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We present the proofs for Theorems 3–4. Throughout the supplemental materials,
‖ ∙ ‖ is used only for the L2 norm, and ‖ ∙ ‖1 and ‖ ∙ ‖∞ denote the L1 norm and the L∞
norm respectively.

Proof of Theorem 3

Let Vij(α) = q1(Yni;Xijα)Xij . β̂
CR
n,j are the solutions of the following equations

hn,j(α) =
1

n

n∑

i=1

Vij(α) = 0, j = 1, . . . , pn.

With Condition 1(b), hn,j(∙) is an increasing function.

Part 1: j ∈ {1, . . . , sn}.

To prove ŵ
(I)
max = OP (1/γ

(I)
n ), it suffices to prove that there exists a small enough δ > 0

such that

P

(

min
1≤j≤sn

|β̂CRn,j | ≤ γ
(I)
n δ

)

= o(1). (1)

Since hn,j(∙) is an increasing function and hn,j(β̂CRn,j ) = 0,

P (|β̂CRn,j | ≤ γ
(I)
n δ) ≤ P{hn,j(−γ

(I)
n δ) ≤ 0 ≤ hn,j(γ

(I)
n δ)}. (2)

By Taylor’s expansion,

Vij(±γ
(I)
n δ) = q1(Yni; 0)Xij + (±γ

(I)
n δ)q2(Yni;±γ

(I)
n δ

∗Xij)X
2
ij,

with δ∗ ∈ (0, δ). Let μ0 = F−1(0) and C0 = q′′(μ0)/F ′(μ0) 6= 0, thus

E{V1j(±γ
(I)
n δ)} = C0E(YnXj) + (±γ

(I)
n δ)E{q2(Yn;±γ

(I)
n δ

∗Xj)X
2
j }.

Because |E(YnXj)| ≥ cγ
(I)
n , and max1≤j≤sn |E{q2(Yn;±γ

(I)
n δ∗Xj)X

2
j }| is bounded, we

can choose δ small enough, such that for 1 ≤ j ≤ sn,

|E{V1j(±γ
(I)
n δ)}| ≥

1

2
|C0||E(YnXj)| ≥

c

2
|C0|γ

(I)
n

and sign[E{V1j(γ
(I)
n δ)}] = sign[E{V1j(−γ

(I)
n δ)}].
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Assuming E{V1j(γ
(I)
n δ)} < 0 and E{V1j(−γ

(I)
n δ)} < 0 without loss of generality,

P{hn,j(−γ
(I)
n δ) ≤ 0 ≤ hn,j(γ

(I)
n δ)}

≤ P

(
n∑

i=1

[Vij(γ
(I)
n δ)− E{Vij(γ

(I)
n δ)}] ≥ −nE{V1j(γ

(I)
n δ)}

)

≤ P

(
n∑

i=1

[Vij(γ
(I)
n δ)− E{Vij(γ

(I)
n δ)}] ≥

c

2
|C0|nγ

(I)
n

)

≤ 2 exp

(
−c2C20n

2γ
(I)2
n /4

C1n+ C2c|C0|nγ
(I)
n /2

)

, (3)

where the last inequality can be obtained similar to proving Lemma 1 (with possibly
different C1 and C2). By (2), (3) and Bonferroni inequality, for a small enough δ > 0,

P
(
min
1≤j≤sn

|β̂CRn,j | ≤ γ
(I)
n δ
)
≤ 2sn exp

(
−c2C20n

2γ
(I)2
n /4

C1n+ C2c|C0|nγ
(I)
n /2

)

= o(1). (4)

The equality in (4) follows from γ
(I)
n = O(1),

√
nγ
(I)
n →∞ and log(sn) = o(nγ

(I)2
n ).

Part 2: j ∈ {sn + 1, . . . , pn}.

To prove (ŵ
(II)
min)

−1 = oP (γ
(II)
n ), it suffices to prove that for any ε > 0,

P

(

max
sn+1≤j≤pn

|β̂CRn,j | ≥ γ
(II)
n ε

)

= o(1). (5)

As hn,j(β̂
CR
n,j ) = 0, it follows that

P
(
|β̂CRn,j | ≥ γ

(II)
n ε
)
≤ P{hn,j(γ

(II)
n ε) ≤ 0}+ P{hn,j(−γ

(II)
n ε) ≥ 0}. (6)

Similar to Part 1,

E{V1j(γ
(II)
n ε)} = C0E(YnXj) + εγ

(II)
n E{q2(Yn; γ

(II)
n ε

∗Xj)X
2
j },

with ε∗ ∈ (0, ε). Since E(YnXj) = o(γ
(II)
n ) and E{q2(Yn; γ

(II)
n ε∗Xj)X

2
j } ≥ η,

E{V1j(γ
(II)
n ε)} ≥ εηγ

(II)
n /2, as n→∞.

Again by an application of Bernstein’s inequality as in (3), for large n,

P{hn,j(γ
(II)
n ε) ≤ 0} = P

(
1

n

n∑

i=1

[Vij(γ
(II)
n ε)− E{Vij(γ

(II)
n ε)}] ≤ −E{V1j(γ

(II)
n ε)}

)

≤ P

( n∑

i=1

[Vij(γ
(II)
n ε)− E{Vij(γ

(II)
n ε)}] ≤ −εηnγ

(II)
n /2

)

≤ 2 exp
( −ε2η2n2γ(II)2n /4

C1n+ C2εηnγ
(II)
n /2

)
. (7)
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Similarly,

P{hn,j(−γ
(II)
n ε) ≥ 0} ≤ 2 exp

( −ε2η2n2γ(II)2n /4

C1n+ C2εηnγ
(II)
n /2

)
. (8)

Thus by (6), (7), (8) and Bonferroni inequality,

P

(

max
sn+1≤j≤pn

|β̂CRn,j | ≥ γ
(II)
n ε

)

≤ 4(pn − sn) exp

(
−ε2η2n2γ(II)2n /4

C1n+ C2εηnγ
(II)
n /2

)

= o(1). (9)

The equality in (9) follows from the conditions
√
nγ
(II)
n → ∞, log(pn − sn) = o(nγ

(II)
n )

and log(pn − sn) = o(nγ
(II)2
n ).

Proof of Theorem 4

Minimizing (4.3) is equivalent to minimizing the following criterion functions,

`PCRn,j (α) =
1

n

n∑

i=1

Q(Yni, F
−1(Xijα)) + κn|α|, j = 1, . . . , pn.

Part 1: j ∈ {1, . . . , sn}.

Similar to the proof of Theorem 3, we prove that for a small enough δ > 0, there exist
local minimizers β̂PCRn,j of `

PCR
n,j (α) such that

P
(
min
1≤j≤sn

|β̂PCRn,j | > γ
(I)
n δ
)
→ 1. (10)

It suffices to prove that for a small enough δ > 0 and some large enough Cn > 0, there
exist some βj with |βj| = 2δ such that

P
(
min
1≤j≤sn

{
inf
|α|≤δ
`PCRn,j (γ

(I)
n α)− `

PCR
n,j (γ

(I)
n βj)

}
> 0
)
→ 1, (11)

and
P
(
min
1≤j≤sn

{
inf
|α|≥Cn

`PCRn,j (γ
(I)
n α)− `

PCR
n,j (γ

(I)
n βj)

}
> 0
)
→ 1. (12)

(11) and (12) imply that with probability tending to one, there must exist local minimizers

β̂PCRn,j of `
PCR
n,j (α) such that γ

(I)
n δ < |β̂PCRn,j | < γ

(I)
n Cn for 1 ≤ j ≤ sn, and this implies (10).

First, we prove (12). We notice that for every n ≥ 1, when |α| → ∞,

min
1≤j≤sn

{
`PCRn,j (γ

(I)
n α)− `

PCR
n,j (γ

(I)
n βj)

}
≥ κnγ

(I)
n |α| − max

1≤j≤sn
`PCRn,j (γ

(I)
n βj)→∞.

Thus (12) holds.
Second, we prove (11). By Taylor’s expansion, for 1 ≤ j ≤ sn,

`PCRn,j (γ
(I)
n α) =

1

n

n∑

i=1

Q(Yni, F
−1(0)) +

γ
(I)
n

n
α

n∑

i=1

q1(Yni; 0)Xij

+
1

2

γ
(I)2
n

n
α2

n∑

i=1

q2(Yni; γ
(I)
n α

∗
jXij)X

2
ij + γ

(I)
n κn|α|,
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with α∗j between 0 and α. Thus, we have that

min
1≤j≤sn

{
inf
|α|≤δ
`PCRn,j (γ

(I)
n α)− `

PCR
n,j (γ

(I)
n βj)

}

≥ min
1≤j≤sn

inf
|α|≤δ

{γ(I)n
n
(α− βj)

n∑

i=1

q1(Yni; 0)Xij

}

+ min
1≤j≤sn

[1
2

γ
(I)2
n

n
inf
|α|≤δ

{
α2

n∑

i=1

q2(Yni; γ
(I)
n α

∗
jXij)X

2
ij − β

2
j

n∑

i=1

q2(Yni; γ
(I)
n β

∗
jXij)X

2
ij

}]

+ min
1≤j≤sn

inf
|α|≤δ
{γ(I)n κn(|α| − |βj|)}

≡ I1 + I2 + I3,

with α∗j between 0 and α, and β
∗
j between 0 and βn,j .

Let μ0 = F
−1(0) and C0 = q

′′(μ0)/F
′(μ0) 6= 0, for I1,

I1 ≥ γ
(I)
n min
1≤j≤sn

inf
|α|≤δ
{C0(α− βj)E(YnXj)}

+ γ(I)n min
1≤j≤sn

inf
|α|≤δ

[

C0(α− βj)
1

n

n∑

i=1

{YniXij − E(YnXj)}

]

− γ(I)n max
1≤j≤sn

sup
|α|≤δ

{
C0μ0(α− βj)

1

n

n∑

i=1

Xij

}

≡ I1,1 + I1,2 + I1,3.

We can see that

|I1,3| ≤ γ
(I)
n |C0μ0| max

1≤j≤sn

{

sup
|α|≤δ

(

3δ

∣
∣
∣
∣
1

n

n∑

i=1

Xij

∣
∣
∣
∣

)}

= OP (γ
(I)
n {log(sn)/n}

1/2)δ,

since max1≤j≤sn |n
−1
∑n
i=1Xij| = OP ({log(sn)/n}

1/2) from Bernstein’s inequality (Lemma

2.2.9 in van der Vaart and Wellner, 1996). Again |I1,2| = OP (γ
(I)
n {log(sn)/n}1/2)δ by a

similar argument as in the proof of Theorem 3. Now we choose βj = −2δsign{C0E(YnXj)}
satisfying |βj| = 2δ. Then

I1,1 = γ
(I)
n min
1≤j≤sn

inf
|α|≤δ

(
[α + 2δsign{C0E(YnXj)}]C0E(YnXj)

)

≥ γ(I)n min
1≤j≤sn

{δ|C0E(YnXj)|} ≥ |C0|cγ
(I)
n Anδ.

For I2 and I3,

|I2| ≤
1

2

γ
(I)2
n

n
max
1≤j≤sn

sup
|α|≤δ

{

α2
∣
∣
∣
∣

n∑

i=1

q2(Yni;Xijγ
(I)
n α

∗
j )X

2
ij

∣
∣
∣
∣

+ β2j

∣
∣
∣
∣

n∑

i=1

q2(Yni;Xijγ
(I)
n β

∗
j )X

2
ij

∣
∣
∣
∣

}

= OP (γ
(I)2
n )δ

2,
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and |I3| = O(γ
(I)
n κn)δ.

Under the conditions An = γ
(I)
n , κn = o(γ

(I)
n ) and log(sn) = o(nγ

(I)2
n ), we can choose a

small enough δ > 0 such that with probability tending to one, I1,1 dominates I1,2, I1,3, I2
and I3. Thus (11) is proved.

Part 2: j ∈ {sn + 1, . . . , pn}.

We prove that for any ε > 0, there exist local minimizers β̂PCRn,j of `
PCR
n,j (α) such that

P
(
max

sn+1≤j≤pn
|β̂PCRn,j | ≤ γ

(II)
n ε
)
→ 1. (13)

It suffices to prove that for any ε > 0,

P
(
min

sn+1≤j≤pn

{
inf
|α|=ε
`PCRn,j (γ

(II)
n α)− `

PCR
n,j (0)

}
> 0
)
→ 1. (14)

By Taylor’s expansion,

min
sn+1≤j≤pn

{
inf
|α|=ε
`PCRn,j (γ

(II)
n α)− `

PCR
n,j (0)

}

≥ min
sn+1≤j≤pn

inf
|α|=ε

{γ(II)n
n
α

n∑

i=1

q1(Yni; 0)Xij

}

+ min
sn+1≤j≤pn

inf
|α|=ε

{γ(II)2n

2n
α2

n∑

i=1

q2(Yni; γ
(II)
n α

∗
jXij)X

2
ij

}
+ inf
|α|=ε
(γ(II)n κn|α|)

≡ I1 + I2 + I3,

with α∗j ∈ (0, α). For I1, it is seen that

|I1| ≤ max
sn+1≤j≤pn

sup
|α|=ε

{
γ
(II)
n

n

∣
∣
∣
∣α

n∑

i=1

C0(Yni − μ0)Xij

∣
∣
∣
∣

}

≤
γ
(II)
n

n
|C0|ε max

sn+1≤j≤pn

∣
∣
∣
∣

n∑

i=1

YniXij

∣
∣
∣
∣+
γ
(II)
n

n
|C0μ0|ε max

sn+1≤j≤pn

∣
∣
∣
∣

n∑

i=1

Xij

∣
∣
∣
∣.

Since |
∑n
i=1 YniXij| ≤ |

∑n
i=1{YniXij −E(YnXj)}|+ |

∑n
i=1E(YnXj)| and similar to Part

1,

max
sn+1≤j≤pn

∣
∣
∣
∣
1

n

n∑

i=1

Xij

∣
∣
∣
∣ = OP ({log(pn − sn)/n}

1/2),

max
sn+1≤j≤pn

∣
∣
∣
∣
1

n

n∑

i=1

{YniXij − E(YnXj)}

∣
∣
∣
∣ = OP ({log(pn − sn)/n}

1/2),

we have that |I1| ≤ OP (γ
(II)
n {log(pn − sn)/n}1/2)ε+ oP (γ

(II)
n Bn)ε.

The proof may be separated for case (1) and case (2) in Theorem 4 from here.
Case (1): For I2, we have that

|I2| ≤ max
sn+1≤j≤pn

sup
|α|=ε

{
γ
(II)2
n

2n
α2
∣
∣
∣
∣

n∑

i=1

q2(Yni; γ
(II)
n α

∗
jXij)X

2
ij

∣
∣
∣
∣

}

= OP (γ
(II)2
n )ε2.
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Thus I3 = γ
(II)
n κnε dominates I1 and I2 with probability tending to one, since log(pn −

sn) = o(nκ
2
n), Bn = O(κn) and γ

(II)
n = o(κn). So (14) is proved.

Case (2): I2 is always positive with Condition 1(b). Moreover,

I2 ≥
1

2
γ(II)2n min

sn+1≤j≤pn
inf
|α|=ε

[
α2E{q2(Yn; γ

(II)
n α

∗
jXj)X

2
j }
]
−
1

2
γ(II)2n ×

max
sn+1≤j≤pn

sup
|α|=ε

(

α2

∣
∣
∣
∣
∣
1

n

n∑

i=1

[
q2(Yni; γ

(II)
n α

∗
jXij)X

2
ij − E{q2(Yn; γ

(II)
n α

∗
jXj)X

2
j }
]
∣
∣
∣
∣
∣

)

≥
1

2
γ(II)2n ε2η −

1

2
γ(II)2n ε2OP ({log(pn − sn)/n}

1/2).

Thus, I3 = γ
(II)
n κnε and the term

1
2
γ
(II)2
n ε2η in I2 dominate all other terms with prob-

ability tending to one, since log(pn− sn) = o{max(nκ2n, nγ
(II)2
n )}, Bn = O{max(κn, γ

(II)
n )}

and log(pn − sn) = o(n). So (14) is also proved.
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