Web-based Supplementary Materials for

Selection Consistency of EBIC for GLIM with Non-canonical Links and Diverging Number of Parameters

by Shan Luo and Zehua Chen

Verification of condition C6 for GLIM with non-canonical link functions

In this supplementary document, we verify condition C6 for some common GLIMs with non-canonical link functions while assuming that σ_i^2 (the variance of response y_i) are bounded away from 0 and from above. For the ease of reference, condition C6 is given below:

C6 The quantities $|x_{ij}|, |h'(\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0)|, |h''(\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0)|, i = 1, \dots, n; j = 1, \dots, p_n$ are bounded from above, and $\sigma_i^2, i = 1, \dots, n$ are bounded both from above and below away from zero. Furthermore,

$$\max_{1 \le j \le p_n; 1 \le i \le n} \frac{x_{ij}^2 [h'(\boldsymbol{x}_i^{\tau} \boldsymbol{\beta}_0)]^2}{\sum_{i=1}^n \sigma_i^2 x_{ij}^2 [h'(\boldsymbol{x}_i^{\tau} \boldsymbol{\beta}_0)]^2} = o(n^{-1/3})$$
$$\max_{1 \le i \le n} \frac{[h''(\boldsymbol{x}_i^{\tau} \boldsymbol{\beta}_0)]^2}{\sum_{i=1}^n \sigma_i^2 [h''(\boldsymbol{x}_i^{\tau} \boldsymbol{\beta}_0)]^2} = o(n^{-1/3}).$$

The common GLIMs were considered in Wedderburn (1976). In particular, we consider the following exponential families and their corresponding link functions:

- (1) Poisson Distribution: $\eta = \ln(\mu)$, μ^{γ} where $0 < \gamma < 1$;
- (2) Binomial Distribution: $\eta = \mu$, $\arcsin(\mu)$, $\ln(\frac{\mu}{1-\mu})$, $\ln(-\ln(1-\mu))$, $\Phi^{-1}(\mu)$.
- (3) Gamma Distribution $(G(1, \mu))$: $\eta = \ln \mu$, μ^{γ} where $-1 \le \gamma < 0$.

The correponding function $\theta = h(\eta)$ for the models above are as follows:

- (1) Poisson Distribution: $\theta = \eta$, $\frac{1}{\gamma} \ln \eta$ where $0 < \gamma < 1$;
- (2) Binomial Distribution: $\theta = \ln \frac{\eta}{1-\eta}$, $\ln \frac{\sin(\eta)}{1-\sin(\eta)}$, η , $\ln (\exp(e^{\eta}) 1)$, $\ln \left(\frac{\Phi(\eta)}{1-\Phi(\eta)}\right)$.
- (3) Gamma Distribution: $\theta = -e^{-\eta}, -\eta^{-\frac{1}{\gamma}}$.

1 Poisson Distribution

The link $\eta = \mu^{\gamma}$ where $0 < \gamma < 1$ and $\mu \in [a, b]$. In this situation,

$$h^{'}(\eta) = \frac{1}{\gamma \eta}, \ h^{''}(\eta) = -\frac{1}{\gamma \eta^2}, \ \sigma^2 = \eta^{\frac{1}{\gamma}}.$$

Hence under the assumption, $\forall 1 \leq i \leq n$,

$$\begin{split} |h'(\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0)| &\in [\frac{1}{\gamma b^{\gamma}}, \frac{1}{\gamma a^{\gamma}}], \sigma_i^2 \in [a,b], |h''(\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0)| \in [\frac{1}{\gamma b^{2\gamma}}, \frac{1}{\gamma a^{2\gamma}}] \\ &\frac{x_{i,j}^2 \left(h'(\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0)\right)^2}{\sum\limits_{i=1}^n \sigma_i^2 x_{i,j}^2 \left(h'(\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0)\right)^2} = \frac{b^{2\gamma}}{a^{2\gamma+1}} O\left(\frac{x_{i,j}^2}{\sum\limits_{i=1}^n x_{i,j}^2}\right) \\ &\frac{\left(h''(\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0)\right)^2}{\sum\limits_{i=1}^n \sigma_i^2 \left(h''(\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0)\right)^2} = \frac{b^{4\gamma}}{a^{4\gamma+1}} O(n^{-1}). \end{split}$$

when
$$0 < a < b < +\infty$$
, C6 is true when $\max_{1 \le j \le p_n} \max_{1 \le i \le n} \left\{ \frac{x_{i,j}^2}{\sum\limits_{i=1}^n x_{i,j}^2} \right\} = o(n^{-1/3})$.

2 Binomial Distribution

For binomial distribution, $\sigma_i^2 = \mu_i (1 - \mu_i) = \frac{e^{\theta_i}}{(1 + e^{\theta_i})^2}$. Here we assume

$$\min_{1 \le i \le n} \left(\mu_i \wedge (1 - \mu_i) \right) \ge c \text{ where } 0 < c \le 1/2.$$
 (1)

This implies, $c^2 \leq \min_{1 \leq i \leq n} \sigma_i^2 \leq \max_{1 \leq i \leq n} \sigma_i^2 \leq 1/4$. Therefore,

$$\frac{x_{i,j}^{2} \left(h'(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\right)^{2}}{\sum\limits_{i=1}^{n} \sigma_{i}^{2} x_{i,j}^{2} \left(h'(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\right)^{2}} = O\left(\frac{x_{i,j}^{2} \left(h'(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\right)^{2}}{\sum\limits_{i=1}^{n} x_{i,j}^{2} \left(h'(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\right)^{2}}\right)$$
$$\frac{\left(h''(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\right)^{2}}{\sum\limits_{i=1}^{n} \sigma_{i}^{2} \left(h''(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\right)^{2}} = O\left(\frac{\left(h''(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\right)^{2}}{\sum\limits_{i=1}^{n} \left(h''(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\right)^{2}}\right).$$

(1) $\mu = \eta, 0 < \eta < 1$:

$$h'(\eta) = \frac{1}{\eta(1-\eta)}, \ h''(\eta) = \frac{2\eta - 1}{\eta^2(1-\eta)^2}, \ \sigma^2 = \eta(1-\eta).$$

Under assumption (1),

$$4 \le h^{'}(\boldsymbol{x}_{i}^{\tau}\boldsymbol{\beta}_{0}) \le \frac{1}{c^{2}}; \ \left|h^{''}(\boldsymbol{x}_{i}^{\tau}\boldsymbol{\beta}_{0})\right| \le \frac{1-2c}{c^{4}}$$

for all $1 \le i \le n$. C6 holds when

$$\max_{1 \le j \le p_n} \max_{1 \le i \le n} \left\{ \frac{x_{i,j}^2}{\sum_{i=1}^n x_{i,j}^2} \right\} = o(n^{-1/3}).$$

(2) $\eta = \arcsin \mu$:

$$h'(\eta) = \frac{\cos \eta}{\sin \eta (1 - \sin \eta)}, \ h''(\eta) = \frac{\sin \eta}{1 - \sin \eta} - \frac{\cos^2 \eta}{\sin^2 \eta}, \ \sigma^2 = \sin \eta (1 - \sin \eta).$$

Under assumption (1),

$$4\sqrt{2c-c^2} \le \left| h^{'}\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}\right) \right| \le \frac{\sqrt{1-c^2}}{c^2};$$
$$\frac{3c-c^2-1}{(1-c)^2c} \le \left| h^{''}\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}\right) \right| \le \frac{1-c^2-c}{c^2(1-c)}$$

for all $1 \le i \le n$. C6 holds when

$$\max_{1 \le j \le p_n} \max_{1 \le i \le n} \left\{ \frac{x_{i,j}^2}{\sum_{i=1}^n x_{i,j}^2} \right\} = o(n^{-1/3}).$$

(3)
$$\eta = g(\mu) = \ln \{-\ln(1-\mu)\}\ \text{or}\ \eta = g(\mu) = \ln \{-\ln(\mu)\}\ .$$

For the first link function, complementary log-log link, we have

$$\theta = \ln(\frac{\mu}{1-\mu}) = h(\eta) = \ln\left\{\exp(e^{\eta}) - 1\right\}, \ \sigma^2 = \frac{\exp(e^{\eta}) - 1}{\exp(2e^{\eta})}.$$
 (2)

Therefore, the first and second order derivatives of $h(\cdot)$ are

$$h'(\eta) = \frac{e^{\eta + e^{\eta}}}{e^{e^{\eta}} - 1}; \ h''(\eta) = \frac{e^{\eta + e^{\eta}}[e^{e^{\eta}} - e^{\eta} - 1]}{\{e^{e^{\eta}} - 1\}^2}.$$
 (3)

It is easy to see that $e^{\eta} \leq h'(\eta) \leq e^{e^{\eta}}$. Now let us look at $h''(\eta)$. It is straightforward that $|h''(\eta)| \leq |h'(\eta)| \leq e^{e^{\eta}}$. Consider the function $f(x) = \frac{e^x(e^x - x - 1)}{(e^x - 1)^2}$ on $(0, +\infty)$. Because

$$\lim_{x \to 0} f(x) = \lim_{x \to 1} \frac{x^2/2}{x^2} = \frac{1}{2}; \ \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1 - \frac{x}{e^x} - \frac{1}{e^x}}{(1 - \frac{1}{e^x})^2} = 1. \tag{4}$$

Therefore, there exists a positive constant C_1, C_2 independent of x such that $C_1 \leq f(x) \leq C_2$. That is, $C_1 e^{\eta} \leq h''(\eta) \leq C_2 e^{\eta}$. When $\sigma_i^2 \in [a, b]$ for some $0 < a \leq b \leq 1/4$, for $1 \leq i \leq n$, we have

$$\frac{1+\sqrt{1-4b}}{2b} \le \exp(e^{\eta_i}) \le \frac{1+\sqrt{1-4a}}{2a} \text{ or } \frac{1-\sqrt{1-4a}}{2a} \le \exp(e^{\eta_i}) \le \frac{1-\sqrt{1-4b}}{2b}.$$

That is, $|h'(\eta_i)|$ and $|h''(\eta_i)|$ are both bounded away from 0 and finite. C6 holds when

$$\max_{1 \le j \le p_n} \max_{1 \le i \le n} \left\{ \frac{x_{i,j}^2}{\sum_{i=1}^n x_{i,j}^2} \right\} = o(n^{-1/3}).$$

The same argument applies to the second link function by changing η to $-\eta$.

(4)
$$\eta = \Phi^{-1}(\mu)$$
:

$$h'(\eta) = \frac{f(\eta)}{\Phi(\eta)(1 - \Phi(\eta))}, \ h''(\eta) = \frac{f'(\eta)}{\Phi(\eta)(1 - \Phi(\eta))} + f^2(\eta) \left[\frac{1}{(1 - \Phi(\eta))^2} - \frac{1}{\Phi^2(\eta)}\right]$$

$$\sigma^2 = \Phi(\eta)(1 - \Phi(\eta))$$

Under assumption (1), $\Phi^{-1}(c) \leq |\boldsymbol{x}_i^{\tau}\boldsymbol{\beta}_0| \leq \Phi^{-1}(1-c)$. Note that for

$$1 - \Phi(t) \le \frac{f(t)}{t}, \forall t > 0$$

therefore, we have

$$\begin{aligned}
4c\Phi^{-1}(c) &\leq 4f\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}\right) \leq \left|h'\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}\right)\right| \leq \frac{1}{c^{2}}f\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}\right) \leq \frac{1}{\sqrt{2\pi}c^{2}}; \\
4f'\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}\right) &\leq \left|\frac{f'(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})}{\Phi(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})(1 - \Phi(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}))}\right| \leq \frac{1}{c^{2}}f'\left(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}\right) \leq \frac{\Phi^{-1}(1 - c)}{\sqrt{2\pi}c^{2}}; \\
\left|f^{2}(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})\left[\frac{1}{(1 - \Phi(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}))^{2}} - \frac{1}{\Phi^{2}(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0})}\right]\right| \leq \frac{|2c - 1|}{c^{2}(1 - c)^{2}}f^{2}(\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}_{0}) \leq \frac{|2c - 1|}{2\pi c^{2}(1 - c)^{2}}.
\end{aligned}$$

for all $1 \le i \le n$. C6 holds when

$$\max_{1 \le j \le p_n} \max_{1 \le i \le n} \left\{ \frac{x_{i,j}^2}{\sum_{i=1}^n x_{i,j}^2} \right\} = o(n^{-1/3}).$$

3 Gamma Distribution

(1) $\eta = \ln(\mu) : h'(\eta) = e^{-\eta}, h''(\eta) = -e^{-\eta}, \sigma^2 = e^{2\eta}$. When σ_i^2 is away from 0 and finite, |h'|, |h''| are bounded. C6 holds when

$$\max_{1 \le j \le p_n} \max_{1 \le i \le n} \left\{ \frac{x_{i,j}^2}{\sum_{i=1}^n x_{i,j}^2} \right\} = o(n^{-1/3}).$$

(2) $\eta = \mu^{\gamma}$ where $-1 \leq \gamma < 0$. Let $\tilde{\gamma} = -\frac{1}{\gamma}$, then $0 < \tilde{\gamma} \leq 1$. Then

$$h'(\eta) = -\tilde{\gamma}\eta^{\tilde{\gamma}-1}, \ h''(\eta) = \tilde{\gamma}(1-\tilde{\gamma})\eta^{\tilde{\gamma}-2}, \ \sigma^2 = \eta^{2\tilde{\gamma}}.$$

When σ_i^2 is away from 0 and finite, |h'|, |h''| are bounded. C6 holds when

$$\max_{1 \le j \le p_n} \max_{1 \le i \le n} \left\{ \frac{x_{i,j}^2}{\sum_{i=1}^n x_{i,j}^2} \right\} = o(n^{-1/3}).$$