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Selection consistency of EBIC for GLIM with
non-canonical links and diverging number of
parameters∗
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In this article, we investigate the properties of the EBIC
in variable selection for generalized linear models with non-
canonical links and a diverging number of parameters in
ultra-high dimensional feature space. The selection consis-
tency of the EBIC in this situation is established under mod-
erate conditions. The finite sample performance of the EBIC
coupled with a forward selection procedure is demonstrated
through simulation studies and a real data analysis.
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1. INTRODUCTION

Variable selection is a primary concern in many impor-
tant contemporary scientific fields such as signal processing,
medical research and genetic studies etc. In these fields, usu-
ally, a relatively small set of relevant variables need to be
selected from a huge collection of available variables. For ex-
ample, in genetic genome-wide association studies (GWAS),
to identify loci or genes that affect a quantitative trait or
a disease status, thousands of thousands, even millions, of
single nucleotide polymorphisms (SNP) are under consid-
eration. The number of variables is much larger than the
sample size in such studies. This phenomenon is referred
to as small-n-large-p. Variable selection in small-n-large-p
problems poses a great challenge.

A major approach for variable selection is model based;
that is, a model is formulated to describe the relationship be-
tween a response variable (e.g., the measurement of a quan-
titative trait) and a set of predictor variables or covariates
(e.g., the genotypes of SNPs), and the covariates are selected
by a certain variable selection criterion. A variable selection
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criterion is crucial in model based variable selection. Tra-
ditional variable selection criteria such as Akaike’s Infor-
mation Criterion (AIC) (Akaike, 1973), Bayes Information
Criterion (BIC) (Schwarz, 1978) and Cross Validation (CV)
(Stone, 1974) are no longer appropriate for variable selection
in small-n-large-p problems. These traditional criteria tend
to select too many irrelevant covariates because they are
generally not selection consistent. Recently, some BIC-type
criteria have been proposed for small-n-large-p problems.
Bogdan et al. (2004) considered a criterion called modified
BIC (mBIC) for QTL mapping models. Wang et al. (2009)
studied another modified BIC for models with a diverging
number of parameters. Chen and Chen (2008) extended the
original BIC to a family called extended BIC (EBIC) gov-
erned by a parameter γ.

The criterion considered by Wang et al. (2009) modifies
the original BIC by multiplying the second term of BIC with
a diverging parameter and is somehow ad hoc. To achieve
selection consistency, it requires p/nξ < 1 for some 0 <
ξ < 1, and hence is not applicable when p > n. The mBIC
and EBIC considered by Bogdan et al. (2004) and Chen
and Chen (2008) respectively are developed from a Bayesian
framework. For the mBIC, a binomial prior on the number
of covariates is imposed on each model. For EBIC, the prior
on a model is proportional to a power of the size of model
class which the model belongs. Asymptotically, mBIC is a
special case of EBIC corresponding to γ = 1. The selection
consistency of EBIC for linear models with a fixed number
of parameters is established in Chen and Chen (2008). The
result is then extended to generalized linear models (GLIM)
with canonical links in Chen and Chen (2012). The EBIC
has been used for choosing tuning parameters in penalized
likelihood approaches, see Huang et al. (2010), for feature
selection procedures, see Wang (2009) and Luo and Chen
(2011), and for QTL mapping and disease gene mapping
studies, see Li and Chen (2009) and Zhao and Chen (2012).

In GLIMs, canonical links do not always provide the best
fit. Generally, there is no reason apriori why a canonical link
should be used, and in many cases a non-canonical link is
preferable, see McCullagh and Nelder (1989) and Czado and
Munk (2000). In many conventional scientific fields such as
those mentioned at the beginning of this article, it becomes
a norm that the number of covariates under consideration is
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so large that it can be considered as having an exponential
order of the sample size. This is referred to as the case of
ultra-high dimensional feature space. In problems such as
QTL and disease gene mapping, a quantitative trait or dis-
ease status is usually affected by many loci. Except a few so-
called major genes, most of the loci have only a small effect
which cannot be detected when the sample size is small. As
the sample size increases, so does the number of detectable
such effects. This phenomenon is mathematically well mod-
eled by diverging number of parameters, i.e., the number
of truly relevant covariates diverges as the sample size in-
creases. Therefore the GLIMs with non-canonical links and
diverging number of parameters in the case of ultra-high di-
mensional feature space become appealing. In this article, we
investigate the properties of EBIC for such models and es-
tablish its selection consistency. The selection consistency of
EBIC for GLIMs with canonical links does not trivially pass
to the case of non-canonical links. The selection consistency
in the case of non-canonical links is established under more
general conditions than those in Chen and Chen (2012). The
conditions, though general, are naturally satisfied by many
popular examples as given in Wedderburn (1976). We also
present a forward selection procedure with EBIC for the
GLIMs. This procedure is applied in simulation studies and
a real data analysis to evaluate its validity.

The remainder of this article is organized as follows. In
section 2, the main results are presented and discussed.
In section 3, simulation studies are reported and analyzed.
In section 4, the forward selection procedure with EBIC is
applied to analyze a well known Leukemia data set pub-
lished in Golub et al. (1999). All the technical proofs are
provided in the Appendix.

2. SELECTION CONSISTENCY OF EBIC

Let (yi,xi), i = 1, . . . , n, be the observations where yi is a
response variable and xi = (xi1, . . . , xipn)

τ is a pn-vector of
covariates. We consider the generalized linear model (GLIM)
below:

yi ∼ f(yi; θi) = exp{θiyi − b(θi)} w.r.t. ν, i = 1, . . . , n,

where ν is a σ-finite measure. From the properties of expo-
nential family, we have

μ(θi) = E(yi) = b′(θi), σ2(θi) = Var(yi) = b′′(θi),

where b′ and b′′ are the first and the second derivatives of b
respectively. The θi is related to xi through the relationship:

g(μ(θi)) = ηi = xτ
i β,

where g is a monotone function called link function and β
is pn-dimensional parameter vector. If g(μ(θi)) = θi, i.e.,
g = μ−1, the link is called the canonical link. In this article,
we consider general link functions including the canonical
link. Because of the one-to-one correspondence between θi

and ηi, there is a function h such that θi = h(ηi) = h(xτ
i β).

Thus the probability density function of yi can be expressed
as

f(yi;h(x
τ
i β)) = exp{yih(xτ

i β)− b(h(xτ
i β))}.

In the above GLIM, we assume that pn = O(exp{nκ}),
0 < κ < 1, and that only a relatively small number
of components of β are nonzero. Throughout the article,
the following notation and convention are used. Denote
by s any subset of the index set S = {1, 2, . . . , pn} and
|s| its cardinality. For convenience, s is used exchange-
ably to denote both an index set and the set of covari-
ates with indices in the index set, and is also referred to
as a model, i.e., the GLIM consisting of the covariates in
s. Let s0n = {j : βj �= 0, j = 1, . . . , pn} and p0n = |s0n|.
The covariates belonging to s0n are called relevant fea-
tures and the others irrelevant features. s0n is also referred
to as the true model. Let X = (xτ

1 , . . . ,x
τ
n)

τ . Denote by
X(s) the sub matrix formed by the columns of X whose
indices fall into s. Let xi(s) be the vector consisting of
the components of xi whose indices belong to s, and let
β(s) be the corresponding sub vector of β. Let Sj denote
the set of

(
pn

j

)
combinations of j indices from S. Denote

τ(Sj) =
(
pn

j

)
.

The EBIC of a model s, as defined in Chen and Chen
(2008), is

EBICγ(s) = −2 lnLn

(
β̂(s)

)
+ |s| lnn+2γ ln τ(S|s|), γ ≥ 0,

where Ln(β̂(s)) is the maximum likelihood of model s and

β̂(s) is the maximum likelihood estimate (MLE) of β(s).
Denote by ln(β(s)), sn(β(s)) and Hn(β(s)) the log like-

lihood function, the score vector and the Hessian matrix of
the model s respectively. Suppose that b and g are thrice and
twice differentiable respectively, which is usually the case in
practical GLIMs, then h is twice differentiable. Thus, we
have

ln(β(s)) =

n∑
i=1

[yih(x
τ
i (s)β(s))− b(h(xτ

i (s)β(s)))],

sn(β(s)) =
∂ln(β(s))

∂β(s)

=

n∑
i=1

[yi − b
′
(h(xτ

i (s)β(s)))]h
′
(xτ

i (s)β(s))xi(s),

Hn(β(s))

= − ∂2ln(β(s))

∂β(s)∂βsτ

=

n∑
i=1

{b′′
(h(xτ

i (s)β(s)))[h
′
(xτ

i (s)β(s))]
2

− [yi − b
′
(h(xτ

i (s)β(s)))]h
′′
(xτ

i (s)β(s))}xi(s)x
τ
i (s)

= Hn1(β(s))−Hn0(β(s)), say.
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When s0n ⊂ s, we simply denote μi = b′(h(xτ
i (s)β(s))) and

σ2
i = b′′(h(xτ

i (s)β(s))). The major difference between the
case of canonical links and the case of non-canonical links is
as follows. If g is the canonical link, h′ ≡ 1 and h′′ ≡ 0, hence
Hn0 ≡ 0 and Hn(β(s)) is positive definite when X(s) is of
full column rank. Therefore, ln(β(s)) is a strictly concave
function of β(s) and the MLE exists in the interior of the pa-
rameter space. But, if g is a non-canonical link, Hn(β(s)) is
not necessarily positive definite. As a consequence, ln(β(s))
is not necessarily concave, and the maximum likelihood esti-
mate of β(s) is not necessarily in the interior of the param-
eter space if it exists at all. We will show that Hn0(β(s)) is
asymptotically negligible (Lemma 2.1) for β(s) in a neigh-
borhood of the true parameter value of the GLIM. Thus
Hn(β(s)) is asymptotically locally positive definite. To guar-
antee the existence of the MLE of β(s) for finite samples, we
assume that the link function g is chosen such that ln(β(s))
is concave. For example, for Poisson distribution, we can
choose g(μ) as μ, lnμ or μr(0 < r < 1); for the binomial
distribution, we can choose g(μ) as ln(μ/(1−μ)),Φ−1(μ) or
ln(− ln(1−μ)). For details and more examples, the reader is
referred to Wedderburn (1976). We now state the conditions
required for the selection consistency of the EBIC.

C1 ln(pn) = O(nκ), p0n = O(nb) where 0 ≤ b < 1/6, κ > 0;
C2 minj∈s0n |βj | ≥ Cn−1/4 for some constant C > 0;
C3 For any s, the interior of

B(s) =
{
β :

∫
exp(h(xτ

i (s)β)y)dν < ∞, i = 1, 2, . . . , n

}

is not empty. Let β0 denote the true parameter of the
GLIM. If |s| ≤ kp0n, where k > 1, then β0(s) is in the
interior of B(s);

C4 There exist positive c1 and c2 such that for all suffi-
ciently large n,

c1n ≤ λmin(Hn1(β0(s ∪ s0n)))

≤ λmax(Hn1(β0(s ∪ s0n))) ≤ c2n

for all s with |s| ≤ kp0n, where λmin and λmax denote
respectively the smallest and largest eigenvalues;

C5 For any given ξ > 0, there exists a δ > 0 such that when
n is sufficiently large, for j = 0, 1,

(1− ξ)Hnj(β0(s ∪ s0n)) ≤ Hnj(β(s ∪ s0n))

≤ (1 + ξ)Hnj(β0(s ∪ s0n)),

whenever ‖β(s∪ s0n)−β0(s∪ s0n)‖2 ≤ δ for all s with
|s| ≤ kp0n;

C6 For i = 1, . . . , n; j = 1, . . . , pn, the quantities |xij |,
|h′(xτ

i β0)|, |h′′(xτ
i β0)| are bounded from above, and

σ2
i , i = 1, . . . , n are bounded both from above and be-

low away from zero. Furthermore,

max
1≤j≤pn;1≤i≤n

x2
ij [h

′
(xτ

i β0)]
2∑n

i=1 σ
2
i x

2
ij [h

′(xτ
i β0)]

2
= o(n−1/3),

max
1≤i≤n

[h
′′
(xτ

i β0)]
2∑n

i=1 σ
2
i [h

′′(xτ
i β0)]

2
= o(n−1/3).

Conditions C2 and C3 are the same as conditions A2
and A3 in Chen and Chen (2012). Conditions C4–C5 re-
duce to conditions A4–A5 in Chen and Chen (2012) for
canonical links. When A6 in Chen and Chen (2012) is
satisfied, C6 is satisfied by commonly used GLIMs such
as Poisson distribution with log and power function links,
Binary distribution with identity, arcsin, complementary
log-log and probit links, Gamma distribution with log
and inverse power function links. These GLIMs are thor-
oughly studied in Wedderburn (1976). The verification of
C6 for these GLIMs is given in a complementary document
at website: http://www.intlpress.com/SII/p/2013/6-2/SII-
6-2-luo-supplement.pdf.

We now state our main results as follows. Define A0 =
{s : s0n ⊂ s, s0n �= s, |s| ≤ kp0n} and A1 = {s : s0n �⊂ s,
|s| ≤ kp0n}. We have

Theorem 2.1. Under assumptions C1–C6, as n → +∞,

(1) For any γ > 0,

P

(
min
s∈A1

EBICγ(s) ≤ EBICγ(s0n)

)
→ 0.

(2) For any γ > 1
1−ε (1−

logn
2 log pn

), where ε is an arbitrarily
small positive constant,

P

(
min
s∈A0

EBICγ(s) ≤ EBICγ(s0n)

)
→ 0.

The following result is needed in the proof of Theo-
rem 2.1.

Lemma 2.1. Under conditions C1–C6, whenever ‖β(s ∪
s0n)− β0(s ∪ s0n)‖2 ≤ δ,

(1)
uτHn (β(s ∪ s0n))u = uτHn1 (β(s ∪ s0n))u (1 + op(1)) ,

uniformly in s with |s| ≤ kp0n, where u is any unit vector
of dimension |s ∪ s0n|.

Equation (1) is satisfied when β(s ∪ s0n) is replaced by
β0(s ∪ s0n) because of C4 and the fact that uτHn0(β0(s ∪
s0n))u = op(n), see the proof of Lemma 2.1 in the Ap-
pendix. Lemma 2.1 indicates that equation (1) in fact holds
in a neighbourhood of β0(s ∪ s0n). By using Lemma 2.1,
Theorem 2.2 below will be proved. This theorem provides
the convergence rate of the L2-consistency of the MLE of
β(s) when s0n ⊂ s, which is of its own interest.

Theorem 2.2. Under conditions C1–C6, as n → ∞,
‖β̂(s)− β0(s)‖2 = Op(n

−1/3), uniformly for s ∈ A0.

The technical details of the proof for the above results
are given in the Appendix. Theorem 2.1 implies that if we
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confine to the models with cardinality less than or equal to
kp0n and select the model with the smallest EBIC among
all those models then, with probability converging to 1, the
selected model, say, s∗n, will be the same as the true model
s0n. This property is what is called selection consistency.
The constraint that |s| ≤ kp0n is natural since we do not
need to consider any models with cardinality much larger
than that of the true model in practical problems. However,
in practice, the evaluation of all models with cardinality up
to kp0n is computationally impossible. Like any other model
selection criteria, the EBIC is to be used in a certain model
selection procedure. In addition to the traditional forward
selection procedures, a variety of procedures based on pe-
nalized likelihood approach have been developed within the
last twenty years such as the LASSO (Tibishirani, 1996),
SCAD (Fan and Li, 2001), Elastic Net (Zou and Hastie,
2005), and so on. A model selection criterion can be used
in these procedures to choose the penalty parameter, which
corresponds to choosing a model. However, though some de-
sirable properties such as the so-called oracle property have
been established for these penalized likelihood approaches
under certain conditions, the asymptotic properties of these
approaches with GLIM and ultra-high dimensional feature
space have not been thoroughly studied yet to our knowl-
edge. The traditional forward selection methods have been
criticized for its greedy nature. But, recently, it is discovered
that the greedy nature might not be bad especially when
the model selection is for the selection of relevant variables
rather than for a prediction model, see, e.g., Tropp (2004),
Tropp and Gilbert (2007) and Wang (2009). In this article,
we consider the application of the EBIC with the traditional
forward regression procedure for GLIM in our simulation
studies and real data analysis.

3. SIMULATION STUDY

In our simulation studies, we consider a GLIM with bi-
nary response and the complementary log-log link. We take

the divergent pattern (n, pn, p0n) = (n, [40en
0.2

], [5n0.1]) for
n = 100, 200, 500. The settings for the covariates, which are
adapted from Fan and Song (2010), are described below.

Setting 1. Let q = 15, s1 = {1, . . . , q}, s2 = {q + 1,
. . . , [pn

3 ]}, s3 = {[pn

3 ] + 1, . . . , [ 2pn

3 ]} and s4 = {[ 2pn

3 ] +
1, . . . , pn}. Let the covariate vector x be decomposed
into x = (x(s1), x(s2), x(s3),x(s4)), where x(s1)
is generated from N(0,Σρ), Σρ having diagonal ele-
ments 1 and off-diagonal elements ρ, x(s2) is gener-
ated from N(0, I), the components of x(s3) are gener-
ated independently from a double exponential distri-
bution with location 0 and scale 1, and the compo-
nents of x(s4) are generated independently from the
normal mixture 1

2 [N(−1, 1) + N(1, 0.5)]. The covari-
ates xi(sk), i = 1, . . . , n, are i.i.d. copies of x(sk),
k = 1, 2, 3, 4. Four values of ρ: 0, 0.3, 0.5 and 0.7, are
considered. s0n = {L× t, t = 1, . . . , p0n}, where L = 10.

βj = 1, if j = L × t with odd t, 1.3, if j = L × t with
even t, 0, otherwise.

Setting 2. The same as setting 1 except L = 5. The es-
sential difference between setting 1 and this setting is
that, in setting 1, all the relevant features are indepen-
dent while, in this setting, three of them have pairwise
correlation ρ. Two values of ρ: 0.3 and 0.5, are consid-
ered in this setting.

Setting 3. L = 10, q = 50. In all the settings for (n,
pn, p0n), this q is much smaller than pn and pn − q is
much bigger than Lp0n. The distribution of the covari-
ate vector x is specified as follows. For j = 1, . . . , pn−q,
the components xj ’s are i.i.d. standard normal vari-
ables. For pn − q < j ≤ pn,

xj =
1

5

[
p0n∑
t=1

(−1)t+1xLt +
√
25− p0nξj

]
,

where the ξj ’s are i.i.d. standard normal variables. xi’s
are generated as i.i.d. copies of x. The specification for
s0n and β is the same as in setting 1. In this setting,
all the relevant features are independent, the last q ir-
relevant features, which are highly pairwise correlated,
have a weak marginal correlation with each of the rel-
evant features but a strong overall correlation with the
totality of the relevant features.

In our simulation studies, we apply the EBIC in the for-
ward selection procedure for model selection. The forward
selection procedure starts by fitting the GLIMs with one
covariate, the covariate corresponding the model with the
largest maximum likelihood is the first selected variable.
Then GLIMs with two covariates including the first selected
variable are considered, the additional covariate correspond-
ing to the two-covariate model with the largest maximum
likelihood is the second selected variable. The procedure
continues this way and, at each step, one more variable is
selected. The EBIC is used as a stopping rule. At each step,
the EBIC is computed for the model consisting of the se-
lected variables. The selection procedure stops when EBIC
reaches a minimum. To reduce the amount of computation,
when pn is bigger than 1,000, the sure independence screen-
ing procedure based on the maximum marginal estimator
(MME) (Fan and Song (2010)) is used to reduce the di-
mension of the feature to 400 before the forward selection
procedure is invoked. We consider four γ values in EBIC,
i.e., γ1 = 0, γ2 = 1

2 (1 −
lnn

2 ln pn
), γ3 = 1 − lnn

4 ln pn
and γ4 = 1.

We choose these values because γ1 corresponds to the orig-
inal BIC, γ4 corresponds to mBIC, γ2 is halfway between
0 and 1 − lnn

2 ln pn
, the lower bound of the consistent range

of γ, and γ3 is halfway between 1 − lnn
2 ln pn

and 1. Thus we

can evaluate the asymptotic behavior of EBIC when the γ
value is below and above the lower bound of the consistent
range and also make a comparison with BIC and mBIC. The
performance of the procedure is evaluated by positive dis-
covery rate (PDR) and false discovery rate (FDR) defined
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Table 1. The PDR and FDR of the forward selection procedure with EBIC under simulation setting 1 (the PDR and FDR are
averaged over 200 replicates, the numbers in parenthesis are standard errors)

γ1 γ2 γ3 γ4
ρ n PDR FDR PDR FDR PDR FDR PDR FDR

0 100 0.736 0.375 0.735 0.362 0.646 0.193 0.481 0.074
(0.281) (0.292) (0.284) (0.291) (0.382) (0.228) (0.453) (0.141)

200 0.930 0.272 0.918 0.223 0.879 0.127 0.862 0.078
(0.220) (0.252) (0.253) (0.215) (0.311) (0.147) (0.337) (0.108)

500 0.971 0.408 0.963 0.371 0.939 0.079 0.936 0.026
(0.135) (0.181) (0.163) (0.152) (0.231) (0.119) (0.238) (0.062)

0.3 100 0.708 0.407 0.708 0.398 0.621 0.196 0.471 0.081
(0.298) (0.296) (0.298) (0.306) (0.384) (0.230) (0.442) (0.152)

200 0.933 0.281 0.924 0.239 0.889 0.143 0.855 0.083
(0.202) (0.248) (0.232) (0.212) (0.303) (0.161) (0.344) (0.111)

500 0.969 0.428 0.959 0.354 0.938 0.047 0.933 0.014
(0.130) (0.169) (0.177) (0.138) (0.238) (0.091) (0.247) (0.048)

0.5 100 0.712 0.401 0.711 0.383 0.632 0.201 0.451 0.080
(0.293) (0.295) (0.294) (0.292) (0.385) (0.223) (0.447) (0.146)

200 0.929 0.281 0.923 0.243 0.881 0.128 0.858 0.084
(0.219) (0.257) (0.236) (0.223) (0.313) (0.130) (0.343) (0.110)

500 0.967 0.434 0.959 0.371 0.939 0.043 0.933 0.006
(0.142) (0.166) (0.168) (0.147) (0.235) (0.085) (0.249) (0.031)

0.7 100 0.674 0.432 0.674 0.414 0.606 0.244 0.430 0.092
(0.291) (0.289) (0.291) (0.287) (0.365) (0.241) (0.432) (0.144)

200 0.931 0.292 0.926 0.248 0.888 0.148 0.874 0.112
(0.196) (0.246) (0.218) (0.207) (0.295) (0.146) (0.314) (0.125)

500 0.970 0.427 0.966 0.365 0.937 0.032 0.934 0.010
(0.134) (0.173) (0.150) (0.150) (0.234) (0.072) (0.240) (0.038)

as follows:

PDRn =
ν(s∗ ∩ s0n)

ν(s0n)
, FDRn =

ν(s∗\s0n)
ν(s∗)

,

where s∗ is the set of selected features. The selection con-
sistency is equivalent to P (PDRn = 1,FDRn = 0) → 1, as
n → ∞, which implies PDRn → 1 and FDRn → 0, in prob-
ability.

The PDR and FDR are averaged over 200 replications.
The results under Settings 1–3 are reported in Tables 1–3
respectively.

By examining Tables 1–3, we can find the following com-
mon trends: 1) with all the four γ values, the PDR increases
as n gets larger, 2) with γ1 and γ2 (which are below the lower
bound of the consistent range), the FDR does not show a
trend to decrease while, with γ3 and γ4 (which are within the
consistent range), the FDR reduces rapidly towards zero, 3)
though the PDRs with γ3 and γ4 are lower than those with
γ1 and γ2 when sample size is small, but they become com-
parable as the sample size increases, and 4) the FDR with
γ4 is lower than that with γ3 when sample size is small,
however, the PDR is also lower, as sample size gets larger,
both the PDR and FDR with γ3 and those with γ4 become
comparable. These findings demonstrate that the selection
consistency of EBIC is well realized in a finite sample case.

4. REAL DATA ANALYSIS

In this section, we apply the forward selection procedure
with EBIC to analyze a Leukemia data set. The data con-
sists of the expression levels of 7,129 genes obtained from
47 patients with acute lymphoblastic leukemia (ALL) and
25 with acute myeloid leukemia (AML). The data set is
available in the R packages Biobase and golubEsets. The
initial version of this data set is described and analyzed
by a method called “neighborhood analysis” in Golub et
al. (1999). The data set is later analyzed using GLIM with
probit link in Lee et al. (2003) and using GLIM with logit
link in Liao and Chin (2007). 50 genes are identified as im-
portant ones affecting the types of leukemia in Golub et al.
(1999), 27 genes are identified in Lee et al. (2003), and 19
genes are identified in Liao and Chin (2007). There are only
a few overlapped genes among the three identified sets.

We analyzed the data by the forward selection procedure
with four different link functions: logit, probit, cauchit and
cloglog. First, with each link function, the procedure was car-
ried out until 50 genes were selected. The identified genes are
reported in Table 4. These 50 genes are compared with three
identified sets mentioned above. Those which were identi-
fied in Golub et al. (1999), Lee et al. (2003) and Liao and
Chin (2007) are indicated by �, � and ∗ respectively. There
are three genes: 1834,1882, 6855, which are in all the three
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Table 2. The PDR and FDR of the forward selection procedure with EBIC under simulation setting 2 (the PDR and FDR are
averaged over 200 replicates, the numbers in parenthesis are standard errors)

γ1 γ2 γ3 γ4
ρ n PDR FDR PDR FDR PDR FDR PDR FDR

0.3 100 0.662 0.424 0.660 0.409 0.594 0.233 0.492 0.132
(0.272) (0.287) (0.276) (0.286) (0.350) (0.237) (0.392) (0.195)

200 0.931 0.256 0.926 0.231 0.891 0.111 0.881 0.068
(0.199) (0.245) (0.212) (0.222) (0.281) (0.137) (0.295) (0.101)

500 0.973 0.401 0.967 0.339 0.946 0.041 0.941 0.018
(0.127) (0.173) (0.149) (0.134) (0.209) (0.089) (0.217) (0.055)

0.5 100 0.571 0.489 0.570 0.478 0.521 0.304 0.442 0.189
(0.259) (0.274) (0.261) (0.276) (0.303) (0.265) (0.337) (0.230)

200 0.918 0.272 0.910 0.239 0.888 0.121 0.869 0.081
(0.204) (0.256) (0.230) (0.231) (0.267) (0.148) (0.293) (0.122)

500 0.970 0.402 0.964 0.351 0.946 0.056 0.942 0.021
(0.129) (0.183) (0.148) (0.153) (0.199) (0.115) (0.212) (0.062)

Table 3. The PDR and FDR of the forward selection procedure with EBIC under simulation setting 3 (the PDR and FDR are
averaged over 200 replicates, the numbers in parenthesis are standard errors)

γ1 γ2 γ3 γ4
n PDR FDR PDR FDR PDR FDR PDR FDR

100 0.586 0.506 0.586 0.484 0.524 0.332 0.387 0.198
(0.258) (0.252) (0.258) (0.253) (0.316) (0.252) (0.366) (0.239)

200 0.796 0.414 0.791 0.386 0.767 0.285 0.746 0.221
(0.261) (0.282) (0.274) (0.273) (0.311) (0.247) (0.334) (0.228)

500 0.946 0.479 0.936 0.416 0.912 0.195 0.896 0.171
(0.167) (0.165) (0.197) (0.150) (0.248) (0.185) (0.269) (0.176)

identified sets are selected by the forward selection proce-
dure. They are all among the selected genes with logit and
cloglog links. Two of them, i.e., 1834, 1882, are only among
the selected genes with probit and cauchit links. The other
selected genes except two of them are in only one of the
identified sets. Note that the selected genes and their or-
dering are different among the four different links. This in-
dicates that the link function does matter in the selection
procedure. Second, we used 8-fold cross validation to select
the optimal link function among the four links. The optimal
link is the logit link. Finally, we made a final selection using
EBIC with γ = 1 − lnn

3 ln pn
which is slightly bigger than the

lower bound of the consistent range. The final selected vari-
ables together with the maximum log likelihood of the cor-
responding model are reported in Table 5. To compare the
final selection of the logit link with the other links, the se-
lected results with all the four links are reported. The genes
selected by the logit link are 1834 and 4438. The maximum
log likelihood of the selected model with the logit link is the
largest among all the four links. Note that, the same two
genes are also selected by probit link and the gene 4438 is
selected by cloglog link. We thus can conclude quite confi-
dently that the two genes selected by logit link are the most
important genes for studying the etiology of leukemia.

APPENDIX A. TECHNICAL PROOFS

Proof of Lemma 2.1. First consider s ∈ A1, let s̃ = s ∪
s0n. Let ani in Lemma 1 of Chen and Chen (2012) be
h′′(xτ

i (s̃)β0(s̃))sign(yi − μi)/
√∑n

i=1 σ
2
i (h

′′(xτ
i (s̃)β0(s̃)))

2.
Since xτ

i (s̃)β0(s̃) = xτ
i β0, from Condition C6, we have

(2)

P

(
n∑

i=1

|(yi − μi)h
′′ (xτ

i β0) | ≥ Cn2/3

)
≤ 2 exp(−Cn1/3).

For any unit vector u with dimension |s̃|,

uτHn0(β0(s̃))u =

n∑
i=1

(yi − μi)h
′′
(xτ

i β0) (u
τxi(s̃))

2

(3)

≤
n∑

i=1

|(yi − μi)h
′′
(xτ

i β0) |‖xi(s̃)‖22

≤ C(k + 1)p0n

n∑
i=1

|(yi − μi)h
′′
(xτ

i β0) |.

The last inequality is true because all xij ’s are bounded, as
assumed in C6. (2) and (3) together with C5 imply that,
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Table 4. Analysis of Leukemia Data: the top 50 genes selected by the forward selection procedure with the four links: logit
(lo), probit (pr), cauchit (ca) and cloglog (cl)

Rank and Gene ID

1 2 3 4 5 6 7 8 9 10

lo 1834∗�� 4438 4951 6539� 155 2181 1882∗�� 6472 65 1953

pr 1834∗�� 4438 4951 155 5585 5466 706 7119� 3119 4480

ca 1882∗�� 4951 6281� 4499 4443 6539� 5107 1834∗�� 4480 6271

cl 1834∗�� 6855∗�� 4377 5122 2830 4407 4780 6309 4973� 715

11 12 13 14 15 16 17 18 19 20

lo 3692 706 1787 5191� 1239 3119 2784 1078 3631 6308

pr 6201� 490 6895 1882∗�� 1809 2855 3123 4211∗ 2020∗� 3631

ca 6378 3631 2111� 6201� 6373� 1800 4780 321 4107� 1779�

cl 5376 930 1800 1882∗�� 5794 4399 4389� 922 1962 4267

21 22 23 24 25 26 27 28 29 30

lo 6373� 1909� 4153 1685� 6855∗�� 7073 5539 2830 4819 6347

pr 5823 1953 1745�� 65 997 1928� 3307 1787 538 5539

ca 6277 1544 5254� 1928� 1745�� 3163 7073 310 4389� 5146
cl 1926 4229 5254� 770 2141 6923 7073 2828 4847� 698

31 32 33 34 35 36 37 38 39 40

lo 1081 1095 5328 4279 4373 5737 4366 5280 3307 284
pr 4107 2385 1087 1909� 5376 5552 6005 1604 3391 5442
ca 1927 885 3137 2258 4334 6657 2733 5336 5972 6167
cl 1779 1928� 4049 876 6857 6347 6376� 2361 4664 758

41 42 43 44 45 46 47 48 49 50

lo 6676 4291 1945 4079 3722 668 782 4196� 25 4389�

pr 6702 6309 2348� 4282 4925 6167 2323 1779 5122 3847�

ca 4229 4328� 715 4149 5191� 6283 200 6702 5794 4190
cl 3631 6308 4499 4480 5971 6510 5300 3475 3932 6801

Table 5. Analysis of Leukemia Data: the final selected genes
by EBIC

Link Function Selected Genes Maximum Likelihood

logit 1834, 4438 −2.296e-08
probit 1834, 4438 −3.022e-08
cauchit 1882, 4951 −2.122e-06
cloglog 1834, 6855 −6.908e-08

for any ξ > 0, there exists a δ > 0 such that under the
constraint ‖β(s ∪ s0n)− β0(s ∪ s0n)‖2 ≤ δ,

P

(
max

s∈A1,‖u‖2=1
uτHn0 (β(s ∪ s0n))u ≥ Cp0nn

2/3

)

≤ P

(
max

s∈A1,‖u‖2=1
uτHn0 (β0(s ∪ s0n))u

≥ C

1 + ξ
p0nn

2/3

)

≤ |A1|P
(

n∑
i=1

|(yi − μi)h
′′ (xτ

i β0) | ≥ C̃n2/3

)

≤ 2 exp

(
kp0n ln pn − C

1 + ξ
n1/3

)
= o(1);

that is, uτHn0(β(s ∪ s0n))u = Op(p0nn
2/3) = op(n), since

p0n = o(n1/3) by C1. By C4 and C5, uτHn1(β(s̃))u is of
order n. Thus the lemma is proved for s ∈ A1. For s ∈ A0,
since s0n ⊂ s, by replacing s̃ with s in the above argument,
the lemma is also proved for s ∈ A0.

Proof of Theorem 2.1. According to the definition of EBIC,
for any model s, EBICγ(s) ≤ EBICγ(s0n) if and only if

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
(4)

≥ (|s| − p0n) lnn/2 + γ
(
ln τ(S|s|)− ln τ(Sp0n)

)
.

To prove the selection consistency of EBIC, or mathemati-
cally, as n → +∞,

P

(
min

s:|s|≤kp0n,s �=s0n
EBICγ(s) ≤ EBICγ(s0n)

)
→ 0,

it suffices to show that inequality (4) holds with a prob-
ability converging to 0 as the sample size goes to infinity
uniformly for all s ∈ A0 ∪A1. This is completed by dealing
with s ∈ A0 and A1 separately.

(I) Case 1: s ∈ A1. Since τ(Sp0n) < pp0n
n and |s| lnn/2 +

γ ln τ(S|s|) > 0, inequality (4) implies that

(5) lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≥ −p0n(lnn/2 + γ ln pn).
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Therefore, define

D = sup
s∈A1

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
,

if we can show

(6) P (D ≥ −p0n(lnn/2 + γ ln pn)) → 0 as n → +∞,

then we will have

P

(
min

s:s∈A1

EBICγ(s) ≤ EBICγ(s0n)

)
→ 0 as n → +∞.

The key becomes to assess the order for
sups∈A1

lnLn(β̂(s)) − lnLn(β̂(s0n)). For any s ∈ A1,

let s̃ = s ∪ s0n and β̆(s̃) be β̂(s) augmented with zeros
corresponding to the elements in s̃\s. It can be seen that

lnLn

(
β0(s̃)

)
= lnLn

(
β0(s0n)

)
≤ lnLn

(
β̂(s0n)

)
,

lnLn

(
β̂(s)

)
= lnLn

(
β̆(s̃)

)
,

which lead to

sup
s∈A1

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
(7)

≤ sup
s∈A1

lnLn

(
β̆(s̃)

)
− lnLn

(
β0(s̃)

)
.

And also

‖β̆(s̃)− β0(s̃)‖2 ≥ ‖β(s0n\s)‖2 > min
j∈s0n

{|βj |} ≥ Cn−1/4.

To simplify the left-hand side of (7), we firstly investi-
gate sup{lnLn(β(s̃)) − lnLn(β0(s̃)) : ‖β(s̃) − β0(s̃)‖2 =
n−1/4, s ∈ A1}:

To derive the order of the right-hand side in the above
inequality, we take the Taylor Expansion of lnLn(β(s̃)) −
lnLn(β0(s̃)) as follows:

lnLn (β(s̃))− lnLn (β0(s̃))(8)

= (β(s̃)− β0(s̃))
τ
sn (β0(s̃))

− 1

2
(β(s̃)− β0(s̃))

τ
Hn1 (β

∗(s̃)) (β(s̃)− β0(s̃))

+
1

2
(β(s̃)− β0(s̃))

τ
Hn0 (β

∗(s̃)) (β(s̃)− β0(s̃))

where β∗(s̃) is between β(s̃) and β0(s̃) component-wise. By
condition C4 and C5,

(β(s̃)− β0(s̃))
τ
Hn1 (β

∗(s̃)) (β(s̃)− β0(s̃))

≥ c1n(1− ξ)‖β(s̃)− β0(s̃)‖22.

Lemma 2.1 implies that, for any β(s̃) such that ‖β(s̃) −
β0(s̃)‖2 = n−1/4, uniformly, the third term in equation (8)
is positive and has order op(n‖β(s̃) − β0(s̃)‖22), which is
op(n

1/2). Thus, when ‖β(s̃)−β0(s̃)‖2 = n−1/4, there exists

0 < c < c1 such that, with probability tending to 1 as n
goes to +∞,

lnLn (β(s̃))− lnLn (β0(s̃))

(9)

≤ ‖β(s)− βs0n‖1‖sn(β0(s̃))‖+∞ − c

2
n1/2(1− ξ)

≤
√

|s|‖β(s)− βs0n‖2‖sn(β0(s̃))‖+∞ − c

2
n1/2(1− ξ)

≤ Cp
1/2
0n n−1/4‖sn(β0(s̃))‖+∞ − c

2
n1/2(1− ξ).

In the following, we show that

(10) Cp
1/2
0n n−1/4‖sn(β0(s̃))‖+∞ = op(n

1/2),

which then implies that

(11) lnLn (β(s̃))− lnLn (β0(s̃)) ≤ −Cn1/2,

for some positive constant C. We first show that

(12) P

(
max

1≤j≤pn

snj (β0) ≥ Cn2/3

)
= o(1).

For fixed j, let

ani = xijh
′(xτ

i β0)/

√√√√ n∑
i=1

σ2
i x

2
ij(h

′(xτ
i β0))

2.

Under C6, by applying Lemma 1 of Chen and Chen (2012),
we have

P
(
snj

(
β0

)
≥ Cn2/3

)
= P

(
n∑

i=1

ani(yi − μi)

> Cn2/3/

√√√√ n∑
i=1

σ2
i x

2
i,j (h

′(xτ
i β0))

2

⎞
⎠

≤ P

(
n∑

i=1

ani(yi − μi) > Cn1/6

)
≤ exp(−Cn1/3).

Under C1, ln pn = o(n1/3), hence

pn∑
j=1

P
(
snj

(
β0

)
≥ Cn2/3

)
= exp(ln pn − Cn1/3) = o(1),

which implies (12). Equality (10) then follows from the fact
that p0n = o(n1/6) under C1. Equality (11) indicates that

the maximum likelihood estimate β̂(s̃) is an interior point
of Nβ0(s̃)

= {β(s̃) : ‖β(s̃) − β0(s̃)‖2 ≤ n−1/4}. By its defi-

nition, β̆(s̃) �∈ Nβ0(s̃)
. Therefore,

sup
s∈A1

lnLn

(
β̆(s̃)

)
− lnLn

(
β0(s̃)

)
(13)
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≤ sup
s∈A1

{lnLn (β(s̃))− lnLn (β0(s̃)) :

‖β(s̃)− β0(s̃)‖2 ≥ n−1/4}
= sup

s∈A1

{lnLn (β(s̃))− lnLn (β0(s̃)) :

‖β(s̃)− β0(s̃)‖2 = n−1/4}.

The last equation follows from the concavity of ln(β). In-
equalities (7) and (13) together lead to

sup
s∈A1

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≤ −Cn1/2.

Since under C1, p0n lnn = o(n1/3), p0n ln pn = o(n1/3), in-
equality (6) then follows.

(II) Case 2: s ∈ A0. When p0n = O(nb), b < 1/6, ln pn =

O(nκ), κ > 0, and p0n < |s| < kp0n, we have
ln |s|
ln pn

→ 0.

It follows from Lemma 1 of Luo and Chen (2011) that
ln τ(S|s|) ≈ |s| ln pn, ln τ(Sp0n) ≈ p0n ln pn. Hence, asymp-
totically, EBICγ(s) ≤ EBICγ(s0n) if and only if

(14) lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≥ m[0.5 lnn+ γ ln pn],

where m = |s| − ν(s0n). Therefore, it suffices to show

P

(
sup
s∈A0

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
(15)

≥ m[0.5 lnn+ γ ln pn]

)
→ 0 as n → ∞.

Note that

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)(16)

≤ lnLn

(
β̂(s)

)
− lnLn

(
β0(s0n)

)
)

= (β̂(s)− β0(s))
τsn(β0(s))

− 1

2
(β̂(s)− β0(s))

τHn(β̃(s))(β̂(s)− β0(s))

= (β̂(s)− β0(s))
τsn(β0(s))

− 1

2
(1+ op(1))(β̂(s)−β0(s))

τHn1(β̃(s))(β̂(s)−β0(s))

≤ (β̂(s)− β0(s))
τsn(β0(s))

− 1− ξ

2
(β̂(s)− β0(s))

τHn1(β̃(s))(β̂(s)− β0(s)),

for an arbitrarily small positive ξ when n is large, where
β̃(s) is between β̂(s) and β0(s) component-wise. The first
equality follows from the Taylor expansion and the second
equality follows from Lemma 1. We are going to apply C5
to simplify the right-hand side of the above inequality. The
applicability of C5 requires that sups∈A0

‖β̂(s)−β0(s)‖2 →
0 as n goes to infinity. In fact, we have, under conditions

C1–C6, uniformly for s ∈ A0,

‖β̂(s)− β0(s)‖2 = Op(n
−1/3).

The above claim is shown in the following. For any unit
vector u, let β(s) = β0(s) + n−1/3u. For convenience, let T
denote the event{

max
s∈A0,‖u‖2=1

uτHn0 (β(s))u ≤ Cp0nn
2/3

}
.

From the proof of Lemma 2.1, we have P (T ) → 1. Thus,

P (lnLn (β(s))− lnLn (β0(s)) > 0, s ∈ A0)

= P (lnLn (β(s))− lnLn (β0(s)) > 0, s ∈ A0|T )P (T )

+ P (lnLn (β(s))− lnLn (β0(s)) > 0,

s ∈ A0|T c)P (T c)

≤ P (lnLn (β(s))− lnLn (β0(s)) > 0, s ∈ A0|T ) + o(1).

On T , when n is large enough, for all s ∈ A0, uniformly, we
have

lnLn (β(s))− lnLn (β0(s))

= n−1/3uτsn (β0(s))−
1

2
n1/3uτ

(
n−1Hn1

(
β̃(s)

))
u

− 1

2
n−2/3

(
uτHn0

(
β̃(s)

)
u
)

= n−1/3uτsn (β0(s))− c1(1− ξ)n1/3/2 +O(p0n)

≤ n−1/3uτsn (β0(s))− cn1/3,

where β̃(s) is between β(s) and β0(s) component-wise. The
first equality is the Taylor expansion and the second equality
follows from C5. Hence, for some positive constant c, we have

P
(
lnLn

(
β(s)

)
− lnLn

(
β0(s)

)
> 0 : for some u

)
≤ P

(
uτsn

(
β0(s)

)
≥ cn2/3 : for some u

)
≤

∑
j∈s

P
(
sn,j

(
β0(s)

)
≥ cn2/3

)
+

∑
j∈s

P
(
−sn,j

(
β0(s)

)
≥ cn2/3

)

From (12), we know that∑
i∈A0

∑
j∈s

P
(
sn,j

(
β0(s)

)
≥ cn2/3

)
= o(1).

The same for the second term. Therefore,

P (lnLn (β(s))− lnLn (β0(s)) > 0 :(17)

for some u, s ∈ A0) = o(1).

Because lnLn(β(s)) is a concave function for any β(s), the

maximum likelihood estimator β̂(s) exists and falls within
a n−1/3 neighborhood of β0(s) uniformly for s ∈ A0. Thus,

we have P (‖β̂(s)− β0(s)‖2 = O(n−1/3)) → 1.

Selection consistency of EBIC for GLIM with non-canonical links and diverging number of parameters 283



Now applying C5, the right-hand side of (16) is bounded
by

(β̂(s)− β0(s))
τsn(β0(s))−

(1− ξ)(1− ε)

2
(β̂(s)− β0(s))

τ

×Hn1(β0(s))(β̂(s)− β0(s))

≤ 1

2(1− ε)
sτn(β0(s)){Hn1(β0(s))}−1sn(β0(s))

where ε is an arbitrarily small positive value. Hence,

P

(
sup
s∈A0

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≥ m[0.5 lnn+ γ ln pn])

≤ P

(
sτn(β0(s)){Hn1(β0(s))}−1sn(β0(s))

2(1− ε)

≥ m[0.5 lnn+ γ ln pn]

)
≤ |A0| exp(−m(1− ε)[0.5 lnn+ γ ln pn])

≤ exp

(
m

[
(ln(pn − p0n)− (1− ε)γ ln pn −

(1− ε)

2
lnn

])

→ 0, if γ >
1

1− ε

[
1− lnn

2 ln pn

]
.

That is, (15) is proved. Hence, the theorem is proved.
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