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Verification of condition C6 for GLIM with non-canonical link functions

In this supplementary document, we verify condition C6 for some common GLIMs
with non-canonical link functions while assuming that o2 (the variance of response
y;) are bounded away from 0 and from above. For the ease of reference, condition C6

is given below:

C6 The quantities |z, |k (€] B,)|, |k (€] B,)],i =1,...,n;5 = 1,..., p, are bounded
from above, and ¢?,i = 1,...,n are bounded both from above and below away

from zero. Furthermore,
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The common GLIMs were considered in Wedderburn (1976). In particular, we

consider the following exponential families and their corresponding link functions:
(1) Poisson Distribution: n = In(u), p” where 0 < v < 1;
(2) Binomial Distribution: n = pu, arcsin(u), ln(ﬁ), In(—In(1—p)), & (u).
(3) Gamma Distribution (G(1,1)): 7 =1Inp, u? where —1 <~ < 0.

The correponding function § = h(n) for the models above are as follows:
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(1) Poisson Distribution: § =17, 2Inn where 0 <y < 1;

(2) Binomial Distribution: § = In -, In 1iisr,11£1n()n)> n, In(exp(e”) — 1), In (1%:7()77)) :

_1
.

(3) Gamma Distribution: § = —e™", —n

1 Poisson Distribution

The link n = 17 where 0 <~y < 1 and p € [a,b]. In this situation,
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Hence under the assumption, V1 < i <n,
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when 0 < a < b < +00o, C6 is true when max max B = o(n”1/3).
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2 Binomial Distribution
0;
For binomial distribution, o7 = u;(1 — p;) = miew. Here we assume
min (u; A (1 —p;)) > ¢ where 0 < ¢ < 1/2. (1)

1<i<n



This implies, ¢ < ming <<, 02 < maxj<i<n 0? < 1/4. Therefore,
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(3) n=g(p) =In{-In(1 —p)} orn=yg(p) =In{-In(u)}.

For the first link function, complementary log-log link, we have
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Therefore, the first and second order derivatives of h(-) are
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It is easy to see that €7 < h'(n) < e®’. Now let us look at A" (n). It is straightfor-
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ward that | (n)] < |h'(n)] < e". Consider the function f(z) =
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Therefore, there exists a positive constant C7, Cy independent of x such that
Cy < f(z) < Cy. That is, Cie” < h”(n) < Cye”. When ¢ € [a,b] for some
0<a<b<1/4, for 1 <i<n,we have
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That is, |h'(n;)| and |h” (;)| are both bounded away from 0 and finite. C6 holds

< exp(e™)

when
2
s .

1215 iitn | & = = o(n™'%).

S)SPn 150
The same argument applies to the second link function by changing n to —n.
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Under assumption (1), ®~!(c) < |27 3,| < ®7'(1 — ¢). Note that for
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for all 1 < ¢ <n. C6 holds when
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3 Gamma Distribution

(1) n=1In(u) : ' (n) =€, h'(n) = —e™, 0> = e2". When ¢? is away from 0 and
finite, |h'[, |h"| are bounded. C6 holds when
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(2) n=p" where —1 <~ <0. Leti:—%, then 0 < 4 < 1. Then
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When o? is away from 0 and finite, |A'[,|R"| are bounded. C6 holds when
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