=1

H
(i)
t (θ̂t, ϕ̂t−1) = max

θt

n∑
i=1

H
(i)
t (θt, ϕ̂t−1),

where ϕ̂t−1 = (θ̂1, . . . , θ̂t−1, F̂ ), θ̂1,. . . ,θ̂t−1 are estimators
from the previous steps, and F̂ is the empirical distribution
based on X(j), j = 1, . . . , n. Under some regularity condi-
tions (such as those given in Theorem 1 of Tang et al., 2003),

θ̂t converges in probability to the unique maximum point θ0t .

Asymptotic normality of θ̂t, which is crucial for large sam-
ple inference, can be established using a standard argument.
Our contribution is to derive an asymptotic representation
of

√
n(θ̂t−θ0t ), which allows us to obtain an easy-to-compute

consistent estimator of the asymptotic covariance matrix of√
n(θ̂t − θ0t ) without knowing its actual form. The asymp-

totic covariance matrix of
√
n(θ̂t − θ0t ) is very complicated

because of the fact that θ̂t is defined in terms of previous es-
timators θ̂1, . . . ,θ̂t−1 and F̂ . As we discussed in Section 2.1,
without using θ̂1, . . . ,θ̂t−1, the estimation of θt may not be
computationally feasible.

Theorem 3.1. Assume (1), (2), (4), (5), and the following
two conditions.

C1 The functions ft’s in (2) are continuously twice differ-

entiable with respect to θt and E[
∂2Ht(ϕ

0
t )

∂θt∂θ′
t
] is positive

definite.
C2 There exists an open subset Ωt containing θ0t such that

sup
θt∈Ωt

∥∥∥∥∥∂
2Ht(θt, ϕ

0
t−1)

∂θt∂θ′j

∥∥∥∥∥ < Mtj , j = 1, . . . , t,

where Mtj are integrable functions and ‖A‖2 =
trace(A′A) for a matrix A.

Then, as n → ∞,
(6)
√
n(θ̂t−θ0t ) =

1√
n

n∑
i=1

ψt(W
(i)
t , At, ϕ

0
t )+op(1) →d N(0,Σt),
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where →d denotes convergence in distribution, op(1) denotes
a quantity converging to 0 in probability, Σt is the covariance

matrix of ψt(W
(i)
t , At, ϕ

0
t ), W

(i)
t = (V

(i)
t , R

(i)
t ), i = 1, . . . , n,

A1 = A11, At = (At−1, At1, . . . , Att), t ≥ 2,

Atj = E

[
∂2Ht(ϕ

0
t )

∂θt∂θ′j

]
, j = 1, . . . , t,

and ψt is a known function defined in (9)–(10) of the Ap-
pendix, t = 1, . . . , T .

The functions ψt, t = 1, . . . , T , are defined iteratively
according to (9)–(10) and, hence, their covariance matri-
ces are very complicated. The explicit forms of ψt, when
t = 1, 2, 3, 4, are given in the Appendix. One may apply the
bootstrap method to obtain estimators of Σt’s, but in each
bootstrap replication, maximizing a bootstrap analog of (3)
is required, which results in a very large amount of computa-
tion. Instead, we propose the following estimator of Σt, uti-

lizing the representation in (6). Let D
(i)
t = ψt(W

(i)
t , At, ϕ

0
t ).

Since Σt = Var(D
(i)
t ), the sample covariance matrix based

on D
(1)
t , . . . , D

(n)
t is a consistent estimator of Σt. How-

ever, D
(i)
t contains the unknown ϕ0

t and At. Substitut-

ing D
(i)
t by D̂

(i)
t = ψt(W

(i)
t , Ât, ϕ̂t), i = 1, . . . , n, where

Ât = (Ât−1, Ât1, . . . , Âtt) and

Âtj =
1

n

n∑
i=1

∂2H
(i)
t (ϕt)

∂θt∂θ′j

∣∣∣
ϕt=ϕ̂t

, j = 1, . . . , t,

we define the sample covariance matrix based on

D̂
(1)
t , . . . , D̂

(n)
t as our estimator Σ̂t. This estimator is easy to

compute, using (9)–(10) in the Appendix. Under some con-
ditions, Σ̂t is consistent, which is proved in the Appendix.

Theorem 3.2. Assume that the conditions in Theorem 3.1
hold and that

C3 sup‖w‖≤c ‖ψt(w, Ât, ϕ̂t) − ψt(w,At, ϕ
0
t )‖ = op(1) for

any c > 0.
C4 There exist a constant c0 > 0 and a function h(w) ≥ 0

such that E[h(W
(1)
t )] < ∞ and P (‖ψt(w, Ât, ϕ̂t)‖2 ≤

h(w) for all ‖w‖ ≥ c0) → 1.

Then, as n → ∞, ‖Σ̂t − Σt‖ = op(1).

4. SOME EMPIRICAL RESULTS

In this section, we present some results based on a real
data set and a simulation study.

4.1 Estimation based on HIV-CD4 data

We applied the proposed method to a longitudinal
data set from the study of HIV-AIDS patients with
advanced immune suppression, conducted by the AIDS
Clinical Trial Group 193A. Patients were randomized to
one of the four daily regimens containing 600mg of zi-
dovudine: zidovudine alternating monthly with 400mg di-

danosine (Treatment 1), zidovudine plus 2.25mg of zal-
citabine (Treatment 2), zidovudine plus 400mg of di-
danosine (Treatment 3), and zidovudine plus 400mg
of didanosine and 400mg of nevirapine (Treatment 4).
The data set can be accessed at the following website:
“http://biosun1.harvard.edu/˜fitzmaur/ala/cd4.txt”.

For the HIV study, the CD4 cell count, which decreases
as HIV progresses, is of prime interest. CD4 counts were
collected from patients before the treatments were applied
(baseline measurements). After the treatments were applied,
CD4 counts were collected from each patient every 8 weeks.
In this dataset, there were originally 1,309 patients, but 10
of them did not have baseline measurements and were ig-
nored from our analysis. Also, we ignored measurements
from 18 patients in the week interval (0, 4]. We considered
the first T = 4 follow-up time points. For each patient, the
tth observation is the one closest to week 8t in the inter-
val (8t − 4, 8t + 4], t = 1, 2, 3, 4. Following the approach in
Robins, Rotnitzky and Zhao (1995), we ignored subsequent
data from any patient after the first missed clinic visit to
obtain a data set with monotone missing (dropout). The
following is a summary of the number of observed values by
time points and treatment.

Treatment t = 0 t = 1 t = 2 t = 3 t = 4

1 320 223 174 127 110
2 322 218 184 143 110
3 327 221 184 135 108
4 330 235 187 136 116

Total 1299 897 729 541 444

The average dropout proportion for 4 time points t =
1, 2, 3, 4 are 31.9%, 43.9%, 58.4%, and 66.8%, respec-
tively.

To apply the proposed method, we considered
log(CD4+1) at time point t as Yt and log(baseline
measurement +1) as the dropout instrument Z. Because
the baseline measurements were taken before the treatments
were applied, it is reasonable to assume that the dropout
propensity at time t does not depend on Z given the CD4
counts at time 1, . . . , t. We assumed that

(7)

Y1 = β10 + β11Z + ε1

Y2 = β20 + β21Z + β22Y1 + ε2

Y3 = β30 + β31Z + β32Y1 + β33Y2 + ε3
Y4 = β40 + β41Z + β42Y1 + β43Y2 + β44Y3 + ε4,

where εt ∼ N(0, σ2
t ), t = 1, . . . , 4, εt’s are independent, and

βtj ’s and σt’s are unknown parameters.
Tables 1–4 display estimates of parameters based on the

HIV-CD4 data under treatments 1–4, respectively, and their
standard errors (SE). For each parameter, we computed two
estimates, the proposed estimate and the estimate obtained
by regression (Paik, 1997) under the ignorable dropout as-
sumption (which is denoted as the MAR estimate since ig-
norable missing is also called missing at random). In maxi-
mizing (3), we applied the Nelder-Mead simplex algorithm
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Table 1. Estimates and SE’s under treatment 1 of the
HIV-AIDS study

Parameter β10 β11 σ1

MAR 0.127 0.913 0.696
SE 0.203 0.062 0.050
Proposed −0.109 0.994 0.741
SE 0.248 0.079 0.059
Difference 0.235 −0.081 −0.045
SE 0.132 0.048 0.023
p-value 0.075 0.090 0.049

Parameter β20 β21 β22 σ2

MAR 0.171 0.512 0.353 0.677
SE 0.243 0.101 0.089 0.048
Proposed 0.001 0.761 0.130 0.798
SE 0.305 0.153 0.132 0.094
Difference 0.170 −0.241 0.222 −0.121
SE 0.186 0.086 0.074 0.039
p-value 0.361 0.005 0.003 0.002

Parameter β30 β31 β32 β33 σ3

MAR 0.254 0.203 0.290 0.324 0.570
SE 0.223 0.093 0.111 0.086 0.050
Proposed 0.164 0.041 0.487 0.364 0.199
SE 0.306 0.103 0.188 0.133 0.101
Difference 0.090 0.162 −0.197 −0.041 0.371
SE 0.165 0.071 0.107 0.094 0.062
p-value 0.585 0.022 0.067 0.663 0.000

Parameter β40 β41 β42 β43 β44 σ4

MAR 0.482 −0.084 −0.048 0.489 0.380 0.648
SE 0.256 0.136 0.103 0.157 0.172 0.067
Proposed 0.504 −0.109 −0.052 0.541 0.320 0.633
SE 0.312 0.124 0.115 0.176 0.154 0.106
Difference −0.022 0.025 0.005 −0.052 0.060 0.015
SE 0.172 0.095 0.074 0.118 0.119 0.047
p-value 0.900 0.791 0.952 0.661 0.616 0.749

via MATLAB under the UNIX environment. This is a di-
rect search algorithm that does not use numerical or analytic
gradients. We found that it was more stable than gradient-
based methods. The MAR estimates were used as initial val-
ues in maximizing (3). The SE’s of the proposed estimates
were calculated using the results in Theorem 2 in Section 3.
To compare, we also computed the difference of the MAR es-
timate and the proposed estimate, its SE, and the two-sided
p-value of testing whether two estimates are the same. The
SE’s of the MAR estimates and the differences were com-
puted by bootstrapping.

It can be seen from Tables 1–4 that the differences be-
tween the MAR and proposed estimates are not negligible
in some cases (p-values less or nearly equal to 5%) while in
some cases the two estimates are about the same.

4.2 A simulation study

A simulation study was conducted under model (7) with
n = 300 and parameters equal to the estimated values
under Treatment 3 in the HIV-CD4 example. These val-
ues are shown in Table 5. The covariate Z was generated

Table 2. Estimates and SE’s under treatment 2 of the
HIV-AIDS study

Parameter β10 β11 σ1

MAR 0.586 0.809 0.812
SE 0.237 0.076 0.062
Proposed 0.278 0.928 0.874
SE 0.285 0.089 0.064
Difference 0.308 −0.119 −0.062
SE 0.1778 0.066 0.039
p-value 0.083 0.071 0.115

Parameter β20 β21 β22 σ2

MAR 0.175 0.409 0.461 0.703
SE 0.215 0.094 0.083 0.052
Proposed 0.521 0.321 0.428 0.578
SE 0.255 0.165 0.118 0.052
Difference −0.346 0.088 0.033 0.124
SE 0.152 0.072 0.069 0.034
p-value 0.022 0.225 0.636 0.000

Parameter β30 β31 β32 β33 σ3

MAR −0.083 0.088 0.344 0.482 0.743
SE 0.239 0.133 0.123 0.110 0.060
Proposed −0.097 −0.107 0.294 0.686 0.152
SE 0.319 0.175 0.091 0.115 0.074
Difference 0.014 0.194 0.049 −0.204 0.591
SE 0.168 0.107 0.082 0.093 0.057
p-value 0.933 0.068 0.545 0.029 0.000

Parameter β40 β41 β42 β43 β44 σ4

MAR −0.086 0.279 −0.146 0.319 0.501 0.664
SE 0.285 0.121 0.089 0.113 0.141 0.073
Proposed −0.094 0.315 −0.234 0.288 0.652 0.779
SE 0.311 0.114 0.105 0.111 0.138 0.084
Difference 0.008 −0.036 0.089 0.031 −0.151 −0.115
SE 0.122 0.085 0.068 0.096 0.131 0.061
p-value 0.946 0.676 0.195 0.744 0.250 0.059

from N(2.9065, 0.95442), where the parameters are the esti-
mates of the baseline CD4. The dropout indicators at time
points t = 1, 2, 3, 4 were generated from the following logistic
model:

P (R1 = 1|Z, Y1)

= 1− [1 + exp(−9 + 4Y1)]
−1,

P (R2 = 1|Z, Y1, Y2, R1 = 1)

= 1− [1 + exp(−14 + Y1 + 5Y2)]
−1,(8)

P (R3 = 1|Z, Y1, Y2, Y3, R2 = 1)

= 1− [1 + exp(−18 + 2Y2 + 4Y3)]
−1,

P (R4 = 1|Z, Y1, Y2, Y3, Y4, R3 = 1)

= 1− [1 + exp(−15 + 2Y3 + 3Y4)]
−1.

The parameters in (8) were chosen so that the uncondi-
tional dropout rates are similar to the observed dropout
proportions under Treatment 3 of the HIV-CD4 data, ap-
proximately 30%, 40%, 60%, and 70% for t = 1, 2, 3, and 4,
respectively.
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Table 3. Estimates and SE’s under treatment 3 of the
HIV-AIDS study

Parameter β10 β11 σ1

MAR 0.836 0.771 0.940
SE 0.305 0.095 0.058
Proposed 0.555 0.859 1.015
SE 0.401 0.126 0.083
Difference 0.281 −0.088 −0.075
SE 0.232 0.081 0.054
p-value 0.227 0.276 0.162

Parameter β20 β21 β22 σ2

MAR 0.024 0.347 0.609 0.750
SE 0.284 0.107 0.079 0.057
Proposed 0.007 0.421 0.547 0.802
SE 0.326 0.155 0.150 0.182
Difference 0.018 −0.074 0.062 −0.052
SE 0.152 0.096 0.058 0.056
p-value 0.907 0.441 0.285 0.356

Parameter β30 β31 β32 β33 σ3

MAR 0.044 0.096 0.150 0.687 0.632
SE 0.205 0.092 0.087 0.143 0.067
Proposed 0.387 0.172 0.079 0.588 0.941
SE 0.358 0.134 0.118 0.133 0.073
Difference −0.343 −0.077 0.072 0.098 −0.310
SE 0.162 0.087 0.068 0.124 0.032
p-value 0.034 0.377 0.295 0.427 0.000

Parameter β40 β41 β42 β43 β44 σ4

MAR −0.331 0.097 0.095 0.347 0.461 0.624
SE 0.224 0.129 0.129 0.120 0.113 0.068
Proposed −0.349 0.110 0.089 0.355 0.451 0.601
SE 0.249 0.128 0.130 0.092 0.128 0.064
Difference 0.018 −0.014 0.006 −0.008 0.011 0.022
SE 0.169 0.109 0.114 0.068 0.109 0.058
p-value 0.915 0.900 0.956 0.908 0.921 0.694

We studied the MAR estimates (Paik, 1997) based on the
ignorable assumption, the method discussed in Tang et al.
(2003), and the proposed method. As a standard, we also
included the standard regression method when there is no
dropout.

Based on 1,000 simulation runs, Table 5 reports the bias
for parameter estimation, standard deviation (SD) of the pa-
rameter estimate, standard error (SE), which is an estimate
of SD, and the coverage probability (CP) of the approximate
95% confidence intervals of the parameter, using estimate ±
1.96SE. The SE’s for the method in Tang et al. (2003) and
the proposed method are obtained based on Theorem 2 and
the SE’s for the MAR estimates are computed by bootstrap-
ping. The results in Table 5 show that the proposed estima-
tors and their SE’s work well, and the MAR estimators are
biased and the biases are large enough to result in poor CP.
The SD’s of the MAR estimators, however, may be smaller
than those of the proposed estimators. Hence, the MAR esti-
mators may be more efficient when they are nearly unbiased,
e.g., when the ignorable dropout assumption holds. When
t = 1, the method in Tang et al. (2003) and the proposed

Table 4. Estimates and SE’s under treatment 4 of the
HIV-AIDS study

Parameter β10 β11 σ1

MAR 0.594 0.916 0.839
SE 0.175 0.057 0.055
Proposed 0.298 1.046 0.897
SE 0.251 0.074 0.073
Difference 0.296 −0.130 −0.058
SE 0.174 0.067 0.036
p-value 0.088 0.051 0.106

Parameter β20 β21 β22 σ2

MAR 0.433 0.113 0.728 0.697
SE 0.202 0.101 0.085 0.045
Proposed 0.178 0.131 0.677 1.624
SE 0.164 0.119 0.127 0.083
Difference 0.256 −0.019 0.051 −0.927
SE 0.170 0.116 0.075 0.086
p-value 0.132 0.873 0.492 0.000

Parameter β30 β31 β32 β33 σ3

MAR 0.126 0.110 0.281 0.511 0.663
SE 0.185 0.097 0.149 0.125 0.055
Proposed 0.136 0.382 0.045 0.524 1.278
SE 0.246 0.114 0.126 0.138 0.074
Difference −0.010 −0.272 0.236 −0.013 −0.615
SE 0.169 0.086 0.106 0.120 0.075
p-value 0.952 0.002 0.026 0.914 0.000

Parameter β40 β41 β42 β43 β44 σ4

MAR −0.149 0.265 0.031 0.114 0.589 0.606
SE 0.257 0.120 0.136 0.114 0.131 0.049
Proposed −0.141 0.263 0.012 0.117 0.622 0.586
SE 0.237 0.112 0.131 0.120 0.129 0.052
Difference −0.008 0.002 0.019 −0.004 −0.033 0.020
SE 0.182 0.114 0.127 0.105 0.123 0.047
p-value 0.965 0.986 0.881 0.971 0.789 0.670

method are the same. When t > 1, however, the method in
Tang et al. (2003) may also produce biased estimators since
it is based on a stronger assumption than (8). In addition,
when the estimators in Tang et al. (2003) are approximately
unbiased, the corresponding SD’s are larger than those of
the proposed method, which illustrates that our proposed
method is more efficient since we used all observed data in
the estimation procedure.

5. DISCUSSION ON ASSUMPTIONS

The key assumptions for our approach are (1) and (2).
As we discussed in Section 1, to identify the unknown pa-
rameters, it is necessary that at least one component of
Vt = (Y1, . . . , Yt, X) is not related to dropout at time point
t, conditioned on the other components. This component is
Yt under the ignorable dropout assumption, whereas it is a
component Z ofX under our assumption (1). Unfortunately,
none of these assumptions on the dropout mechanism can be
checked using data due to the presence of missing values. We
have to carefully study each particular problem and decide
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Table 5. Simulation results under dropout mechanism (8), n = 300

No dropout MAR Tang et al. (2003) Proposed
True value bias SD SE CP bias SD SE CP bias SD SE CP bias SD SE CP

β10=0.555 −0.006 0.186 0.187 94.7 1.222 0.216 0.209 0.0 −0.029 0.362 0.353 95.6 −0.029 0.362 0.353 95.6
β11=0.859 0.002 0.061 0.061 94.2 −0.275 0.069 0.067 2.0 0.008 0.101 0.101 96.2 0.008 0.101 0.101 96.2
σ1=1.015 −0.001 0.041 0.041 94.0 −0.181 0.041 0.041 1.3 −0.000 0.098 0.092 93.7 −0.000 0.098 0.092 93.7

β20=0.007 0.003 0.150 0.150 94.4 0.880 0.249 0.253 7.9 −0.174 0.353 0.358 93.0 −0.003 0.350 0.354 96.5
β21=0.421 −0.001 0.064 0.062 94.4 −0.081 0.075 0.074 78.3 −0.098 0.158 0.166 84.7 0.003 0.138 0.154 97.0
β22=0.547 0.001 0.048 0.046 93.9 −0.118 0.068 0.066 55.7 0.102 0.126 0.139 79.2 −0.002 0.113 0.123 97.1
σ2=0.802 −0.002 0.033 0.032 93.6 −0.083 0.039 0.038 41.3 −0.083 0.153 0.142 91.8 −0.013 0.147 0.144 95.9

β30=0.387 0.000 0.179 0.177 94.2 1.641 0.411 0.410 3.5 −0.392 0.298 0.307 70.5 0.003 0.323 0.337 95.4
β31=0.172 −0.001 0.077 0.079 94.8 −0.048 0.108 0.108 91.3 −0.110 0.137 0.129 79.5 −0.010 0.101 0.107 94.9
β32=0.079 0.001 0.064 0.065 94.9 −0.007 0.102 0.098 93.5 −0.009 0.117 0.138 94.7 −0.007 0.118 0.116 93.8
β33=0.588 0.000 0.066 0.068 95.3 −0.281 0.114 0.109 29.5 0.062 0.138 0.135 92.1 −0.006 0.131 0.133 96.2
σ3=0.941 0.000 0.038 0.038 94.6 −0.142 0.054 0.052 26.4 0.088 0.095 0.113 78.3 0.012 0.077 0.081 94.6

β40=−0.349 0.002 0.111 0.114 95.7 0.696 0.389 0.387 55.5 −0.305 0.251 0.268 73.2 −0.012 0.243 0.253 95.7
β41=0.110 0.000 0.052 0.051 94.4 −0.015 0.088 0.087 93.0 −0.024 0.138 0.156 95.6 −0.008 0.131 0.134 94.5
β42=0.089 −0.000 0.043 0.042 94.0 −0.010 0.074 0.077 95.4 0.020 0.133 0.137 94.4 0.008 0.121 0.131 94.8
β43=0.355 −0.000 0.049 0.049 94.8 −0.022 0.083 0.087 95.0 0.088 0.103 0.108 79.1 −0.008 0.079 0.081 95.2
β44=0.451 −0.001 0.037 0.037 95.0 −0.099 0.078 0.078 74.4 0.053 0.117 0.108 93.6 0.008 0.118 0.119 93.7
σ4=0.601 −0.002 0.024 0.024 93.8 −0.037 0.042 0.040 81.9 −0.032 0.080 0.092 92.7 −0.013 0.071 0.068 94.8

which assumption is reasonable or approximately holds. In
the HIV-CD4 problem, for example, the difference between
the MAR estimate and our proposed estimate is whether
the current response Yt or the baseline response Z is related
to dropout at time point t, given the other values. Since Yt

is a more recent value for each patient at time point t, we
think that our assumption is more reasonable.

It is important to develop estimation methods under var-
ious assumptions on the dropout mechanism. The results
will be useful as different tools for application and/or for a
sensitivity analysis under different assumptions.

We also need to assume at least one of p(Y |X) and
p(R|Y,X) is parametric to be able to identify parame-
ters. Again, with missing data, we are not able to ver-
ify a parametric model such as (2) using observed data.
This is because the parametric model is imposed on
the density p(Yt|X,Y1, . . . , Yt−1), which is a mixture of
p(Yt|X,Y1, . . . , Yt−1, Rt = 1) and p(Yt|X,Y1, . . . , Yt−1, Rt =
0), and we are not able to check a parametric model assump-
tion on p(Yt|X,Y1, . . . , Yt−1, Rt = 0) since no Yt-observation
comes from it. Parametric models may be sensitive to model
violations. The same issue exists for the likelihood approach
in Little and Rubin (2002) under ignorable nonresponse.
The robustness of the proposed method against violation of
assumption (2) is under further investigation.

APPENDIX A. PROOFS

Proof of Theorem 3.1. Let

lt(θt, ϕ̂t−1) =
1

n

n∑
i=1

H
(i)
t (θt, ϕ̂t−1)

and ∇lt(θt, ϕ̂t−1) be its derivative with respect to θt. We
first prove the case of t = 1. By Taylor’s expansion and the
fact that ϕ̂0 = F̂ and ∇l1(θ̂1, F̂ ) = 0, we have
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Then
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ψ1(W
(i)
1 , A1, ϕ

0
1) = −A−1

11

{
∂H

(i)
1 (θ01, F

0)

∂θ1
+ 2h11(X

(i), ϕ0
1)

}
.

Now, suppose that we have obtained result (6) for θ̂1, . . . ,

θ̂t−1. Let’s prove (6) for θ̂t. Note that

−∇lt(ϕ
0
t )

= ∇lt(θ
0
t , . . . , θ

0
2, θ

0
1, F̂ )−∇lt(ϕ

0
t )

+∇lt(θ
0
t , ϕ̂t−1)−∇lt(θ

0
t , θ

0
t−1, ϕ̂t−2)

+ · · ·
+∇lt(θ

0
t , . . . , θ

0
2, θ̂1, F̂ )−∇lt(θ

0
t , . . . , θ

0
2, θ

0
1, F̂ )

+∇lt(ϕ̂t)−∇lt(θ
0
t , ϕ̂t−1)

= Bnt +∇2
ttlt(θ

0
t , ϕ̂t−1)(θ̂t − θ0t )

+∇2
t(t−1)lt(θ

0
t , θ

0
t−1, ϕ̂t−2)(θ̂t−1 − θ0t−1)

+ · · ·
+∇2

t1lt(θ
0
t , . . . , θ

0
1, F̂ )(θ̂1 − θ01) + op(n

−1/2),

where ∇2
tj is the second order derivative with respect to θt

and θj , j = 1, . . . , t. Similar to the case of t = 1, we can
show that

Bnt =
1

n

n∑
i=1

2h1t(X
(i), ϕ0

t ) + op(n
−1/2),

where

h1t(X
(i), ϕ0

t )

=
πt

2
E

{
∇gt(�Y

(j)
t , ϕ0

t )
∏t

s=1 fs(Y
(j)
s |V (j)

s−1, θ
0
s)

[gt(�Y
(j)
t , ϕ0

t )]
2

−
∇ft(Y

(j)
t |V (j)

t−1, θ
0
t )

∏t−1
s=1 fs(Y

(j)
s |V (j)

s−1, θ
0
s)

gt(Y
(j)
t , . . . , Y

(j)
1 , ϕ0

t )

R
(i)
1 = 1, X(i)

}
,

gt(�Y
(j)
t , ϕ0

t ) =

∫ t∏
s=1

fs(Y
(j)
s |x, �Y (j)

s−1, θ
0
s)dF

0,

and

∇gt(�Y
(j)
t , ϕ0

t )

=

∫
∇ft(Y

(j)
t |x, �Y (j)

t−1, θ
0
t )

t−1∏
s=1

fs(Y
(j)
s |x, �Y (j)

s−1, θ
0
s)dF

0.

Under the given regularity conditions, ∇2
tj lt(θ

0
t , . . . , θ

0
j ,

ϕ̂j−1)−Atj = op(1). Then

√
n(θ̂t − θ0t )
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= − 1√
n

n∑
i=1

A−1
tt

{
∂H

(i)
t (ϕ0

t )

∂θt
+ 2h1t(X

(i), ϕ0
t )

+

t−1∑
j=1

Atjψj(W
(i)
j , Aj , ϕ

0
j )

⎫⎬
⎭+ op(1)

and result (6) holds with the following iteratively defined
ψt: ψ1 is given by (9); having ψ1,. . . ,ψt−1, ψt is defined as

ψt(W
(i)
t , At, ϕ

0
t ) = −A−1

tt

{
∂H

(i)
t (ϕ0

t )

∂θt
+ 2h1t(X

(i), ϕ0
t )

(10)

+

t−1∑
j=1

Atjψj(W
(i)
j , Aj , ϕ

0
j )

⎫⎬
⎭ .

The explicit forms of ψt, t = 1, 2, 3, 4, are shown as follows:

ψ1(W
(i)
1 , A1, ϕ

0
1)

= −A−1
11

{
∂H

(i)
1 (ϕ0

1)

∂θ1
+ 2h11(X

(i), ϕ0
1)

}
,

ψ2(W
(i)
2 , A2, ϕ

0
2)

= −A−1
22

{
∂H

(i)
2 (ϕ0

2)

∂θ2
+ 2h12(X

(i), ϕ0
2)

}

+A−1
22 A21A

−1
11

{
∂H

(i)
1 (ϕ0

1)

∂θ1
+ 2h11(X

(i), ϕ0
1)

}
,

ψ3(W
(i)
3 , A3, ϕ

0
3)

= −A−1
33

{
∂H

(i)
3 (ϕ0

3)

∂θ3
+ 2h13(X

(i), ϕ0
3)

}

+A−1
33 A32A

−1
22

{
∂H

(i)
2 (ϕ0

2)

∂θ2
+ 2h12(X

(i), ϕ0
2)

}

+ (−A−1
33 A32A

−1
22 A21A

−1
11 +A−1

33 A31A
−1
11 ){

∂H
(i)
1 (ϕ0

1)

∂θ1
+ 2h11(X

(i), ϕ0
1)

}
,

ψ4(W
(i)
4 , A4, ϕ

0
4)

= −A−1
44

{
∂H

(i)
4 (ϕ0

4)

∂θ4
+ 2h14(X

(i), ϕ0
4)

}

+A−1
44 A43A

−1
33

{
∂H

(i)
3 (ϕ0

3)

∂θ3
+ 2h13(X

(i), ϕ0
3)

}

+ (−A−1
44 A43A

−1
33 A32A

−1
22 +A−1

44 A42A
−1
22 ){

∂H
(i)
2 (ϕ0

2)

∂θ2
+ 2h12(X

(i), ϕ0
2)

}

+ (−A−1
44 A43A

−1
33 A31A

−1
11

+A−1
44 A43A

−1
33 A32A

−1
22 A21A

−1
11

−A−1
44 A42A

−1
22 A21A

−1
11 +A−1

44 A41A
−1
11 ){

∂H
(i)
1 (ϕ0

1)

∂θ1
+ 2h11(X

(i), ϕ0
1)

}
.

Proof of Theorem 3.2. Note that

Σt = Var(D
(i)
t ) =

∫
ψt(w,At, ϕ

0
t )ψt(w,At, ϕ

0
t )

τdP (w)

and

Σ̂t =

∫
ψt(w, Ât, ϕ̂t)ψt(w, Ât, ϕ̂t)

τdPn(w),

where P (w) denotes the underlying true distribution of Wt

and Pn(w) denotes its empirical distribution based on data

W
(j)
t , j = 1, . . . , n. Note that ‖Σ̂t − Σt‖ is bounded by∥∥∥∥∥ 1n

n∑
i=1

ψt(W
(i)
t , Ât, ψ̂t)ψt(W

(i)
t , Ât, ψ̂t)

τ

− 1

n

n∑
i=1

ψt(W
(i)
t , At, ψ

0
t )ψt(W

(i)
t , At, ψ

0
t )

τ

+
1

n

n∑
i=1

ψt(W
(i)
t , At, ψ

0
t )ψt(W

(i)
t , At, ψ

0
t )

τ

−
∫

ψt(w,At, ψ
0
t )ψt(w,At, ψ

0
t )

τdP (w)

∥∥∥∥
≤ 1

n

n∑
i=1

‖Qn,t‖ I[0,c](‖W (i)
t ‖)

+
1

n

n∑
i=1

‖Qn,t‖ I(c,∞)(‖W (i)
t ‖) + op(1),

where the inequality follows from the triangular inequality
and law of large numbers, and

Qn,t = ψt(W
(i)
t , Ât, ψ̂t)ψt(W

(i)
t , Ât, ψ̂t)

τ

− ψt(W
(i)
t , At, ψ

0
t )ψt(W

(i)
t , At, ψ

0
t )

τ .

By condition (C3), for any ε > 0,

1

n

n∑
i=1

‖Qn,t‖ I[0,c](‖W (i)
t ‖) < ε/2

when n is sufficiently large. For any ε̃ > 0, we can choose
c such that E[h(w)I(c,∞)(‖w‖)] < εε̃/4. By Chebyshev’s in-
equality and condition (C4), we have

P

(
1

n

n∑
i=1

‖Qn,t‖ I(c,∞)(‖W (i)
t ‖) > ε/2

)
< ε̃.

Then,

P

(
1

n

n∑
i=1

‖Qn,t‖ > ε

)
→ 0.

This proves that ‖Σ̂t − Σt‖ = op(1).
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