
Statistics and Its Interface Volume 6 (2013) 261–274

Bayesian variable selection in quantile regression
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In many applications, interest focuses on assessing rela-
tionships between predictors and the quantiles of the distri-
bution of a continuous response. For example, in epidemiol-
ogy studies, cutoffs to define premature delivery have been
based on the 10th percentile of the distribution for gesta-
tional age at delivery. Using quantile regression, one can
assess how this percentile varies with predictors instead of
using a pre-defined cutoff. However, there is typically uncer-
tainty in which of the many candidate predictors should be
included. In order to identify important predictors and to
build accurate predictive models, Bayesian methods for vari-
able selection and model averaging are very useful. However,
such methods are currently not available for quantile regres-
sion. This article develops Bayesian methods for variable
selection, with a simple and efficient stochastic search vari-
able selection (SSVS) algorithm proposed for posterior com-
putation. This approach can be used for moderately high-
dimensional variable selection and can accommodate uncer-
tainty in basis function selection in non-linear and additive
quantile regression models. The methods are illustrated us-
ing simulated data and an application to the Boston Housing
data.

Keywords and phrases: Asymmetric Laplace, Extremes,
Gibbs sampling, Model averaging, Risk, Stochastic search
variable selection.

1. INTRODUCTION

Quantile regression is a very widely used approach in
many application areas, with uncertainty in variable selec-
tion a routinely encountered problem. Hence, it is surprising
that the literature on methods for variable selection in quan-
tile regression is so sparse. When there are p candidate pre-
dictors, the number of possible subsets is 2p, with this num-
ber enormous even for moderate p. It has become common-
place in many applications to have data for dozens to hun-
dreds or thousands of predictors, so automated methods for
identifying promising subsets of predictors, while account-
ing for the substantial uncertainty that occurs in the selec-
tion process are needed. Bayesian approaches provide a con-
venient paradigm for accommodating uncertainty in model
selection (Hoeting et al., 1999; Clyde and George, 2004).

Bayesian methods for subset selection implemented us-
ing stochastic search variable selection (SSVS) algorithms
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(George and McCulloch, 1997) have become widely used in
linear regression, generalized linear models and other mod-
elling frameworks. Let γ = (γ1, . . . , γp)

′ ∈ Γ denote a model
index, where γj = 1 denotes that the jth of p candidate
predictors is included in the model, with γj = 0 otherwise,
for j = 1, . . . , p. Bayesian variable selection proceeds by first
choosing a prior over the model space, π(γ), with indepen-
dent Bernoulli priors providing a commonly-used choice,

(1) π(γ) =

p∏
j=1

π
γj

0 (1− π0)
1−γj ,

where π0 is the prior probability of including a randomly-
selected predictor. It is common to fix π0 (typically at 1

2 ).
However, by allowing a hyperprior on π0, Scott and Berger
(2010) point out that if the true number of predictors in a
model is fixed but the number of candidate predictors in-
creases, the posterior distribution of π0 concentrates near
0, so it gives similar results to what would be obtained as-
suming π0 is fixed at a low value. Scott and Berger (2010)
refer to this as including an adjustment for multiplicities
and explain that this intuitive behaviour does not occur
when fixing π0. A mathematically convenient hyperprior is
π0 ∼ beta(a0, b0).

A Bayesian specification of the model uncertainty prob-
lem is completed with priors for the coefficients within
each model. For normal linear regression models, let yi =
x′
γ,iβγ + εi, εi ∼ N(0, φ−1), where xγ,i = {xij : γj = 1} is

the vector of predictors in model γ for subject i, βγ is the
pγ coefficients in model γ, and φ is the residual precision.
Due to conjugacy, it is convenient to choose a prior of the
form π(βγ |φ,γ) = N(βγ ;0,V/φ) with π(φ) ∝ φ−1. This
leads to a closed form for the marginal likelihood

L(y;X,γ) =

∫ {
n∏

i=1

N
(
yi;x

′
γ,iβγ , φ

−1
)}

× π(βγ |φ,γ)π(φ)dβγdφ.

Two common choices of prior in the literature include ridge
priors, which let V = gI with I the identity matrix, and
g-priors, which let V = g(X′

γXγ)
−1.

The posterior probability allocated to model γ is

(2) π(γ |y,X) =
π(γ)L(y;X,γ)∑

γ∗∈Γ π(γ
∗)L(y;X,γ∗)

, γ ∈ Γ.
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For linear regression and conjugate priors the posterior prob-
ability can be calculated exactly using this expression. How-
ever, when the number of models in Γ is very large, it is not
possible to visit every model, so the denominator cannot be
calculated. To bypass the need to visit every model, stochas-
tic search algorithms instead use Markov chain Monte Carlo
(MCMC) to explore the model space, while simultaneously
obtaining Monte Carlo estimates of the posterior model
probabilities (PMPs) and marginal inclusion probabilities
(MIPs), Pr(γj = 1 |y,X), which provide a weight of evi-
dence that the jth predictor should be included accounting
for uncertainty in the other predictors.

SSVS proceeds by a Gibbs sampling algorithm that se-
quentially updates each γj by sampling from the full con-
ditional posterior distribution, which is Bernoulli with the
conditional probability of γj = 1 available in a closed form.
A simple summary of the SSVS output could be to report
the model with highest posterior probability, which is de-
noted here as γ+. This is recommended by Chen (1999), So
and Chen (2003), and Chen et al. (2011) and corresponds
to the model selected the most number of times during the
MCMC run. However, it is in general difficult to obtain accu-
rate estimates of PMPs in large model spaces. An alternative
is to report MIPs and these tend to be estimated efficiently
using SSVS. These MIPs can form the basis for inferences
on the need to include each predictor. In addition, if the
goal is to select a single model for prediction, Barbieri and
Berger (2004) define the median probability model, denoted
here as γm, to include those predictors having MIPs greater
than 0.5. Under a loss function, which expresses the loss
as the total number of predictors that are inappropriately
included or excluded from the model, Barbieri and Berger
(2004) show that the model that minimizes the expected
posterior loss (Bayes risk) is γm. Under the usual settings
for SSVS, the model with all predictors is one of the many
models under consideration. This is one situation in which
γm is guaranteed to exist (Barbieri and Berger, 2004). In
rare cases, it may happen that γm does not correspond to
any of the models actually visited by SSVS although we have
never yet come across this situation. If such a case did arise,
it would suggest that the SSVS algorithm has not fully ex-
plored the posterior distribution of models and that running
the SSVS algorithm for longer would be beneficial.

Unfortunately, with the notable exceptions of a single pa-
per by Meligkotsidou, Vrontos and Vrontos (MVV) (2009),
there are no methods currently available for Bayesian vari-
able selection in quantile regression models. One of the dif-
ficulties facing the practitioner is to specify a suitable like-
lihood given that the frequentist specification of quantile
regression is through the result of minimizing a tilted ab-
solute loss function defined in the next section. The MVV
approach relied on the asymmetric Laplace likelihood rec-
ommended by Yu and Moyeed (2001). This likelihood has
the attractive property that maximizing it corresponds di-
rectly to the frequentist procedure mentioned above. Hence,

the posterior mode can be obtained using various linear pro-
gramming techniques such as those in the quantreg package
of Koenker (2009). As observed by Li et al. (2010), proper
priors can be used to obtain regularized solutions, with the
L1 penalized quantile regression solutions corresponding to
the assumption of independent double exponential priors.

Unlike in normal linear regression models, there is unfor-
tunately no conjugate prior available and hence calculation
of the marginal likelihood L(y;X,γ) requires approximation
of a potentially high-dimensional integral, depending on the
number of predictors in the model. MVV solve this problem
using the widely-used Laplace approximation (Tierney and
Kadane, 1986), which also forms the basis for the Bayesian
information criterion (BIC) and for routine applications of
Bayesian variable selection in generalized linear models and
other model classes. In quantile regression models, one has
particular concerns about the accuracy of the Laplace ap-
proximation, since even if there is a large sample size over
all, there may be relatively limited data in the tails of the
distribution near the quantile of interest. Even if there are
substantial numbers of subjects having values near the quan-
tile, this is unlikely to be true in all regions of the predictor
space. In our experience, posterior distributions for quan-
tile regression coefficients are commonly skewed, suggesting
inaccuracy of the Laplace approximation.

The goal of this article is to develop exact SSVS meth-
ods for Bayesian variable selection in quantile regression
models, with the term “exact” referring to the fact that we
avoid inaccuracies introduced by analytic approximations to
marginal likelihoods. Instead we rely on an innovative SSVS
algorithm, which takes advantage of conditional conjugacy
after re-expressing the asymmetric Laplace residual distri-
bution as a location-scale mixture of normals. This allows
us to take advantage of closed forms that are available for
marginal likelihoods in normal linear mean regression mod-
els, so that the model index γ can be updated exactly as
in the mean regression case after also updating latent vari-
ables and other unknowns that are common to the different
models from simple steps.

It is for this reason that we opt for the AL distribution
in the rest of this paper. Alternatives to the AL distribu-
tion have been suggested (see Reed and Yu, 2011). Unfor-
tunately, such alternatives do not naturally generalize to
handling model uncertainty.

The outline of the paper is as follows. In Section 2 we
describe the quantile regression variable selection problem
and review the scale mixture of normals representation. In
Section 3 we describe in detail the proposed quantile re-
gression SSVS (QR-SSVS) algorithm. Section 4 contains a
simulation study in which we assess the performance of QR-
SSVS on data arising from 8 different distributions. We also
assess the frequentist operating characteristics relative to
the direct use of the asymptotic t-test by simulating 100
replicates. Section 5 contains an application to the Boston
Housing data set, and Section 6 discusses the results.
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2. QUANTILE REGRESSION VARIABLE
SELECTION

2.1 Augmented likelihood specification

We follow Yu and Moyeed (2001) in using the asym-
metric Laplace (AL) likelihood with location parameter
μi = xγ,i

′βγ(τ), where βγ(τ) is a vector of parameters
in model γ which depends on τ , 0 < τ < 1. Komunjer
(2005) gives a theoretical justification for using this likeli-
hood and empirical results from Reed and Yu (2011) suggest
that it accurately approximates the true quantiles of many
distributions having different properties. The AL likelihood
is proportional to

(3) exp

{
−

n∑
i=1

ρτ [yi − xγ,i
′βγ(τ)]

}
,

where

(4) ρτ (z) = {|z|+ (2τ − 1)z}/2

denotes the tilted absolute value or “check” function and z
in (4) corresponds to yi−xγ,i

′βγ(τ) in (3). From this point
onwards, we suppress dependence on τ to simplify notation.

In constructing an SSVS procedure for quantile regres-
sion, we can use an equivalent specification with a normal
likelihood proportional to
(5)(

n∏
i=1

w
−1/2
i

)
exp

{
−1

4

n∑
i=1

{yi − (1− 2τ)wi + xγ,i
′βγ}2

wi

}
.

We place independent and identical exponential priors on
each wi with rate parameter τ(1 − τ). Combining (5) with
the priors on w = [wi]

n
i=1 and marginalizing over w re-

covers the asymmetric Laplace likelihood in (3) (Tsionas,
2003; Rue and Held, 2005). With this specification, we can
rely directly on techniques developed in George and McCul-
loch (1997) for Bayesian variable selection in normal linear
models. In particular, we can develop a data augmentation
SSVS algorithm that relies on conjugacy after augmenta-
tion to marginalize out the regression coefficients βγ spe-
cific to model γ. This marginalization is key in obtaining a
computationally feasible algorithm. By using conditionally
conjugate priors after augmentation, we avoid the need to
rely on potentially-imprecise analytic approximations to the
marginal likelihood, such as Laplace.

2.2 Prior specification

Following common practice, we can embed all the sub-
models γ ∈ Γ within the full model by letting β =
(β1, . . . , βp)

′ denote the coefficients on the p predictors in
the full model, with βj = 0 for all j such that γj = 0.
Then, we can simultaneously induce a prior for γ and βγ

by choosing a prior for β as follows:

π(β|γ) =
p∏

j=1

{
(1− γj)δ0 + γjN(0, λ−1

j )
}
,

where δ0 denotes a degenerate distribution with all its mass
at zero, π0 = Pr(γj = 1) = Pr(βj �= 0) is the prior probabil-
ity of including a randomly selected predictor in the model,
and letting λj ∼ Gamma(1/2, 1/2) induces a heavy-tailed
Cauchy prior marginally for the coefficients on the predic-
tors selected to be in the model. In particular, we have
βj ∼ Cauchy independently for j such that γj = 1. The
Cauchy is widely-used as a robust prior. We opted for the
prior specification for γj following Scott and Berger (2010)
and letting each γj ∼ Bernoulli(π0) independently and ad-
ditionally placing a beta hyperprior on the prior inclusion
probability, π0 ∼ beta(a0, b0).

3. QR-SSVS ALGORITHM

In order to simultaneously search for high posterior prob-
ability models in Γ while also conducting posterior computa-
tion for the regression coefficients specific to each model, we
propose a data augmentation SSVS algorithm, which pro-
ceeds by alternating between simple Gibbs sampling steps.
Due to the structure of the model and the priors specified in
Section 2, the Gibbs sampling steps take particularly simple
forms, so sampling is straightforward. To improve mixing
we marginalize out the jth regression parameter in updat-
ing the indicator γj for inclusion of the jth predictor. The
steps proceed as follows.

1. Set initial values for π0, w and λγ = [λj : γj = 1]′.
The latter two could be sampled from their respective
priors.

2. Update the indicator γj marginalizing out βγ . To
obtain the conditional posterior of γj given γ−j =
{γk, k �= j} and the data, first note that the conditional
posterior distribution π(γ,βγ |y,w,λγ) can be written
as ⎛⎝ ∏

j:γj=1

λ
−1/2
j

⎞⎠ exp

(
−1

2
‖ũ− X̃γβγ‖2

)
,

where

X̃γ =
[√

1
2Xγ

′W1/2 diag{
√
λj : γj = 1}

]′
,

ũ =
[√

1
2 (y − {1− 2τ}w)′W1/2 0

]′
,

W = diag{w−1
i , i = 1, . . . , n}

and ‖ · ‖ denotes the usual Euclidean norm.
Marginalizing out βγ gives (using similar notation to
George and McCulloch (1997))
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π(γ |y,w,λ) ∝ g(γ)

≡
( ∏

j:γj=1

λ
− 1

2
j

)
|X̃γ

′
X̃γ |−

1
2

× exp

(
− 1

2
‖ũ− X̃γβ̂γ‖2

)
,

where β̂γ = (X̃γ
′
X̃γ)

−1X̃γ
′
ũ.

We then have

γj |γ−j ,w,λ, π0 ∼ Bern(π1),

with

π1 =
π0 g(γj = 1,γ−j)

π0 g(γj = 1,γ−j) + (1− π0) g(γj = 0,γ−j)
.

Each of the components of γ can be updated either in
a fixed or random order.

3. Sample the regression coefficient specific to the current
model from their full conditional,

βγ ∼ N(β̂γ , (X̃γ
′
X̃γ)

−1).

4. Update the latent variables w from their full condi-
tional posterior distributions, each of which can be
shown to have the following form after some algebra:

w−1
i ∼ IG

(
1

|yi − xγ,i
′βγ |

,
1

2

)
,

where IG denotes the inverse Gaussian distribution.
5. Sample from the full conditional posteriors for λj , for

j = 0, 1, . . . , p,

λj ∼ Exponential(12{β
2
j + 1}).

6. Update π0 if a beta hyperprior was used:

π0 ∼ Beta(pγ + a0, p− pγ + b0).

This algorithm can be extended to the case where pre-
dictors are a priori certain to appear in the model by ex-
pressing the location parameters of the asymmetric Laplace
likelihood, μi, as μi = z′iα + xγ,i

′βγ . The most common
situation is when the model is assumed to always contain
an intercept term. If an improper prior is placed on α, then

by a suitable adjustment to the definition of X̃γ , we can
draw α and βγ in one block in step 3. This also applies for
any proper normal prior on α.

4. SIMULATION STUDY

4.1 Example 1

We conducted a series of simulation experiments to assess
the performance of the proposed QR-SSVS algorithm. In the

first set of simulation examples, we focused on the case in
which the data are drawn from a true model of the form

(6) y = Xβ + ε.

Here, y denotes the vector of response variables yi, where
i = 1, . . . , 120, X is the 120 × 11 design matrix with the
first column a column of 1s and the remaining columns
independent N120(0, I) random variables, β = [β0 . . . β10]

′

and ε denotes the residuals. We allowed the density of the
residuals ε to vary across a broad variety of cases to assess
robustness of the proposed approach, given that the asym-
metric Laplace likelihood is used for convenience in quan-
tile regression and not because this distributional form is
thought to be an accurate reflection of the true likelihood.
The conditional quantiles for model (6) are parallel, with
only the intercept dependent on τ through the quantity
β0 + Qτ (εi), where Qτ (εi) denotes the τth quantile of εi.
We set β = (0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)′. The following resid-
ual densities were considered:

• Gaussian (Gau): N(0, 12)

• Skewed (Skew): 1
5N(−

22
25 , 1

2) + 1
5N(−

49
125 ,

3
2

2
) +

3
5N(

49
250 ,

5
9

2
)

• Kurtotic (Kur): 2
3N(0, 12) + 1

3N(0, 1
10

2
)

• Bimodal (Bim): 1
2N(−1, 2

3

2
) + 1

2N(1, 2
3

2
)

• Bimodal, separate modes (Sepa): 1
2N(−

3
2 ,

1
2

2
) +

1
2N(

3
2 ,

1
2 )

2)

• Skewed bimodal (Skeb): 3
4N(−

43
100 , 1

2) + 1
4N(

107
100 ,

1
3

2
)

• Trimodal (Tri): 9
20N(−

6
5 ,

3
5

2
)+ 9

20N(
6
5 ,

3
5

2
)+ 1

10N(0, 1
4

2
)

• Cauchy (Cau): t1

These distributions were chosen to have a median close
to or equal to zero. For the first eight simulations, we drew
n = 120 observations each from model (6) with the eight er-
ror distributions specified above. The second case repeated
these eight simulations with the error distributions shifted
so that the 90th percentile was close to zero instead of the
median. In the first eight simulations, the intercept term
should be close to zero in a regression model for the me-
dian, but significant shifted from zero in a regression model
for the 90th percentile, with the opposite being true for the
remaining eight simulations. Although the intercept is sel-
dom of interest in variable selection, to demonstrate how
QR-SSVS can select different models at different quantiles,
we include the intercept as a potential predictor, giving a to-
tal of 211 = 2, 048 potential models for each quantile under
consideration.

Using a Beta(1, 1), or equivalently, a uniform prior on π0,
we ran QR-SSVS for 10,000 iterations following a burn in of
1,000 iterations separately for τ = 0.5 and τ = 0.9. As a con-
vergence diagnostic and to verify robustness of the results to
starting points, we repeated the analysis with widely differ-
ent starting values and obtain essentially identical results.
MIPs for the intercept and each candidate predictors are
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Table 1. MIPs from the 16 simulations with data generated from the 8 error distributions in the first column. The predictors
are approximately independent. Predictors in the true model for each simulation are boxed. The intercept should be excluded
(τ = 0.5) and included (τ = 0.9) when the errors have median zero. It should be included (τ = 0.5) and excluded (τ = 0.9)

when the errors have 90th percentile equal to zero

Case 1: Errors with median = 0
τ Intercept x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Gau
0.5 0.305 1.000 1.000 0.299 0.226 0.446 0.305 0.251 0.213 1.000 1.000
0.9 1.000 0.980 0.980 0.381 0.345 0.398 0.431 0.402 0.360 0.998 0.970

Skew
0.5 0.188 1.000 1.000 0.214 0.166 0.180 0.176 0.169 0.147 1.000 1.000
0.9 1.000 0.997 0.993 0.314 0.309 0.299 0.309 0.307 0.325 0.997 0.996

Kur
0.5 0.155 1.000 1.000 0.139 0.127 0.135 0.124 0.160 0.139 1.000 1.000
0.9 1.000 0.994 0.977 0.450 0.407 0.398 0.469 0.407 0.429 0.999 0.985

Bim
0.5 0.371 1.000 0.994 0.267 0.322 0.326 0.326 0.287 0.333 1.000 1.000
0.9 1.000 0.974 0.960 0.421 0.383 0.408 0.403 0.398 0.422 0.997 0.989

Sepa
0.5 0.326 1.000 0.718 0.331 0.482 0.633 0.349 0.351 0.435 1.000 1.000
0.9 1.000 0.972 0.932 0.329 0.328 0.339 0.359 0.342 0.321 0.985 0.992

Skeb
0.5 0.539 1.000 1.000 0.253 0.242 0.277 0.316 0.248 0.348 1.000 0.987
0.9 1.000 0.995 0.995 0.341 0.297 0.342 0.326 0.386 0.304 1.000 0.948

Tri
0.5 0.292 1.000 0.998 0.288 0.279 0.647 0.276 0.280 0.768 1.000 1.000
0.9 1.000 0.989 0.945 0.367 0.380 0.386 0.374 0.387 0.336 0.984 0.970

Cau
0.5 0.210 1.000 1.000 0.226 0.235 0.289 0.260 0.204 0.242 1.000 0.984
0.9 0.555 0.999 0.849 0.576 0.563 0.529 0.524 0.739 0.768 0.999 0.854

Case 2: Errors with 90th percentile = 0
τ Intercept x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Gau
0.5 1.000 1.000 1.000 0.278 0.317 0.392 0.297 0.251 0.336 1.000 1.000
0.9 0.573 0.999 0.995 0.300 0.319 0.291 0.365 0.303 0.334 0.995 1.000

Skew
0.5 1.000 1.000 1.000 0.239 0.353 0.232 0.348 0.232 0.303 1.000 1.000
0.9 0.678 0.991 0.991 0.268 0.288 0.274 0.270 0.277 0.293 0.996 0.998

Kur
0.5 1.000 1.000 1.000 0.191 0.222 0.177 0.207 0.188 0.192 1.000 1.000
0.9 0.798 0.993 0.998 0.349 0.322 0.325 0.330 0.359 0.344 0.939 0.997

Bim
0.5 1.000 1.000 0.997 0.322 0.389 0.328 0.433 0.294 0.438 1.000 1.000
0.9 0.535 0.992 0.888 0.270 0.311 0.266 0.327 0.295 0.364 0.999 0.993

Sepa
0.5 1.000 0.999 0.990 0.698 0.743 0.542 0.548 0.483 0.674 0.998 1.000
0.9 0.653 0.991 0.976 0.296 0.336 0.297 0.304 0.300 0.312 0.995 0.998

Skeb
0.5 1.000 1.000 1.000 0.285 0.280 0.278 0.282 0.310 0.303 1.000 1.000
0.9 0.883 0.994 0.994 0.326 0.293 0.302 0.303 0.283 0.309 0.995 0.996

Tri
0.5 1.000 1.000 1.000 0.348 0.553 0.348 0.418 0.322 0.350 1.000 1.000
0.9 0.512 0.996 0.989 0.310 0.338 0.279 0.375 0.294 0.340 0.997 0.998

Cau
0.5 1.000 1.000 0.989 0.351 0.357 0.350 0.357 0.570 0.485 1.000 1.000
0.9 0.733 0.729 0.626 0.572 0.504 0.528 0.478 0.558 0.584 0.704 0.927

presented for each of the 16 different simulations in Table 1.
For each of the 16 simulations, we expect x1, x2, x9, x10 to
be in the model with the rest of the predictors excluded. For
simulations 1 to 8, we expect the intercept to be excluded
when we set τ = 0.5 as the argument to QR-SSVS but not
when we set τ = 0.9 as the argument. The reverse applies
in simulations 9 to 16.

It would be useful to compare with standard linear re-
gression model with SSVS to study the relative efficiency

of the QR-SSVS model in the simulation study where the
response is either Gaussian or Cauchy. Based on the idea of
George and McCulloch (1993), we assume that the slope pa-
rameters can be stated as the following multivariate normal
prior.

(7) β|γ ∼ N(0,DδV Dδ) ,

where γ = (γ0, . . . , γp)
′
, V is the prior correlation matrix

and Dγ is the diagonal matrix diag{a0ν0, . . . , apνp} with
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ak = 1 if γk = 0 and ak = ck if γk = 1. In particular when
we do not have any prior information about the relationship
among βk that V = I, the covariance DγV Dγ reduces to
a diagonal matrix with elements a2kν

2
k , k = 0, . . . , p.

The general criteria for setting ck and νk are well ex-
plained by George and McCulloch (1993); we summarize:
(i) when γk=0 and thus βk(≈ 0) is not included in the
model, the prior can be chosen to be informative around
0, with low variance: i.e. ν2k should be small and close to 0
to ensure that the posterior of βk would be shrunk around
zero when γk = 0. (ii) when γk=1 and thus βk( �= 0) is
included, the prior could be better chosen as flat and un-
informative. Thus c2kν

2
k should be large, requiring ck > 1

and large enough to make c2kν
2
k substantially greater than

ν2k , and of reasonable size, so that βk|γk = 1 has high prior
variation. The SSVS method is successfully employed to au-
toregression (AR) and threshold AR models in Chen (1999)
and So and Chen (2003). Both papers choose the ratio com-
binations (σβk

/νk, ck) = (0.5, 5), (0.5, 10), (1, 5) and (1,
10) to provide sensitivity analysis for subset selection. They
conclude that the combination (0.5, 10) is optimal. There-
fore, the choice of (σβk

/νk, ck) is (0.5, 10) here. The results
of model selection by linear regression model with SSVS is
given in Table 1.

In each of the 16 simulations, the median probability
model γm included the true predictors x1, x2, x9, x10 and the
MIPs were in general quite close to one. In addition, γm cor-
rectly included the intercept for the τ = 0.9 analysis when
the true median was zero and for the τ = 0.5 analysis when
the true 90th percentile was zero. However, using the 0.5
cutoff on the MIPs, there were some false positives, which
is not surprising given the modest sample size of n = 120.
In particular, in 10.9% of the overall cases, the MIP for a
predictor that should not be included was above 0.5. In the
cases involving Cauchy errors and τ = 0.9, this rate was
instead 11/12 = 91.7%. It is not surprising that for a very
heavy-tailed error distribution that information available in
the data regarding whether to include a predictor impacting
a quantile in the tails is limited. In the absence of any infor-
mation in the data about whether to include the predictor,
the MIP will be expected to be right around 0.5. Never-
theless, for both values of τ , predictors x1, x2, x9 and x10

have larger MIPs than x3, . . . , x8 under Cauchy distributed
residuals. If we instead use a more stringent cutoff for sig-
nificance in which predictors are considered significant if the
MIP is greater than 0.9 (say) we obtained an overall power
of 94.5% and type I error rate of 0%.

4.2 Example 2

This simulation is identical to simulation 1, but with
the columns of the design matrix no longer independent.
We used a similar design matrix to George and McCulloch
(1997) example 5.2.1. After a column of 1s, this involved
for each column j, j = 2, . . . , 11, generating n = 120 inde-
pendent standard normal variates. Then, we independently

generated 120 additional standard normal variates z and
added 2z to each column excluding the first. This resulted
in correlation between xj and xk, k �= {1, j} of around 0.8.
Table 2 contains the MIPs for each predictor for this simu-
lation.

Although the results seem similar to example 1, there is
unsurprisingly an overall increase in the MIP for predictors
x3 to x8. Compared to the 10.9% from the previous example
of overall cases for which the MIPs were bigger than 0.5 for
a predictor that is not in the true model, this time it was
74.0%. This again suggests that if a single model is desired,
increasing the threshold for including a predictor may be
recommended to maintain a low false positive rate while
also having reasonably large power. For a threshold of 0.9,
we had a power of 96.1% and a type I error rate of 2.6%.

In practice, this ad hoc thresholding would be unsuitable
unless there was a good prior reason to choose a particular
threshold value. Barbieri and Berger (2004) show that the
value of 0.5 has appealing properties if the error is normally
distributed and yields the optimal predictive model in cer-
tain settings. However, in our case, errors are not normally
distributed and the second example has correlated predic-
tors, the situation in which Barbieri and Berger (2004) sug-
gest that γm may not be optimal.

The maximum probability model γ+ in the first example
matched γm in all but one case (where γ+ had 1 additional
predictor) and in the second case, it didn’t ever match γm

so was not reported in the tables. As mentioned previously,
using γ+ as the optimal model is not generally recommended
as γ+ is not well estimated for large model spaces. As a final
alternative, it may be useful to consider a model where the
data chooses the thresholding for the MIPs. Cross validation
is a common approach for tuning parameters and could also
be implemented for this purpose.

4.3 Example 3

In this example, we simulated 100 replicates yr, r =
1, . . . , 100 to assess the frequentist performance of QR-
SSVS. The simulation and analysis was conducted as de-
scribed in the previous subsection focusing on the Gaussian
residuals case. We compared γm and the frequentist model,
which was based on carrying out frequentist quantile re-
gression estimation for the full model and then including
those predictors with p-values less than 0.01. We focused on
τ = 0.5 and τ = 0.9. Table 3 presents a summary of γm

selected using QR-SSVS for each replicate, and the models
selected using the frequentist approach.

We calculated the type I error rate and power for each
predictor based on γm, and the model containing predictors
with MIP greater than 0.9. The frequentist type I error
rate and power was calculated for the models containing
predictors with p value less than 0.05 and 0.01 respectively.
Again, it may be useful to let the data suggest a sensible
p value to use by implementing cross validation. We also
compared the posterior median and frequentist estimates
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Table 2. MIPs from the 16 simulations with data generated from the 8 error distributions in the first column. The predictors
are highly correlated. Predictors in the true model for each simulation are boxed. The intercept should be excluded (τ = 0.5)
and included (τ = 0.9) when the errors have median zero. It should be included (τ = 0.5) and excluded (τ = 0.9) when the

errors have 90th percentile equal to zero

Case 1: Errors with median = 0
τ Intercept x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Gau
0.5 0.245 1.000 1.000 0.399 0.400 0.543 0.363 0.378 0.361 1.000 1.000
0.9 1.000 0.999 0.994 0.627 0.627 0.771 0.648 0.611 0.624 0.998 0.999

Skew
0.5 0.237 1.000 1.000 0.372 0.350 0.410 0.339 0.353 0.303 1.000 1.000
0.9 1.000 0.999 0.997 0.587 0.620 0.678 0.618 0.608 0.572 0.999 1.000

Kur
0.5 0.211 1.000 1.000 0.286 0.292 0.302 0.296 0.268 0.255 1.000 1.000
0.9 1.000 0.999 0.999 0.628 0.633 0.656 0.644 0.661 0.612 0.999 0.996

Bim
0.5 0.370 1.000 1.000 0.567 0.566 0.531 0.534 0.926 0.480 1.000 1.000
0.9 1.000 0.999 0.999 0.678 0.652 0.675 0.657 0.738 0.643 1.000 0.994

Sepa
0.5 0.466 1.000 1.000 0.626 0.655 0.630 0.667 0.961 0.550 1.000 1.000
0.9 1.000 0.995 0.999 0.640 0.642 0.673 0.626 0.659 0.622 0.997 0.998

Skeb
0.5 0.354 1.000 1.000 0.670 0.522 0.516 0.465 0.502 0.412 1.000 1.000
0.9 1.000 0.998 0.999 0.641 0.590 0.616 0.630 0.605 0.582 1.000 0.997

Tri
0.5 0.375 1.000 1.000 0.499 0.540 0.479 0.548 0.609 0.472 1.000 1.000
0.9 1.000 0.998 0.994 0.697 0.663 0.703 0.715 0.693 0.655 0.999 0.993

Cau
0.5 0.462 0.998 0.999 0.753 0.634 0.631 0.524 0.510 0.612 1.000 1.000
0.9 1.000 0.868 0.893 0.795 0.764 0.827 0.781 0.944 0.785 0.893 0.992

Case 2: Errors with 90th percentile = 0
τ Intercept x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Gau
0.5 1.000 1.000 1.000 0.449 0.596 0.452 0.466 0.479 0.458 1.000 1.000
0.9 0.409 1.000 0.997 0.467 0.493 0.475 0.470 0.491 0.459 1.000 1.000

Skew
0.5 1.000 1.000 1.000 0.467 0.524 0.519 0.528 0.507 0.499 1.000 1.000
0.9 0.396 1.000 1.000 0.472 0.506 0.471 0.603 0.508 0.491 1.000 1.000

Kur
0.5 1.000 1.000 1.000 0.357 0.416 0.368 0.403 0.391 0.394 1.000 1.000
0.9 0.448 1.000 0.999 0.510 0.590 0.530 0.540 0.527 0.525 1.000 1.000

Bim
0.5 1.000 1.000 1.000 0.565 0.614 0.583 0.588 0.554 0.560 1.000 1.000
0.9 0.422 1.000 1.000 0.502 0.530 0.505 0.516 0.555 0.532 1.000 1.000

Sepa
0.5 1.000 1.000 1.000 0.811 0.707 0.696 0.697 0.721 0.697 1.000 1.000
0.9 0.417 1.000 1.000 0.476 0.551 0.561 0.481 0.489 0.496 0.999 1.000

Skeb
0.5 1.000 1.000 1.000 0.526 0.557 0.510 0.545 0.578 0.665 1.000 1.000
0.9 0.396 1.000 1.000 0.491 0.555 0.518 0.518 0.536 0.580 1.000 0.999

Tri
0.5 1.000 1.000 1.000 0.590 0.588 0.646 0.583 0.601 0.591 1.000 1.000
0.9 0.449 1.000 0.999 0.519 0.582 0.545 0.545 0.620 0.546 1.000 0.999

Cau
0.5 1.000 1.000 1.000 0.639 0.931 0.681 0.675 0.732 0.826 1.000 1.000
0.9 0.723 0.981 0.816 0.764 0.897 0.864 0.820 0.851 0.903 0.798 0.987

to the true values, while assessing coverage of the 95%
credible intervals and frequentist 95% confidence intervals.
To obtain the frequentist intervals, we used the default rank
method in the R package quantreg (Koenker, 2009). The
coverage rate of the intervals was obtained using the num-
ber of replicates for which the true value of the regression
parameter was contained within the interval. Finally, given

that the true τth quantile of yi is known, we obtained mean
squared errors using 1

100

∑100
r=1{

∑120
i=1(Qτ (yir) − xγ,iβ̂)

2,
again using Qτ (·) to denote the τth quantile. The overall
results averaged over the different predictors not including
the intercept are presented in Table 4.

Recalling that the true model contains x1, x2, x9, x10 in
the τ = 0.5 case with the intercept also included in the
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Table 3. The median probability models using quantile regression stochastic search (QR-SSVS), the approach of MMV using
the smallest value of the Bayesian information criterion (BIC) and the frequentist models constructed by taking those

predictors with p-values less than 0.01

Models for τ = 0.5 QR-SSVS MVV Frequentist

x1, x2, x9, x10 89 83 81
Intercept, x1, x2, x9, x10 8 9 8
Intercept, x1, x2, x7, x9, x10 1 1 0
x1, x2, x3, x9, x10 1 1 1
x1, x2, x5, x9, x10 1 2 5
x1, x2, x8, x9, x10 0 1 2
x1, x2, x4, x9, x10 0 1 1
x1, x2, x6, x9, x10 0 1 1
x1, x2, x7, x9, x10 0 1 1

Models for τ = 0.9 QR-SSVS MVV Frequentist

Intercept, x1, x2, x9, x10 89 59 66
Intercept, x1, x2, x7, x9, x10 3 9 7
Intercept, x1, x2, x5, x9, x10 2 7 5
Intercept, x1, x2, x3, x6, x9, x10 1 3 1
Intercept, x1, x2, x3, x9, x10 1 4 4
Intercept, x1, x2, x4, x7, x9, x10 1 4 0
Intercept, x1, x2, x4, x9, x10 1 3 3
Intercept, x1, x2, x6, x9, x10 1 3 4
Intercept, x1, x2, x8, x9, x10 1 3 2
Intercept, x1, x2, x3, x4, x9, x10 0 1 2
Intercept, x1, x2, x5, x6, x9, x10 0 2 2
Intercept, x1, x2, x3, x7, x9, x10 0 1 1
Intercept, x1, x2, x4, x5, x7, x8, x9, x10 0 1 1
Intercept, x1, x2, x5, x6, x8, x9, x10 0 0 1
Intercept, x1, x2, x9 0 0 1

Table 4. Summary of simulation results from 100 replicates each having n = 120 observations. Type I error rates are averaged
across predictors x3 − x8, while power is averaged across predictors x1, x2, x9, x10

τ = 0.5
Summary Bayesian Frequentist

MIP > 0.5 MIP > 0.9 p < 0.05 p < 0.01

Type I error rate (%) 0.005 0.000 7.500 1.833
Power (%) 100.000 100.000 100.000 100.000
Coverage of 95% CI 100.000 88.400
Width of 95% CI 0.585 0.390
Absolute bias 0.043 0.100
MSE 0.061 0.082

τ = 0.9
Summary Bayesian Frequentist

MIP > 0.5 MIP > 0.9 p < 0.05 p < 0.01

Type I error rate (%) 2.217 0.000 13.833 7.333
Power (%) 100.000 97.750 100.000 99.750
Coverage of 95% CI 100.000 89.700
Width of 95% CI 1.040 0.564
Absolute bias 0.054 0.131
MSE 0.118 0.186

τ = 0.9 case, it is apparent from Table 3 that the frequen-
tist approach selects the true model in a smaller proportion
of the simulation replicates. The frequentist method has
a tendency to add unnecessary predictors in a substantial

proportion of the simulations, which is somewhat surpris-
ing given that we used a threshold of 0.01 on the p-values
for inclusion instead of the more common 0.05. In addition,
the Bayesian approach included predictors having above 0.5
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MIPs, so we expected more type I errors than if we had
used a more stringent threshold for inclusion. Indeed, as is
summarized in Table 4, the frequentist method had a higher
type I error rate regardless of whether a 0.05 or 0.01 thresh-
old was used for significance. Both methods had similarly
high power, but the Bayesian approach tended to produce
wider interval estimates and higher coverage rates than the
frequentist approach, which did not maintain the nominal
level of 95%. It is also apparent that the Bayesian approach
resulted in parameter estimates which had a lower abso-
lute bias on average than the frequentist method. This is
also backed up with the fact that the average MSEs for the
Bayesian approach were lower, significantly so for τ=0.9.

For reference, we also computed the average MSE for the
frequentist analysis of the full model including all predictors.
This turns out to be 0.194 for τ = 0.5 and 0.271 for τ = 0.9.
These are higher than the MSEs presented in Table 4. Since
the MSE decomposes as the sum of squared bias and vari-
ance of the estimator, the higher average MSE will be due to
the increased variability which arises when using additional
irrelevant predictors to predict the τth quantile of yi.

5. BOSTON HOUSING DATA

To illustrate how the QR-SSVS performs in relation to
frequentist methods on real data, we consider the Boston
housing data concerning housing values in suburbs of Boston
which is given in Harrison and Rubinfeld (1978). The cor-
rected data consists of n = 506 observations and p = 16
potential predictors of interest. These are the tract point lat-
itudes/longitudes in decimal degrees (LAT/LON), the per
capita crime (CRIM), the proportions of residential land
zoned for lots over 25,000 square feet per town (ZN), the
proportions of non-retail business acres per town (INDUS),
whether or not the tract borders the Charles River (CHAS),
nitric oxide concentration (parts per 10 million) per town
(NOX), average number of rooms per dwelling (RM), the
proportions of owner occupied units built prior to 1940
(AGE), the weighted distances to 5 Boston employment cen-
tres (DIS), the index of accessibility to radial highways per
town (RAD), the full value property tax rate in 10,000s of
US dollars per town (TAX), pupil to teacher ratios per town
(PTRATIO), 1, 000(proportion of blacks − 0.63)2 (B) and
the percentage values of lower status population (LSTAT).
The response variable is CMEDV, the corrected median val-
ues of owner occupied housing in 1,000s of US dollars.

Each predictor was standardized before analysis. To fol-
low a conventional approach and provide a basis for compar-
ison, a linear regression model with SSVS are fitted. Based
on the main idea of small and big variances of George and
McCulloch (1993), we assume that the slope parameters fol-
lowed the mixture normal prior in equation (7). The choice
of (σβk

/νk, ck) is (0.5, 10) as the same in simulation study.
The results of model selection by linear regression model

with SSVS is given in Table 5. The MIP for each selected
predictor is at least 0.5.

We analyzed the data with π0 ∼ Beta(1, 1). We used
50,000 iterations of QR-SSVS following a 5,000 iteration
burn in. We analyzed 7 different quantiles which were
τ = {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. Given the results in
section 4, we based inference on the model containing those
predictors with MIP greater than 0.9. The frequentist model
was obtained from predictors having p-value less than 0.01.
The MIP for each predictor and its associated posterior
and frequentist estimate are presented in Table 6. We note
that the default rank method was unable to produce a
sensible interval for variable CHAS at the extreme values
of τ . Table 5 shows the predictors appearing in each of the
selected models.

To compare the two methods on predictive performance,
we followed Li et al. (2010) and used 10 fold cross valida-
tion. For the QR-SSVS method, as well as assessing the pre-
dictive performance of a single model, we also used model
averaging, a major advantage of the Bayesian approach to
variable selection (see e.g. Hoeting et al., 1999). To obtain
model averaged estimates, we used the QR-SSVS method on
the training datasets to sample potential models, and then
a weighted average of the regression parameters was calcu-
lated, where the weights correspond to the posterior model
probabilities. In each case, the algorithm was run for 11,000
iterations with the first 1,000 discarded, and π0 was assigned
a Beta(1, 1) distribution. Since the true conditional quan-
tiles are unknown in this case, the measure of accuracy was
based on the mean weighted absolute residuals (MWARs),
defined as 1

sk

∑sk
i=1 ρτ (yi − ŷi), where sk denotes the size

of validation set k with k = 1, . . . , 10 and ρτ (·) is defined
in (4). Table 7 presents the mean and standard deviation of
the MWARs for each of the 7 quantiles.

From Table 7, it can be seen that in 5 out of 7 cases,
the model selected by QR-SSVS outperformed the model
selected by the frequentist approach in terms of the average
MWAR, with there being a noticeable difference when
τ = 0.95. Interestingly, when τ = 0.1, we can see from
Table 5 that the model selected by QR-SSVS is nested
within the model selected by the frequentist approach.
Given that the MIPs for those variables not appearing
in the QR-SSVS model but appearing in the frequentist
models were 0.87 (NOX) and 0.89 (RAD) respectively, this
suggests that the MIP threshold may have been a bit too
high for that case, resulting in a type II error. In contrast,
the use of Bayesian model averaging produced average
MWARs that were uniformly smaller than the frequentist
method across all quantiles.

It is interesting to note that four predictors (CRIM, ZN,
CHAS, TAX) have been selected over extreme quantile 0.95
while (CRIM, TAX) have been selected in modelling at the
extreme quantile 0.05. These four predictors have been ex-
cluded when a traditional linear regression with SSVS is
implemented. Crime (CRIM) inflicts many costs on a city’s
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Table 5. Models selected by QR-SSVS with predictors having MIP > 0.9 and by frequentist method with asymptotic p-values
less than 0.01

τ Model
Size

LON LAT CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

Reg-SSVS
7 • • • • • • •

QR-SSVS
0.05 8 • • • • • • • •
0.10 9 • • • • • • • • •
0.25 11 • • • • • • • • • • •
0.50 13 • • • • • • • • • • • • •
0.75 10 • • • • • • • • • •
0.90 10 • • • • • • • • • •
0.95 10 • • • • • • • • • •
τ Model

Size
LON LAT CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

Frequentist
0.05 6 • • • • • •
0.10 11 • • • • • • • • • • •
0.25 11 • • • • • • • • • • •
0.50 11 • • • • • • • • • • •
0.75 9 • • • • • • • • •
0.90 7 • • • • • • •
0.95 3 • • •

residents, including feelings of a lack of security and safety,
monetary value of property loss from criminal acts, and lost
earnings due to injury or death. Hence, it is reasonable to see
that the impact of crime on property values is significant at
the extreme quantiles 0.05 and 0.95. Land (ZN) costs money;
the larger the building lot, the more potential home buyers
will have to pay to acquire their “house and land” as a pack-
age. Houses built on sizable lots (over 25,000 square feet per
town) will tend to have larger interior space and more likely
to be more luxurious, and hence may cost more. All of them
will lead to a higher housing price than a smaller house built
on a smaller lot. People prefer waterfront views (CHAS), and
thus houses with views tend to cost more. People are also
willing to pay more for waterfront properties. Scatterplots
for these four predictors are displayed in Figure 1. There is a
clear tendency for housing price (CMEDV) to fall with per
capita crime (CRIM), but one can also detect several other
features from the scatterplots.

6. CONCLUSION AND DISCUSSION

We have introduced the QR-SSVS procedure for quantile
regression using the asymmetric Laplace distribution.
Expressing this distribution as a location-scale mixture of
normals allows us to make use of conditional conjugacy
after introducing latent variables. Consequently, all condi-
tional distribution necessary to implement Gibbs sampling
are distributions frequently encountered in the statistical
literature and have efficient algorithms to sample from
them. The QR-SSVS is also fast, with 11,000 samples from

the joint posterior distribution taking 4.5 seconds for the
simulated data and around 17 seconds for the complete
Boston housing data on a Pentium 4 dual core 3.2Ghz
running Ubuntu Linux. Given the sample with the burn
in discarded, we can simultaneously obtain PMPs and
the corresponding estimates of the associated regression
parameters. Simulations have shown that the assumption of
the asymmetric Laplace likelihood performs well for many
different true data generating likelihoods.

Simulations have also suggested that on average, the
model selected by QR-SSVS outperforms the model selected
by frequentist methods. This was more noticeable at the
extreme quantiles, where we observed that the frequentist
method had a higher type I error rate. The 95% credible in-
tervals for βγ obtained using QR-SSVS contained the true
values in a higher proportion of simulations than the fre-
quentist 95% confidence intervals obtained using the default
method in R. Finally, based on 10 fold cross-validation on
the Boston housing data, the predictive performance of QR-
SSVS using model averaging proved superior to the single
model selected by the frequentist method at all quantiles.
The greatest improvement over the frequentist method was
observed at τ = 0.95, backing up the recent findings of Li
et al. (2010) who also noticed poor performance of the fre-
quentist method at the extreme quantiles.

The QR-SSVS model can be extended to let τ be a dis-
crete random variable taking values τ1, τ2, . . ., τR with prob-
abilities p1, p2, . . . , pR respectively. Defining δr, r = 1, . . . , R
as I(τ = τr), where I(τ = τr) is equal to 1 if τ = τr, 0 other-
wise and defining d to be a vector with rth element δr, our
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Table 6. MIPs, posterior summary and frequentist estimates of the Boston Housing data, presented for τ = {0.05, 0.5, 0.95}
Posterior 95% credible Frequentist 95% rank

MIP median interval estimate interval

τ = 0.05

LON 0.987 −0.726 (−1.313, −0.092) -0.676 (−1.057, −0.502)
LAT 0.710 0.088 (−0.222, 0.651) 0.110 (−0.122, 0.431)
CRIM 0.997 -0.901 (−2.322, −0.224) −1.314 (−9.633, −0.394)
ZN 0.705 0.000 (−0.731, 0.803) 0.126 (−0.712, 0.581)
INDUS 0.734 0.000 (−0.774, 0.957) 0.530 (−0.566, 0.807)
CHAS 0.816 0.000 (−2.190, 2.052) −0.591 (−∞, 1.583)
NOX 0.830 −0.382 (−1.691, 0.459) -0.507 (−1.510, 0.560)
RM 1.000 1.799 (0.901, 2.814) 1.525 (1.132, 2.644)
AGE 0.852 −0.437 (−1.381, 0.233) −0.413 (−1.493, 0.000)
DIS 0.960 −1.019 (−2.219, 0.000) −0.960 (−2.085, −0.409)
RAD 0.824 0.370 (−0.610, 1.984) 1.009 (−0.266, 2.442)
TAX 0.998 −2.180 (−3.650, −0.741) −2.482 (−3.446, −1.614)
PTRATIO 0.934 -0.622 (−1.338, 0.020) −0.705 (−1.212, −0.180)
B 0.963 0.571 (0.000, 1.207) 0.629 (0.397, 1.093)
LSTAT 1.000 −2.687 (−3.888, −1.554) -2.873 (−3.491, -1.554)

τ = 0.5

LON 0.996 −0.563 (−0.960, -0.163) −0.495 (−0.989, −0.287)
LAT 0.867 0.194 (−0.057, 0.505) 0.249 (−0.007, 0.504)
CRIM 0.998 −0.953 (−1.399, −0.271) −1.203 (−1.282, −0.222)
ZN 0.998 0.728 (0.224, 1.198) 0.835 (0.422, 1.150)
INDUS 0.748 0.000 (−0.566, 0.355) 0.006 (−0.405, 0.302)
CHAS 0.983 1.036 (−0.023, 2.259) 0.942 (0.367, 2.108)
NOX 0.978 −0.651 (−1.309, 0.000) −0.682 (−1.213, −0.059)
RM 1.000 3.534 (2.893, 4.193) 3.516 (2.619, 4.335)
AGE 0.987 −0.617 (−1.163, −0.013) −0.637 (−1.052, −0.173)
DIS 1.000 −1.784 (−2.406, −1.163) −1.909 (−2.525, −1.379)
RAD 1.000 1.482 (0.592, 2.346) 1.733 (0.962, 2.426)
TAX 1.000 −1.917 (−2.721, −0.999) -2.099 (−2.630, −1.312)
PTRATIO 1.000 −1.428 (−1.828, −1.011) −1.485 (−1.742, −1.051)
B 1.000 1.096 (0.746, 1.445) 1.085 (0.848, 1.496)
LSTAT 1.000 −2.281 (−2.961, −1.607) −2.254 (−2.904, −1.620)

τ = 0.95

LON 0.743 0.000 (−0.773, 0.643) 0.208 (−0.383, 0.969)
LAT 0.819 0.231 (−0.481, 1.319) 0.864 (−0.841, 1.419)
CRIM 0.905 −0.795 (−2.745, 0.941) −1.484 (−3.215, 27.680)
ZN 0.927 0.782 (−0.129, 1.899) 1.120 (−0.274, 1.700)
INDUS 0.824 0.000 (−1.349, 1.622) 1.023 (−1.991, 3.836)
CHAS 0.988 3.143 (0.000, 9.029) 3.026 (0.387, ∞)
NOX 0.978 −1.778 (−3.938, 0.031) −1.739 (−6.260, 0.027)
RM 1.000 3.675 (2.666, 4.775) 3.647 (2.549, 5.003)
AGE 0.815 0.000 (−1.353, 1.234) −0.900 (−2.432, 2.194)
DIS 1.000 −2.933 (−4.492, −1.516) −3.047 (−5.083, −1.666)
RAD 1.000 5.818 (3.162, 8.239) 7.968 (2.767, 9.909)
TAX 0.920 −1.041 (−3.481, 0.716) −2.943 (−5.380, 1.858)
PTRATIO 1.000 −2.546 (−4.115, −1.023) −2.190 (−5.067, −0.852)
B 0.891 0.615 (−0.628, 2.320) 0.934 (−2.763, 3.524)
LSTAT 1.000 −3.739 (−4.896, −2.556) −3.704 (−4.147, −2.936)

suggestion would be to consider the likelihood l(y|β,λ,d) as
(8)

R∏
r=1

{
τnr (1− τr)

nσ−n exp

{
−σ−1

n∑
i=1

ρτr (yi − xi
Tβ)

}}δr

.

Thus, conditional on δr = 1, we obtain the AL likelihood

with skewness parameter τr. To complete this model specifi-

cation, we assume that jointly, d comes from a multinomial
distribution with parameters (1,p), where p is a vector with
rth element pr. The probabilities p could all be set equal
to 1

R . Alternatively, to allow more flexibility, we can use
the fact that the Dirichlet distribution is conjugate to the
multinomial distribution and let p ∼ Dirichlet(1, 1, . . . , 1).
This is equivalent to a multivariate version of the uniform
distribution on p.
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Table 7. Mean weighted absolute deviations assessing predictive accuracy using 10 fold cross validation. M.A. denotes model
averaged

QR-SSVS QR-SSVS M.A. Frequentist
τ Mean SD Mean SD Mean SD

0.05 0.318 0.032 0.306 0.023 0.321 0.036
0.1 0.565 0.060 0.550 0.051 0.554 0.061
0.25 1.101 0.141 1.087 0.116 1.097 0.128
0.5 1.580 0.194 1.576 0.194 1.600 0.189
0.75 1.524 0.310 1.521 0.310 1.552 0.311
0.9 1.030 0.291 1.026 0.295 1.062 0.282
0.95 0.681 0.227 0.670 0.222 0.823 0.266

Figure 1. Scatter plots for CMEDV vs (CRIM, ZN, CHAS, TAX) where each predictor has been standardized.

A final point to note is that in applications of quan-
tile regression, censoring is often encountered. This should
not cause any real problems in general as it can be han-
dled as missing data. This missing data could then in the-
ory be predicted by averaging over all the models visited

at all quantiles using the extensions to QR-SSVS described
above.

QR-SSVS was implemented using the R function
SSVSquantreg, which is to appear in the next version of
the package MCMCpack (Martin et al., 2009).
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APPENDIX

The greatest amount of computation involved in QR-
SSVS is evaluating g(γ) necessary to sample from
γj |γ−j ,w,λ, π0. We can use ideas from Dongarra et al.
(1979) to re-evaluate g(γ) efficiently when 1 component of
γ is altered. The fact that Cholesky shuffling methods of
Dongarra et al. (1979) can speed up the computation of the
likelihood component of the conditional posterior of each
indicator variable was first suggested by Smith and Kohn
(1996)to both augment a Gaussian prior with a point mass,
and then marginalize out the regression coefficients analyt-
ically to give an efficient Gibbs sampler.

The idea is to find the Cholesky decomposition of the
matrix

[X̃γ ũ]′[X̃γ ũ] =

[
X̃γ

′
X̃γ X̃γ

′
ũ

ũ′X̃γ ũ′ũ

]
.

The Cholesky matrix, S̃, can be expressed in the following
form

S̃ =

[
S ξ
0′ ψ

]
from which it is evident that

S′S = X̃γ
′
X̃γ ,(9)

S′ξ = X̃γ
′
ũ,(10)

ξ′ξ + ψ2 = ũ′ũ.(11)

Equation (10) implies that Sβ̂γ = ξ. Substituting this into

equation (11), we find that ψ2 is equal to ‖ũ − X̃γβ̂γ‖2.
Also, since S is upper triangular, we have

|X̃γ
′
X̃γ | =

pγ∏
j=1

S2
jj .

Hence, S̃ holds all the necessary information to calculate
g(γ). Altering 1 value of γ requires S̃ to be updated when

a column is added or removed from X̃γ . Deleting a column
involves obtaining the Cholesky decomposition of the matrix

E′[X̃γ ũ]′[X̃γ ũ]E, where E denotes a permutation matrix

such that post-multiplying [X̃γ ũ] by E moves the column
of interest to the final position. This can be achieved by

first post-multiplying S̃ by E and then pre-multiplying with
a sequence of orthogonal transformations mainly involving
Givens rotations until the final matrix satisfies the proper-
ties for it to be a Cholesky matrix. The desired Cholesky
matrix is the sub matrix with the final row and column
deleted. To add a column x̃new, it is necessary to solve the

upper triangular system S′ξ = [X̃γ ũ]′x̃new, and then cal-
culate ψ from ξ′ξ+ψ2 = x̃′

newx̃new. The vector ξ forms the
final column of the new Cholesky matrix and a new row of
zeros is added. The element in the bottom right position
is set equal to ψ. Then, we can proceed in the same way
as if we were deleting a column, except that E is such that

post-multiplying [X̃γ ũ] by E moves the final column to the
position that it would have appeared if it had been present.
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