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We present the proofs for Theorems 3-4. Throughout the supplemental materials,
|| - || is used only for the Ly norm, and || - ||; and || - ||o denote the L; norm and the L,
norm respectively.

Proof of Theorem 3

Let Vij(a) = q; (Yo Xij0) X5 CR are the solutions of the following equations

hn,j(a):_z‘/ij(a)zov J=1...,pn.
With Condition 1(b), h, ;(+) is an increasing function.

Part 1: je{l ey Spte

To prove @i = Op(1/4P), it suffices to prove that there exists a small enough & > 0
such that

P (L in 1558 <05 = ot )

Since hy, ;(-) is an increasing function and hy, ;(655) = 0,

P(IB751 < 2100) < P{hny(=178) <0 < hay(309)} (2)
By Taylor’s expansion,
Vi (£96) = a3 (Vi3 0) X5 + (£ 8)a (Yois 206" X)X,
with §* € (0,0). Let po = F~(0) and Cy = ¢"(10)/F' (o) # 0, thus
E{Vij(£700)} = CoB(YoX;) + (£7,70) E{ay (Ya; £4,76" X;) X7}

Because |E(Y,X;)| > P, and maxi <;<s, ]E{qQ(Yn,j:% 0*X;)X7}| is bounded, we
can choose ¢ small enough, such that for 1 < j <'s,,

BP0} > SGIEYX)] 2 $IC
and  sign[E{V1,;(7\"8)}] = sign[E{V;;(—+_ 5)}]



Assuming E{V;; (% 9)} <0 and E{Vi,(— I)5)} < 0 without loss of generality,

P{hns(—108) <0 < hy(100)}

=P (Z[Vij(v( 0) = E{V;i(n9)}] = —nE{‘/lj(VS)fS)})

i=1

SP(ZW% ) — B{Vs(y I>5>}1z§rcowms>)

i=1

_ 202 2 ()2
szexp< Conmm /4 ) 3)

Cln + CQC|C()|TL’}/7(LI)/2

where the last inequality can be obtained similar to proving Lemma 1 (with possibly
different C; and C5). By (2), (3) and Bonferroni inequality, for a small enough 6 > 0,

2022 (1)2
P( min WCR| <~ Dé) < 28, exp cCon™n /4 =o(1). (4)
1<jSsn Cin+ 020|00|m£>/2

The equality in (4) follows from 7( = 0(1), \/_fy — 0o and log(s,) = O(nf},él)?).

Part 2: je{s,+1,...,p.}.

To prove (W0)~1 = 0p(447), it suffices to prove that for any € > 0,

P( max |37 > %SH)E) —o(1). (5)

sn+1<j<pn

As hn,j(jg,?) =0, it follows that

P (1855 = 9Me) < Pl (11Me) < 0} + P{hn (7€) > 0}, (6)
Similar to Part 1,
E{Vi;(4{Ve)} = CoE(Y,aX;) + erV E{ay(Ya; 7€ X;) X7},
with ¢* € (0,¢). Since E(Y,X;) = o(7") and E{ay(Ya; 7 e X;) X2} > n,
E{Vi;(vWe)} > enyV/2, as n — oo.

Again by an application of Bernstein’s inequality as in (3), for large n,

n

P{hns079 < 0) = P V(i) - B, 000)] < ~Bv 006 )

i=1

=P (Z[Vb(v(m ) = B{Vy(mVe)}] < —enmﬁf”ﬂ)

i=1
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< 2exp ( ) .
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Similarly,

—Cw T )

P{hn (7€) > 0} < 2exp ( .
’ C’ln + CQGT]T?/Yn /2

Thus by (6), (7), (8) and Bonferroni inequality,

22242 /4
> o) < 4l — sn)exp | U)o )
Cin + C’zenn% /2

P( max BCR

snt1<j<pn Y

The equality in (9) follows from the conditions \/ﬁ%(LH) — 00, log(p, — sn) = o(n%(LH))

and log(p, — $,) = o(nys ).

Proof of Theorem 4

Minimizing (4.3) is equivalent to minimizing the following criterion functions,

1 o ,
lng(a) = EZQ(YWF_I(XM@)) +knlal, j=1,...,pp
Part 1: j € {1,...,s,}.

Similar to the proof of Theorem 3, we prove that for a small enough § > 0, there exist
local minimizers BP R of £FSR(a) such that

P( mln ] B> 1)5) (10)

1<5<

It suffices to prove that for a small enough ¢ > 0 and some large enough C,, > 0, there
exist some (3; with |3;| = 2§ such that

Pl { Eob0 - >0 o o
and
P { g, AP0 AP0} 0) o

(11) and (12) imply that with probability tending to one, there must exist local minimizers
3579R of £7GR () such that W5 < |APCR| <~APC, for 1 < j < s, and this implies (10).
First, we prove (12). We notice that for every n > 1, when |a| — oo,
min {FR(00) — CRG08)) > 5alal - max FLRG0E) -

1<j<s, L™ M0 1<j<sn

Thus (12) holds.
Second, we prove (11). By Taylor’s expansion, for 1 < j < s,

I n
Y
R (y Z Qi FH0)) + =0 Y4 (Yais 0) Xy
=1
1 7(1)2 n
+ 57052 Z q2<Ym'; IYT(LI)Q;XZJ)X’?] + ’77(})’@”‘&‘7
=1



with o between 0 and a. Thus, we have that

' PCR (. (D) PCR
min { inf 4S80 00) ~ 5008}
(I)

. . Tn
> f { _ § j (Yoi: 0) X, }
2 min 1n n a ﬂj qi J

1<j<sn |a|<6

_ 1vn 2 2 - (D) g% 2
+ min [5_71 i?is{ ZQQ wis W0 Xi) X7 — 5 ;%(Ym’ T ﬁjX"j)X"jH
4+ min inf {’y n(la| — |ﬁg|)}

1<j<sn |a|<8

EIl+IQ+Ig,

with o between 0 and «, and 3} between 0 and (3, ;.
Let po = F~1(0) and Cy = q"(p0)/F" (o) # 0, for Iy,

L > AW min  inf {Co(a — B;)E(V,X;)}

1<j<sn |a|<§
n

min inf |Co(a — ﬁ] {YniXij - E(Yan)}]

n 1<]<sn |a| <8
i=1

— Yp’ Max sup {Couo a—fj)— ZXU}

1<j<sn || <6

=ha+hot+ i3

We can see that
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1I.3] < 7D |Copol nax { sup (3(5

|a|<d

)}
= OP(’)/nI){log(Sn)/n}l/2) :

since max;<j<s, (071 Y1, Xij| = Op({log(s,)/n}'/?) from Bernstein’s inequality (Lemma
2.2.9 in van der Vaart and Wellner, 1996). Again |I; 5| = Op(yiP{log(s,)/n}!/?)s by a
similar argument as in the proof of Theorem 3. Now we choose §; = —2dsign{CoE(Y,,X;)}
satisfying |G;| = 20. Then

Ii=+D min inf ([a + 25sign{C’0E(Yan)}]COE(Yan))

1<j<sn |a]<6

> ) (in {5[CoE (Y, X;)|} > |Coler And.
SJSSn

For I, and I3,
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+ 37

= Op()2%,



and |I;] = O(1k,)0.
Under the conditions A, = 1, K, = o(fy,(LI)) and log(s,) = o(nvflm), we can choose a

small enough 6 > 0 such that with probability tending to one, I; ; dominates I1 5, I 3, I>
and I3. Thus (11) is proved.

Part 2: j€{s,+1,...,p,}.

We prove that for any e > 0, there exist local minimizers PCR of £;GR(a) such that

P( max \BS?R\ < fyT(LH)e) — 1. (13)

sn+1<j<pn

It suffices to prove that for any € > 0,

P( min { inf (PR (4 )—EESR(O)} > 0) 1 (14)

sn+1<j<pn \ |a|=c n

By Taylor’s expansion,

. nf gPCR (1) /PCR(Q }
snff‘gl?gpn{|i? (Y ) = 45,5 (0)
(I1) n

>  min inf {%anl(Yni;O)Xij}

sn+1<j<ppn |a|=e

sn+1<j<pn |CY‘

+ min inf { on r— qu mﬁn 'Xij)Xin} 1nf( ’fn|a|)
=L+ DL+ 13

with o € (0,a). For Iy, it is seen that

(
|I;| < max sup {%—
n

1) n
e a Z OO(Y
Z YanZ] Z Xij .
i =1

Since ‘ Z?:l YT”X”| < ‘ Z?:l{YTWXU — E(Yan)}’ + ’ Z?:l E(Yan)l and similar to Part
L,

X, }

le  max
sn+1<j<pn

(H)

n

max
sn+1<5<pn

_ 1/2

, max | EﬁXm Op({log(pn — sn)/n} %),

1 _ 1/2
s (B3 v - E<Yan>}\ ~ Op({log(pn — 50)/n}"2),

=1

we have that |I;| < Op(v " {log(pn — 5n)/n}2)e + 0p(VV By)e.
The proof may be separated for case (1) and case (2) in Theorem 4 from here.
Case (1): For I, we have that

()2
|I] < max su{ (Vi3 7D o X)) X7

Sn+1<j<pn‘ | €

} Op(172)¢2



Thus I3 = fy,gl)/ine dominates I; and I, with probability tending to one, since log(p, —

sn) = o(nk?), B, = O(k,) and M = 0(kn). So (14) is proved.
Case (2): I, is always positive with Condition 1(b). Moreover,
1 1
L > =42 min  inf [a*E{q, (Yo; 7MWy SX5)X7H - ~A D2

2 sn+1<j<pn |a|=¢ 2"

Z m,’)’n Xz'j)X2 E{aqy( na'Yr(z) X)XZ}]D

max  sup
8n+1<]<pn |Ct‘

1
> A2, D220, ({log(p, — sn)/n}?).

2 2

Thus, I3 = % )mne and the term 27,8 b2 €2n in I, dominate all other terms with prob-

ability tending to one, since log(p, — s,) = o{max(nx2, ny? )}, B = O{max(/fn,fyr(z ))}
and log(p, — sn) = o(n). So (14) is also proved.



