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The Bayesian covariance lasso
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Estimation of sparse covariance matrices and their inverse
subject to positive definiteness constraints has drawn a lot of
attention in recent years. Frequentist methods have utilized
penalized likelihood methods, whereas Bayesian approaches
rely on matrix decompositions or Wishart priors for shrink-
age. In this paper we propose a new method, called the
Bayesian Covariance Lasso (BCLASSO), for the shrinkage
estimation of a precision (covariance) matrix. We consider a
class of priors for the precision matrix that leads to the pop-
ular frequentist penalties as special cases, develop a Bayes
estimator for the precision matrix, and propose an efficient
sampling scheme that does not precalculate boundaries for
positive definiteness. The proposed method is permutation
invariant and performs shrinkage and estimation simultane-
ously for non-full rank data. Simulations show that the pro-
posed BCLASSO performs similarly as frequentist methods
for non-full rank data.

KEYWORDS AND PHRASES: Bayesian covariance lasso, non-
full rank data, Network exploration, Penalized likelihood,
Precision matrix.

1. INTRODUCTION

Shrinkage of a high-dimensional covariance matrix or its
inverse, known as the precision or concentration matrix, par-
ticularly when the dimension of the matrix (d) is larger than
the sample size (n), has drawn a lot of attention in recent
years. The abundance of high-dimensional data in struc-
tural and functional magnetic resonance imaging where a
few dozen subjects are scanned with each scan having thou-
sands of voxels or hundreds of regions of interest [14], spec-
troscopy, climate studies and many other applications are
just a few examples. Another motivation is due to the ma-
jor use of precision matrices in statistical tools like princi-
pal component analysis, linear and quadratic discriminant
analysis, inference on the mean parameters, analysis of inde-
pendence and conditional independence in graphical mod-
els, and so on. They all require estimation of the covari-
ance or precision matrix. The precision matrix has a partial
correlation interpretation— off-diagonal elements represent
the conditional covariances between the corresponding vari-
ables. The results can be summarized in a graph by linking
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conditionally dependent variables, thereby providing an un-
derstanding of how variables, such as the genes or regions
of the brain, are related to each other. Hence it is suitable
for network exploration.

In-depth theoretical studies of the sample (empirical) co-
variance matrix S have shown that without regularization,
the sample covariance matrix performs poorly in high di-
mensional settings, hence stimulating research on alterna-
tive estimators. When the dimension of the matrix is large,
the largest eigenvalue can be very large compared to the
smallest eigenvalue, resulting in a large condition number
and unstable estimators for the precision matrix S~!. In
practice, when n is relatively small compared to the dimen-
sion d, the S matrix approaches singularity, therefore lead-
ing to unreliable estimates for the precision matrix S~!. In
many cases, such a situation may lead to near-zero eigenval-
ues for S. The problem is even more serious for non-full rank
data (when n < d). In this case, S has a maximum rank of
n which is smaller than its dimension d, and therefore S is
singular.

In the frequentist framework, significant work has been
done on model selection and precision (covariance) matrix
estimation in Gaussian models [1, 8, 11, 12, 31]. The original
paper by Dempster [6] introduced the idea of shrinkage es-
timation which forces some elements of the precision matrix
to be zero. In its infancy, the methods for shrinkage esti-
mation involved two steps: (i) identify the “correct” model
by determining which elements are zero; (ii) estimate the
parameters for the non-zero elements. Edwards [9] has dis-
cussed some standard approaches for identifying the model,
such as greedy stepwise forward-selection and backward-
elimination procedures, achieved through hypothesis test-
ing. Drton and Perlman [8] proposed a conservative simul-
taneous confidence interval to select a model in a single step
as an improvement. [1] and [12] proposed the graphical (co-
variance) lasso (CLASSO) penalty to force some elements of
the precision matrix to zero and simultaneously estimate the
rest of the elements. [11] extended the CLASSO approach to
the adaptive covariance lasso (ACLASSO) and the smoothly
clipped absolute deviation penalty for covariance estimation
(CSCAD). [31] and [22] used a penalty on the off-diagonal
elements only and called their estimator the sparse permu-
tation invariant covariance estimator (SPICE).

Among Bayesian shrinkage methods, [29] used reference
priors on the eigenvalues of the covariance matrix to regu-
larize the eigen structure. Smith and Kohn [27] decomposed
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the precision matrix © as © = BD BT where B is a lower tri-
angular matrix with 1’s on the diagonal and D is a diagonal
matrix. They introduced priors on the elements of B and D.
[13] extended this idea and used a Cholesky decomposition
on the covariance matrix V = CC™, where C' is a lower tri-
angular matrix. They also discussed how the ordering of the
data can change the zero patterns. These methods use priors
on the Cholesky factors and therefore are not permutation
invariant; they may not be rational choices when there is
no natural ordering of the parameters in the matrix. [2] de-
composed the covariance matrix as ¥ = diag(s)R diag(s),
where s is the d x 1 vector of standard deviations and R is
the d x d matrix of correlation coefficients. They used priors
on individual elements of these matrices. [28] extended this
idea to the precision matrix © and decomposed © = TCT™,
where T = diag(Th,...,Ty) is a diagonal matrix such that
Ty, are the inverse of the partial standard deviations and C'
is a correlation matrix with Cgr = 1 and Cips —pgr for
all k # Ek’. The graphical methods of [3, 21] rely on hyper-
inverse Wishart based sampling. These two-step methods
need to exploit decombosibility structures of the graphs,
which may not be the case for unstructured precision matri-
ces. Moreover, they only use Wishart priors and are unable
to exploit other types of penalties.

The single-step Bayesian methods primarily rely on pri-
ors on the elements arising from some sort of decomposition
of the precision (covariance) matrix, which do not readily
translate to any recognizable priors on the elements of the
precision (covariance) matrix itself. Furthermore, most of
these methods are based on sampling the elements of the
matrix one at a time which is not efficient. Specifically,
these methods pick a single element at a time, find an ap-
propriate boundary that yields a positive definite matrix,
and then draw a sample of this element. Drawing one el-
ement at a time is inefficient, and coupled with the ad-
ditional computational complexities in computing bound-
aries for the elements, these methods are not suitable for
high-dimensional matrices. The full posterior distribution
of the elements of the precision and covariance matrices un-
der lasso-type penalties have not been explored. The direct
L, penalties on the elements of the covariance matrix have
not been studied in the Bayesian framework. There appears
to be a lack of a connection between the popular frequen-
tist penalized approaches and their Bayesian competitors.
Our goal is to build a bridge between the frequentist and
Bayesian approaches to covariance estimation.

We propose generalized priors which include common fre-
quentist penalties like the adaptive lasso penalty of [11], the
lasso (L1) penalty of [12], and the SPICE penalty of [22] as
special cases. Then we introduce a new Bayesian approach
for sampling from the posterior distribution of the precision
matrix one whole column at a time and rely on multiple
tries to achieve the desired acceptance rate. The proposed
method is particularly attractive and efficient compared to
the existing single-step methods as it updates the matrix one
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entire column at a time (on the order of d) instead of one
element at a time (on the order of d?). Our sampling scheme
rejects any sample that is not a positive definite matrix and
is permutation invariant. In addition, the method is based
on specifying priors directly on the elements of the preci-
sion matrix instead of priors on the elements of a matrix de-
composition, and the proposed method performs shrinkage
and estimation simultaneously. We also explore the poste-
rior distribution of the elements under the lasso penalty and
provide a Bayesian minimax estimator as an alternative to
the popular frequentist posterior mode estimators under L
penalties.

To illustrate the proposed methodology, we consider data
from functional connectivity Magnetic Resonance Imaging
(fcMRI) from 90 regions of interest (ROI) of 30 2-year old
children. All images were acquired on a 3 Tesla Magnetic
Resonance Imaging (MRI) scanner with a gradient echo-
planar imaging sequence. The imaging sequence was re-
peated 150 times. The images of the first 10-20 time points
were typically excluded from the data analysis to ensure
that magnetization reaches the steady state. All subjects
are healthy normal controls and imaged at sleep without
sedation. In this study, the signals were obtained from the
remaining 130 time points. Our primary purpose here is to
build a network among ROIs when there is no prior infor-
mation about the underlying structure of the network or
graph.

2. THE GENERAL METHOD

Let Y; ~ N4(0,071) for i = 1,...,n be n independent
observations, where © = (fxx) = X! is a d x d precision
matrix. Then the joint distribution of ¥ = (Y7, --,Y;,) is
given by

2 IR
p(Y]0) x (det ©) exp{ ) ;Y GK}I(G = 0),

where I(© > 0) is an indicator function of the event that
O is positive definite. S = Y7 | Y;V;"/n is the maximum
likelihood estimator of 3.

2.1 Proposed priors

We choose independent exponential priors for the
diagonal elements; 0y, ~ Exp(fr) and Laplace priors for
the off-diagonal elements 6y ~ Laplace(0, bgy:) for k > &/
and k, K .,d. Then, the posterior distribution of ©,
p(O[Y), is given by

- g .

d d d k-1
(det ©)2 H exp {—gtr(S@)—Z 5k9kk—z Z brek Ok |
k=1 k=1 k=2 k'=1
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where det(.) denotes the determinant of a matrix. The
log-posterior function equals

(1) logp(®|Y) = glogdet e — gtr(SG)
d d k-1

= Bk — Y D i |Orir | + C,
k=1 k=2 k'=1

where C' is a constant independent of ©. The popular
frequentist penalized likelihoods including ACLASSO,
CLASSO and SPICE can be derived from (1) as spe-
cial cases as follows. If we choose Br = mndAi/2 and
bekr = ndAgg (for k> k'), then (1) reduces to

d d
(2) { log det © — tr(S0) — Z Z AN ggr |G | } +C.
k=1k'=1

[11] optimized equation (2) as the objective function in
the ACLASSO method, which can be interpreted as the
posterior mode under Exp(ndgi/2) priors for the diagonal
elements and Laplace(nd\gy/) priors for the off-diagonal
elements of the precision matrix ©.

If we set by = 28r = np, the priors for Oy are i.i.d
Exp(np/2) and the Oy are i.i.d Laplace(np) for k > k.
Then (1) reduces to
log p(O[Y)

3) —pll®lln} +C,

= g {log det © — tr(SO)
where [|0]];, = X¢_, S _ |0k is the I; norm of ©. [1]
optimized equation (3) in their covariance selection method
(ignoring n/2), while [12] also optimized equation (3) in
their CLASSO method, which is essentially the posterior
mode under Exp(np/2) priors for the diagonal elements and
Laplace(np) priors for the off-diagonal elements of ©. [1]
has shown that (3) is concave in ©, which yields that the
posterior distribution of © is unimodal. Hence, we will use
Exp(np/2) priors for the diagonal elements and Laplace(np)
priors for the off-diagonal elements of © so that our log-
posterior is the same as the objective function of CLASSO
in (3).

If we choose not to penalize the diagonal elements of ©,
then we can let the hyperparameter 85 approach 0 (8x — 0)
or equivalently choose improper uniform priors on (0, co) for
the diagonal elements of ©. In that case, (3) further reduces
to
(4) logp(OlY) =

- {logdet 0 —tr(S0) — p||07 |1, } + C,

where ©~ has the same off-diagonal elements as © but all
the diagonal elements are zero. [31] and [22] used equa-
tion (4) as their objective function (ignoring n/2 and C)
and calculated the posterior mode in their SPICE method.

2.2 Full conditionals

For k =1,...,d, we partition and rearrange the columns

of © and S as follows:
> and S(STMC sk),
S Skk

O ki O
6) ©= < 0y Okk
where 6y is the kth diagonal element of O, 6, =
Ok1s-- Ok k=1, 0k k1, - - -, Oka)” is the vector of all off-
diagonal elements of the kth column, and ©_j; is the
(d —1) x (d — 1) matrix of all the remaining elements, i.e.,
the matrix resulting from deleting the kth row and kth col-
umn from 6. By using the Schur decomposition [25], we
have det(©) = det(O_kr)Dg, where Dy = (0 — Cx) and
Cr = 0;@:,1€k0k are scalar quantities. Similarly, sgx is the
kth diagonal element of S, sy, is the vector of all off-diagonal
elements of the kth column of S, and S_gj is the matrix of
all remaining elements.

Our primary aim is to sample from the posterior distri-
bution of the kth column of © for £ = 1,...,d. It follows
from (3) that the conditional densities for 0y, and 6 can
be written as follows:

n n
P(Oik|Y, 0k, ©_ki, p) x D7 eXp{_§(5k:k + p)0ri},

(6) 2Ok + pl|Okll1,)}

n n
P(Ok]Y, Ok, © i, p) < D eXP{—§(5
X I(Dk > 0),

where I(A) is the indicator function of the event A. The
derivation of (6) is given in Appendix I. Under the SPICE
penalty, the full conditional distribution for 8% is the same
while the full conditional distribution for 6y changes to

n n
P(Okr]Y, Ok, © ki, p) < D eXP{*gskk%k}-

Note that in (6), we could replace Dy, by det(©) which is

computed faster than Dy since BZ@:}CkOk requires inverting
a (d—1) x (d — 1) matrix and then computing a quadratic
form of the same order. However, we will need to compute
9;5(9:;1@ 0% to sample the diagonal elements 05 and we will
not require any additional computations when sampling the
off-diagonals 8;,. We are led to the following theorem whose
proof is given in Appendix I.

Theorem 1. Suppose we start with a positive definite cur-
rent value of © and sample from

n n
P(OkilY, 0k, 0 1) < DZ exp {_§(Skk + P)9kk}7

2
X I(Dk > 0),

P(O0r|Y, Ork, ©_kx) o< DZ exp { — —(sk + pv) ek}

where v, = (Vk1y .-, Vka)® and Ygrr = sign(Or) for k' =
1,...,d. This sampling process guarantees that we sample
positive definite values of © at all subsequent steps.
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Theorem 1 ensures that the Bayesian covariance lasso
(BCLASSO) can achieve positive-definiteness for any non-
negative penalty parameter p.

2.3 Proposed sampling scheme

Gibbs sampling for the diagonal elements is straightfor-
ward since their full conditionals are available in closed form.
The full conditionals for the off-diagonals are not avail-
able in closed form and therefore we will use the standard
Metropolis-Hastings algorithm within Gibbs to sample the
off-diagonal elements. In many applications, the off-diagonal
elements are nearly symmetric suggesting a normal proposal
density as a suitable choice. The mean of the proposal den-
sity is chosen to be the current value of © and the choice of
the variance of the proposal density is determined from the
Hessian matrix. We can write

log p(0x|Y, Okr, © ki) = 0.5n {log Dy, — (s + pv;,) 0k} +C.

The first-order derivative of the logarithm of full conditional
distribution with respect to 0j is O.5n{Dk_lD,(€1) — (sk +

p’yk)}, where D,(cl) = *29:11%016 is the first-order derivative
of Dy, with respect to 8. The second-order derivative matrix
of the logarithm of the full conditional distribution with
respect to 6 equals

~0.50{D; (D' DYDY + D)),

where D,(f) = 72@:]1]€ is the second-order derivative of
Dy, with respect to 0. Therefore, the covariance matrix
eDy(D;' DMV DT —
D,(Cz))’1|@:Q, where @ is a suitable estimate of © (such
as S71 (S +al)™ta > 0, etc.) and ¢ > 0 is the vari-
ance tuning factor discussed below. Note that Vj is pos-
itive definite almost surely as long as @ is positive defi-
nite. Our proposal density is therefore taken as ¢(6y) =
Ng_1(0%,V4,), where % is the current value of the k-th off-
diagonal column at iteration t. If x is the proposed value for
BZH, then the Metropolis-Hastings acceptance probability is
a = min {1, p(z|Y, Ok, © k) /P(OL|Y, Okr, O—_k) . There-
fore, we set 0?‘1 = x with probability a and 0?‘1 = 0’,2.
with probability 1 — «.

There are several possible sampling strategies. We could
sample © one element at a time, but that will be on the order
of d?, which is less efficient and ignores the possible corre-
lations between the elements in the same column. We could
also sample only the lower triangular off-diagonal elements,
in which we would sample the d — 1 vector (612,...,614)
first, the d — 2 vector (a3, . ..,024) second, and so on. This
would update all the elements of © by virtue of symmetry,
which might be the most efficient way of sampling. How-
ever, this sampling procedure still ignores the correlations
between the upper triangular elements and the lower tri-
angular elements within the same column. We recommend
sampling the whole off-diagonal column all at once, which

of the proposal density is Vi =
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yields an algorithm on the order of d. Updating the whole
off-diagonal column has another advantage in that each 6y
(k # k') has two chances to get updated. We update 0/
when we update column k£ and again when we update col-
umn k' due to O = Opsi. For each cycle, the latter updated
value of 0y, will replace the first updated value. Thus, this
will result in one-step thinning to reduce autocorrelations
between samples. Thus the actual replacement rates for the
individual elements (0x ’s) are higher than the acceptance
rates of the columns 6. Our computations show that the
replacement rate is roughly (1 —acceptance rate)?, implying
that the acceptance of column k and column k' (k # k') are
nearly independent. This implies that, if we target an aver-
age replacement rate of 36%, which is enough for an ideal
sampling scheme, we will need an average acceptance rate
for a column to be around 20%. Therefore, we can use fewer
tries and/or a larger variance to obtain an ideal sampling
scheme.

Variance tuning will, in most cases, result in shrinkage.
We tune the variance in cases where the estimate @) of the
parameter O leads to an unusually high variance of the pro-
posal density. Such a situation can lead to too many draws of
multiple try method, small acceptance rates, and high auto-
correlations among sampled elements. This can also happen
when we take Q = S~!, where S~ is still positive definite
but the sample size is small relative to the dimension, lead-
ing to an inflated Vj. For high-dimensional cases, when S is
singular or close to singular, we can choose @ = (S +al)~!
for a suitable a > 0, that is we add a small constant to the
diagonals to make ) positive definite. This can also help
in making Q more stable when n is not sufficiently large
compared to d, since for larger d/n the smaller eigenvalues
approach zero to destabilize the inversion.

Shrinking the variance too much can lead to a failure in
exploring the full range of values for 6, and also result in
high autocorrelations among the elements. Similar problems
also arise when there is no shrinkage at all. Thus, in order to
optimize the acceptance rates, we shrink the variance mod-
erately and combine that with the multiple try method pro-
posed by [17] with some modifications as discussed below.
A combination of shrinkage and multiple tries is necessary
since we have the positive definiteness constraint coupled
with the high dimension d of ©. Figures 1 and 2 show the
trace plots and autocorrelations for 3 different choices of
the proposal density variance. Ideal shrinkage will lead to
nice looking trace plots and greatly reduce the autocorre-
lations among successive values. The use of multiple tries
can lead to faster convergence requiring fewer burn-in sam-
ples. We can now formally state our algorithm for the k-th
off-diagonal column as follows:

1. Draw m independent vectors, wi,...,w,, from the
symmetric proposal density Ny (0%, Vi), where m is
the number of tries; in our simulation we choose m = 5.

2. If I1(Okr — w?@:ikwj >0)=0foral j=1,....,m
then do not replace 0, and stop; otherwise select
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Figure 1. Trace plots of 815 for d =5 and n = 10 showing the impact of variance tuning of the proposal density.

w, from ws,...,w,, with probability proportional to in the same form as (6) where 6y, is replaced by w; and x;,
p(w;|0kk, ©_kk). Denote the selected vector as w. respectively.
3. Draw aj,...,z},_; from Nyg_q(w,Vy), and denote For the BCLASSO method, we have several options for
xk, = 02, choosing the hyperparameter p. First, we can choose a con-
4. Replace 02 by w with probability jugate gamma-type hyperprior for the penalty parameter.

If we choose p ~ Gamma(ag, fp), then it could be sam-

min {1 p(wi]Okk, O—i) + -+ + p(wim Ok, @—kk)} pled using the Gibbs sampler. The full conditional of p is
" p(@]0kk, O—kk) + -+ (2 |0k, O—kk) ) plag, 80, ©,Y ~ Gamma(ao, Bo + ||O]]i,). This choice re-

quires choosing appropriate values of the hyperparameters
g and Sp; one could choose noninformative hyperpriors for
Note that, in the above scheme Vj remains constant for all large samples, however, for small samples the choice is not
MCMC samples; p(w;|0kk, ©—r) and p(z}|0kk, © k) are trivial as it has to be informative to impose penalty. An

where p(x}) oc p(]|0kk, O—kk).
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Figure 2. Autocorrelation plots for 015 for d =

alternative is to choose the penalty parameter via cross-
validation using the log-likelihood as a maximizer; we chose
5-fold cross-validation for the optimal choice of penalty pa-
rameters for each method.

We first compute BCLASSOm, which is the minimax es-
timator under the Li-penalty [29]. Since BCLASSOm esti-
mates all of the elements of © as non-zero, similar to poste-
rior means, we also compute adhoc BCLASSOs estimators
by forcing credible interval-based sparsity. That is, we con-
struct the credible intervals and force an element of BCLAS-
SOm to zero if the interval contains zero. Sparsity can be
controlled by either the penalty parameter p or the width
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5 and n = 10 showing the impact of variance tuning of the proposal density.

of the credible interval. A larger p or a prior with a larger
mean will lead to a more sparse matrix when the width of
the credible interval is fixed. A wider credible interval will
also lead to a more sparse matrix when the penalty p or its
prior mean is fixed. We found a credible interval or around
30% to be ideal. Forcing some elements to zero can the-
oretically result in non-positive definite matrices, however,
they are positive definite with high probability given a small
credible region is chosen (we suggest below 30%). Our sim-
ulation of 600 samples have all resulted in positive definite
matrices as evidenced by the ability to compute finite L,
losses for all cases, since any zero eigenvalue will result in



infinite loss and negative eigenvalue would lead to an un-
defined loss. This credible-interval based thresholding has
probabilistic interpretation and deserves further attention
in other Bayesian estimation problems in which there is a
need for sparsity. The threshholding also allows network ex-
ploration since forcing some zeros is the key in such network
building.

2.4 Credible regions

Suppose we have E MCMC samples ©1,...,0g from the
posterior distribution of the d dimensional precision matrix
O and let ¥, = log(B.) be the matrix logarithm of the
e—th sample and ©, = exp(¥.) be the matrix exponential
of W,.. Note that, if A\1,..., \q are the eigenvalues of © and
Y1, ..,7q4 are the eigenvalues of ¥, then v, = log(\x) for
k= 1,...,d. Now, let ¥ is the posterior arithmetic mean
of ¥y,...,¥g then Og = exp(V) is the posterior geometric
mean of ©,. We define the Euclidean distance between ¥, =
(te.ka) and the posterior mean ¥ = () given by

d

>

kk/=1

2
dpe =V, — V|3 = { (Ve s — 1/_%1@/)0'5} .

Then, we sort the ' samples according to the values of dg
and then use (dg,o/2,dE,1-a/2) as the (1 —a)100% credible
region for W. Finally, we obtain (exp(dg, q/2), exp(dg1-a/2))
as the (1 — «)100% geometric confidence region for ©.

3. SIMULATION STUDY

We used simulations to compare the performance of our
BCLASSOm and BCLASSOs estimators with the three
frequentist penalized likelihood methods namely, CLASSO
[12], ACLASSO [11], and CSCAD [11]. Among the Bayesian
methods, the [29] method uses shrinkage on the eigenval-
ues. This is infeasible in our non-full rank setting as some
of the eigenvalues are zero since the dimension of © is
larger than the sample size (hence the matrix is singular).
In [27] and [28], an element-wise sampling was used and
does not specify a recognizable prior on the precision (co-
variance) matrix. We restrict our comparison to permuta-
tion invariant methods that work for non-full rank data, use
priors and l;-type penalties directly on the elements of the
precision matrix, and perform simultaneous shrinkage and
estimation.

For the simulation, we fixed the dimensionality d and
considered 3 unstructured and 3 structured matrix types.
Among the unstructured types, the sparse matrix has at
least 80% zeros on the off-diagonals, the moderately sparse
one has at least 40% zeros on the off-diagonals, and the
dense matrix has less than 5% zeros on the off-diagonals.
The structured matrix types are tri-diagonal, autoregres-
sive order one (i.e., AR(1)), and diagonal. In each case, we
first generated a precision matrix. Then we generated 100
datasets for a non-full rank case where the sample size is

less than the dimension (d = 20,n = 10) and compared the
performance of each method based on those 100 samples.

We relied on a Cholesky decomposition to generate the 3
unstructured positive definite precision matrices of different
sparsity levels. We generated a matrix A = (agg) such that
agr = 1, agpr = U[—.5,.5] with probability p and agp = 0
with probability 1 — p for & < K/, and agy = 0 for k > K.
Then we computed © = AA™ and ¥ = ©~!. The degree of
sparsity was controlled by p, where a smaller p leads to a
more sparse matrix. A tridiagonal precision matrix results in
an AR(1) covariance matrix. In this case, the elements of the
covariance matrix ¥ are oy = exp(—q|rp—ry|), where ry <
... < rq for some g > 0. Here, we chose 7 —r_1 to be i.i.d
from UJ0.5,1] for ks = 2,...,d. An AR(1) precision matrix
results in a tridiagonal covariance matrix and we generated
the elements Oy, = exp(—q|rr — r1/|) as above. A diagonal
precision matrix results in a diagonal covariance matrix; in
this case, we generated the diagonal elements of 3 where oy,
are independently generated from U[1,1.25] for k =1,...,d.
For the BCLASSOs estimators we used thresholding on the
elements of BCLASSOm based on 30% credible intervals.
This choice of the credible intervals is arbitrary and will
depend on the choice of the penalty parameter p or the
value of the hyperparameters on the prior of p.

3.1 Criteria for comparison

There are several loss measures proposed for evaluating
the performance in estimation of the precision and covari-
ance matrices as discussed in [29]. Among these, the entropy
loss, denoted as L, and the quadratic loss, denoted as Lo,
are the most commonly used. The L, and L5 loss functions
for © are defined as

L1(0,0) =tr(0710) — logdet(0710) — d,

(7) . A
Ly(0,0) =tr(07'0 — 1)

where vec(A) = (a11, -+ , @14, + ,@d1,-** ,aqq)" for any dx
d matrix A = (ak). Similar loss functions for % will result
in the Bayes estimators X7, = {E(0|Y)}~! and

vee(3r,) = {E(© @ 0]Y)} tvec{E(O|Y)} !,

respectively. We use Oy, = {E(Z|Y)}"! and ¥, =
{E©]Y)}~! in our simulation studies as the BCLASSO
estimators for © and Y, respectively. Since @L2 and 3 Lo
are computationally less efficient, requiring inversion of a
d? x d? matrix at each step of the Monte-Carlo sampling,
we do not use them in our simulation. Our estimators O,
and 3 1, in the simulation are Bayes under the L; loss, but
not under the L5 loss. Nevertheless, we were able to achieve
reasonable Ly loss for 6 1, and » , in our non-full rank sim-
ulation cases. Moreover, using Li-Bayes estimators is more
intuitive since we are using an L; penalty. Another mea-
sure known as the matrix correlation was defined by [10]
as R(©,0) = tr(00)/{tr(00)tr(60)}/2. In this measure,
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(d) Diagonal

(e) Tridiagonal
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Figure 3. Image plots of the six types of precision matrices () considered in the simulation study. The top 3 are unstructured
and the bottom 3 are structured.

the closer the estimator © is to ©, the higher the value of
R(O, é) We compared our estimates @L1 and iLl with the
CLASSO, ACLASSO, and CSCAD methods for the L loss,
the Ly loss, and the matrix correlation based on 6 different
matrix types of dimension 20. For each of the 6 matrix types,
we used 100 Markov chain Monte Carlo (MCMC) samples
of size 10 each. For all cases we choose Q = (S +al)~! with
a = 0.1, the number of tries as m = 5, the value of ¢ = 0.5
was chosen to get about a 30% acceptance rate. We collected
10,000 MCMC samples after 5,000 burn-in, which gave us
an average computation time of about 10 minutes for each
simulation.

We can also define the L; and Lo loss functions for X
in a similar fashion. The optimal estimators minimize these
loss functions. [29] showed that the Bayes (hence minimax)
estimators of © under Ly and Lq are, respectively, given by

Or, =06, ={EEZY)},
vec(Or,) = {E(X @ 2|Y)} tvec{ E(Z|Y)} L.

3.2 Results

Table 1 summarizes the mean L losses and their stan-
dard deviations for the six types of precision and covari-
ance matrices. The CSCAD method performs poorly in
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terms of Lq loss for small sample non-full rank cases for
all types of structures in both the precision and covariance
matrices. For both the precision and covariance matrices,
CLASSO, SPICE, ACLASSO, BCLASSOm, and BCLAS-
SOs perform similarly. Table 2 summarizes the mean Lo
losses and their standard deviations for these four meth-
ods. For all structures, except the diagonal case, CSCAD is
worse than CLASSO, SPICE, ACLASSO, BCLASSOm and
BCLASSOs, while these five methods perform somewhat
similarly for all six structures compared. Only for the diag-
onal precision matrix does CSCAD perform the best among
the 5 methods compared. Table 3 summarizes the mean ma-
trix correlations and their standard deviations. In terms of
the matrix correlation measure R(©, ©), CLASSO, BCLAS-
SOm and BCLASSOs perform somewhat similarly in both
the precision and covariance matrices. The ACLASSO and
SPICE methods perform similarly in the precision matrix,
but they are worse than BCLASSO and CLASSO in the co-
variance matrix. The CSCAD method performs the worst
among all the methods in both the precision and covariance
matrices for all six types of structures considered. As evident
from Tables 1 and 2, although there is minimal or no loss
in credible interval based sparsity in the precision matrix,
there are substantial gains in matrix loss for the covariance
matrix. The SPICE estimator seems to improve on the co-



Table 1. Mean L, losses (and standard deviations) for the different methods

Type CLASSO SPICE ACLASSO CSCAD BCLASSOm BCLASSOs
Sparse ) 2.38(0.43) 4.18(1.91) 5.71(2.62) 14.27(12.18) 1.82(1.11) 4.52(0.87)
b 4.03(1.03) 2.99(0.76) 5.65(1.42) 19.02(7.92) 13.65(1.70) 3.56(0.67)
Moderately S 3.29(0.52) 5.09(2.69) 6.07(2.74) 13.44(8.80) 6.09(1.29) 5.79(1.03)
Sparse b 5.76(1.42) 4.17(0.77) 6.41(1.25) 22.84(9.61) 12.93(1.89) 5.10(0.87)
Dense S 4.90(0. 3) 7.08(1.83) 7.65(2.46) 17.22(11.49) 6.87(1.17) 6.39(0.87)
b 9.53(2.24) 6.35(1.04) 9.9591.31) 31.91(27.49) 12.82(1.80) 6.04(0.69)
AR(1) S 5.44(0 57) 7.60(2.16) 8.12(2.14) 13.11(7.14) 7.02(1.15) 7.00(0.87)
b 9.53(2.24) 7.48(1.29) 7.95(1.31) 31.91(27.49) 12.42(5.97) 5.97(0.59)
Tridiagonal S 5.70(0.57) 7.99(1.83) 7.80(2.32) 19.45(9.45) 10.43(1.42) 9.27(0.95)
b 11.37(2.65) 9.37(1.79) 9.19(1.48) 24.50(9.10) 12.79(1.82) 12.18(1.16)
Diagonal e 2.41(2.75) 3.69(2.11) 7.00(3.79) 10.49(5.87) 4.31(1.46) 3.98(0.98)
b 4.23(4.74) 2.43(0.79) 7.27(5.44) 18.47(9.72) 13.81(1.67) 4.47(0.99)

Note: CLASSO = covariance lasso; ACLASSO = adaptive covariance lasso; SPICE = sparse permutation invariant covariance
estimator; ACLASSO = adaptive covariance lasso; CSCAD = smoothly clipped absolute deviation for covariance; BCLASSOm =
Bayesian covariance; lasso with L; minimax estimator; BCLASSOs = Bayesian covariance lasso with sparsity forced;

Table 2. Mean Lo losses (and standard deviations) for the different methods

Type CLASSO SPICE ACLASSO CSCAD BCLASSOm  BCLASSOs
Sparse 5} 15.26(13.94) 51.45(55.79) 96.16(111.92) 497.49(1,542.28)  50.97(19.84)  51.70(19.96)
Y 101.15(65.48) 52.58(55.77) 19.04(22.16) 1,027.38(966.93) 215.78(17.12)  50.63(19.98)
Moderately ~ © 18.11(18.66) 58.23(137.26) 87.90(144.86) 278.80(980.90) 62.54(22.77)  63.94(23.15)
Sparse Y 167.56(104.94)  62.20(142.07)  44.09(55.24) 1,457.29(1,194.27)  199.12(20.64)  59.43(22.78)
Dense e 11.38(12.00) 60.61(66.64) 91.98(111.98) 549.42(1,293.01)  33.09(18.97)  36.60(20.44)
S 244.69(146.12)  78.22(78.46) 66.76(63.69) 1,364.45(1,702.53)  177.33(23.33)  30.09(19.33)
AR(1) S 13.85(16.27) 57.19(71.12) 86.76(92.51) 208.60(664.13) 50.10(21.85)  48.95(21.75)
Y 318.06(189.03)  810.42(429.57)  95.49(88.67)  3,152.38(4,734.21)  30.46(18.40)  10.45(13.93)
Tridiagonal ~ © 11.80(13.44) 55.39(65.98) 76.50(100.36) 580.22(1,058.43)  153.65(24.70)  24.61(34.17)
Y 394.00(236.01) 17.06(17.48) 109.96(100.93)  1,433.68(1,053.86)  159.86(25.95)  88.63(27.74)
Diagonal e 4.16(52.40) 53.25(63.51) 101.06(11.52) 1.02(4.34) 51.20(20.13)  51.41(20.13)
b 75.39(217.11) 13.54(26.94) 17.84(34.07) 898.15(312.30) 223.66(15.74)  84.89(22.54)

variance over CLASSO. Performance of both SPICE and
CSCAD improves when sparsity increases. The poor per-
formance of CSCAD is somewhat surprising due to small
sample sizes.

4. APPLICATION TO REAL DATA

Example 1. The first dataset is flow cytometry data on
d = 11 proteins on n = 7,466 cells from [23]. In [23], a
Bayesian network was developed and elucidated most of the
signaling relationships reported traditionally and also pre-
dicted novel interpathway network causalities, which were
verified through experiments. The data was also used by [12]

for comparison of the agreements of CLASSO under differ-
ent values of the penalty parameter. The data was generated
from 9 simulations on 11 proteins. We adjusted the data for a
random simulation effect as well as fixed effects of simulation
and protein. Our purpose was to build a network between
proteins via partial correlations (via ©). For the maximum
likelihood network in Figure 4(b), we used a hard-threshold
that gives the same number of connections as those of [23].
The penalties for the CLASSO in Figure 4(d), ACLASSO
in Figure 4(e) and CSCAD in Figure 4(f), were obtained
through 10-fold cross validation. Since the penalties based
on cross validation resulted in a more sparse network for
these 3 frequentist methods than that of Sachs, we decided
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Table 3. Mean matrix correlations (and standard deviations) for the different methods

Type CLASSO SPICE ACLASSO CSCAD BCLASSOm BCLASSOs
Sparse 5} 0.92(0.01) 0.84(0.06) 0.87(0.02) 0.69(0.09) 0.85(0.02) 0.88(0.02)
b 0.89(0.04) 0.84(0.06) 0.76(0.06) 0.80(0.09) 0.92(0.02) 0.91(0.02)
Moderately S 0.90(0.01) 0.82(0.05) 0.86(0.02) 0.66(0.09) 0.83(0.02) 0.85(0.03)
Sparse b 0.85(0.03) 0.80(0.05) 0.74(0.06) 0.79(0.07) 0.89(0.01) 0.86(0.02)
Dense S 0.86(0.01) 0.80(0.05) 0.83(0.02) 0.64(0.10) 0.79(0.04) 0.81(0.02)
b 0.79(0.04) 0.67(0.05) 0.72(0.05) 0.70(0.05) 0.80(0.02) 0.73(0.02)
AR(1) S 0.79(0.02) 0.71(0.06) 0.78(0.02) 0.59(0.07) 0.80(0.02) 0.80(0.02)
b 0.78(0.03) 0.66(0.05) 0.72(0.04) 0.69(0.05) 0.75(0.02) 0.73(0.02)
Tridiagonal S 0.87(0.02) 0.80(0.05) 0.85(0.02) 0.66(0.09) 0.75(0.01) 0.78(0.03)
b 0.81(0.03) 0.74(0.05) 0.72(0.04) 0.77(0.05) 0.85(0.01) 0.79(0.03)
Diagonal S 0.92(0.95) 0.87(0.07) 0.85(0.89) 0.66(0.77) 0.88(0.02) 0.90(0.02)
b 0.86(0.95) 0.86(0.06) 0.72(0.78) 0.85(0.86) 0.95(0.01) 0.94(0.02)

Table 4. Agreement of Methods with the Results from Sachs
et al. (2003)

Method No Se Sp PPV NPV
Sachs 19 1.00 1.00 1.00 1.00
Maximum Likelihood 20 0.37 0.64 0.35 0.66
BCLASSO 10% 30  0.58 047  0.37 0.68
BCLASSO 20% 21 047 067 043 0.71
BCLASSO 25% 18 042 072 044 0.70
BCLASSO 30% 13 032 0.81 046 0.69
BCLASSO 35% 13 032 0.83  0.46 0.72
BCLASSO 40% 8 0.26 0.92  0.63 0.70
BCLASSO 50% 8 0.26  0.92  0.63 0.70
CLASSO 10-fold CV 10 032 0.89  0.60 0.71
ACLASSO 10-fold CV 4 0.16 097  0.75 0.69
SCAD 10-fold CV 1 0.05 1.00  1.00 0.67
LASSO p=0.21 19 047 0.72 047 0.72
ACLASSO p = 0.12 19 047 0.72 047 0.72
SCAD p=10"3 10 032 089  0.60 0.71
SCAD p=10"2° 10 032 089  0.60 0.71

CI = credible interval; No = Number of connections; Se = Sen-
sitivity; Sp = Specificity; PPV = Positive predictive value; NPV
= Negative predictive value.

to fix the penalty manually to get the same number of con-
nections. The results are shown in Figures 4(g), 5(h) and
5(1), respectively. For CSCAD, no matter how small p is,
the number of connections does not increase after a certain
point. Finally, for BCLASSO, we used a gamma prior for
the penalty parameter, p ~ Gamma(1,1), and used 80,000
MCMC samples after 20,000 burn-ins to obtain posterior
means and credible intervals. We constructed credible in-
tervals of different widths for each element as shown in
Table 4; the Bayesian network that has the closest num-
ber of connections to that of Sachs is shown on Figure 4.
The level of agreement of each of these 4 methods to those
of Sachs’ results were computed and reported in Table 4.
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The results indicate similar agreement between the networks
of BCLASSO, ACLASSO and CLASSO and [23]’s network
when the number of connections are similar.

Example 2. While it is well recognized that the human
brain forms large scale networks of distributed and inter-
connected neuronal populations, the study of different brain
networks has been hampered by the lack of non-invasive
tools. Recently, the introduction of the resting functional
connectivity MRI approach offers, potentially, a potent tool,
to specifically alleviate this difficulty, allowing a direct inves-
tigation of a wide array of brain networks. Researchers are
often interested in exploring the brain networks through par-
tial correlations where the connection between two regions
is explored after removing the effect of all other regions.

The data consists of average fcMRI signals from 90 brain
regions (d = 90) of 30 2-year old children (N = 30). All
images were acquired on a 3T MR scanner with a gradient
echo-planar imaging sequence. The imaging sequence was
repeated 150 times. The images of the first 10-20 time points
were typically excluded from the data analysis to ensure
that magnetization reaches the steady state. All subjects
are healthy normal controls and imaged at sleep without
sedation. In this study, the signals were obtained from the
remaining 130 repeats (7' = 130, so that n = NT = 3,900).
Our primary purpose here is to build a network between
regions after adjusting for subject effects and region specific
means. Let Yi;p, (1 = 1,...,N;7 =1,....T;k = 1,...d)
represent the adjusted average fcMRI signal from subject ¢
at repeat (time) j in region k. Then Y;; is the d-dimensional
vector of adjusted responses from subject ¢ on repeat j and
Yi;j ~ Nq(0,%). Let n = NT, the joint distribution of Y is
given by

N T

(Y1) o {det(©)}F exp { 5>

i=1 j=1

Yg@YM}I(@ - 0).
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Figure 4. Networks for 11 proteins from Sachs et al. (2003)

The posterior distribution of © under the lasso penalty
can be written as in (3) and the full conditionals are
given in (6). For the penalty parameter p, we take p ~
Gamma(1, 1). For thresholding, we construct credible inter-
vals of different widths to control sparsity. For CLASSO,

ACLASSO, and CSCAD, we used 10-fold cross validation
to choose the optimal penalty. We report the resulting pre-
cision matrices in Figure 5 and the networks in Figure 6. The
summary statistics of the number of connections along with
the global efficiencies Egj0p (a measure of how efficiently the
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Figure 5. Image plots of the partial correlation matrices for 90 regions of 2-year old children’s brains using the five different
methods

regions communicate in the whole brain) and local efficien-
cies Ejo. (a measure of how efficiently the regions in each
local area communicate) are reported in Table 5.

The CSCAD method performs poorly compared to the
other three methods and shows very few connections across
the entire brain, leading to rather low global and local effi-
ciencies. This result contradicts the well formed brain net-
works of 2-year-olds, which has been reported in the litera-
ture using both imaging and behavioral approaches [14]. In
contrast, CLASSO, ACLASSO, and BCLASSO appear to
provide more similar results, demonstrating well connected
brain networks. Although there are differences in the re-
gions with the highest number of connections, some consis-
tent patterns are observed from CLASSO, ACLASSO, and
BCLASSO. The brain regions that exhibit the highest num-
ber of connections with other regions are consistently shown
by these three methods in the temporal, frontal and occipital
lobes. These results suggest that even at the age of 2 years,
children develop well connected networks, particularly in the
temporal and frontal areas. More studies are clearly needed
to further determine how the proposed approach is capa-
ble of better delineating the development of brain networks
across different age groups. The top regions picked up by
the different methods are listed in Table 5. The BCLASSO
results are based on thresholding with a 70% credible inter-
val. This choice was made in order to closely align the total
number of connections from BCLASSO to that of CLASSO
and ACLASSO.
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5. DISCUSSION

We have introduced a general class of priors for the pre-
cision matrix which yield the ACLASSO, CLASSO, and
SPICE penalties as special cases. We have also developed
a sampling scheme for the estimation of the precision and
covariance matrices under a special case that corresponds
to the lasso penalty, which can facilitate exploration of the
full posterior distribution of the matrix under L; penalites.
Although our proposed priors do not guarantee positive defi-
niteness of ©, we have developed a fast sampling scheme that
guarantees positive definite MCMC samples of the precision
matrix at each iteration regardless of the value of the penalty
parameter. Our proposed method is the first Bayesian
method that uses priors that directly translate into the L,
penalty, the method works well for non-full rank data, and
performs shrinkage and estimation simultaneously. Simula-
tions show that BCLASSO performs similarly to CLASSO,
SPICE and ACLASSO for non-full rank data when the sam-
ple size is small, while performing better than CSCAD.
We will further develop an efficient algorithm to sample
from p(Oy|y, Okk, p). The proposed method can be easily ex-
tended to more complex models that account for subject-
specific variation for building networks in longitudinal data.
The priors can be generalized to independent gamma pri-
ors for the diagonal elements; 0y, ~ gamma(ay, ;) and
independent double gamma priors for the off-diagonal ele-
ments O ~ double gamma(0, axr, brg) for k > k'; that is,
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Table 5. Regions With the Highest Number of Connections Picked by the Four Methods

Maximum Likelihood

Covariance Lasso

Adaptive Covariance Lasso

Bayesian Covariance Lasso

Temporal Pole Mid L
Frontal Mid L
Precentral R
Occipital Sup R
Fusiform L
Temporal Inf L
Temporal Inf R
Temporal Pole Sup R
Temporal Pole Mid R
Precentral L
Frontal Sup L
Frontal Inf Orb R
Temporal Mid L
Angular R

Frontal Sup Orb R
Frontal Mid Orb R
Occipital Inf L
Parietal Inf R
Frontal Sup Orb L
Frontal Inf Tri R
Rectus L
Postcentral L
Parietal Sup R
Frontal Sup R
Frontal Inf Orb L
Rolandic Oper L
Frontal Sup Medial R
Occipital Inf R
Frontal Inf Oper R
Occipital Sup L
SupraMarginal L
Temporal Sup R
Frontal Mid R

Supp Motor Area L
Supp Motor Area R
Parietal Inf L
Angular L
Precuneus L

Frontal Inf Oper L
Frontal Inf Tri L
Cingulum Post L
Calcarine L
Occipital Mid R
Fusiform R

Parietal Sup L
SupraMarginal R
Temporal Pole Sup L
ParaHippocampal L
Precuneus R
Temporal Sup L
Frontal Mid Orb L
Rolandic Oper R
ParaHippocampal R
Lingual R

Occipital Mid L
Temporal Mid R
Frontal Mid Orb R
Rectus R

Cingulum Ant R
Cingulum Mid R

35
31
29
29
28
28
28
27
27
26
26
26
26
25
24
24
24
24
23
23
23
23
23
22
22
22
22
22
21
21
21
21
20
20
20
20
20
20
19
19
19
19
19
19
19
19
19
18
18
18
17
17
17
17
17
17
16
16
16
16

Rectus L

Temporal Inf L
Temporal Inf R
Cingulum Post L
Frontal Sup Orb R
Heschl L

Supp Motor Area L
Frontal Mid Orb R
Paracentral Lobule L
Olfactory L
Parietal Sup R
Frontal Mid Orb R
Amygdala L
Pallidum R
Precentral R
Frontal Mid R
Occipital Mid R
Frontal Mid Orb L
Caudate L

Heschl R

Insula L

Putamen L
Temporal Pole Mid L
Occipital Inf R
Parietal Sup L
Rolandic Oper R
Cingulum Post R
Calcarine R
Caudate R
Temporal Pole Sup R
Frontal Sup Orb L
Cingulum Ant R
Cingulum Mid R
Putamen R
Thalamus L
Frontal Mid L
Frontal Sup L
Frontal Sup R
Supp Motor Area R
ParaHippocampal L
Frontal Sup Medial L
Lingual L
Hippocampus R
Amygdala R
Thalamus R
Precentral L
Angular R

Parietal Inf R
Rolandic Oper L
Parietal Inf LL
Cingulum Ant L
Cuneus R
Hippocampus L
Olfactory R
Cingulum Mid L
Occipital Sup R
Fusiform L
Occipital Inf L
Precuneus L
Frontal Inf Oper L
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30
28
28
27
26
25
24
24
24
23
22
22
22
21
21
21
21
21
21
21
21
20
20
20
20
20
20
20
19
19
19
19
19
19
18
18
18
18
18
18
18
18
18
18
17
17
17
17
17
17
17
17
17
17
16
16
16
16
16

Temporal Inf L
Temporal Inf R
Rectus L

Supp Motor Area L
Cingulum Post L
Heschl L

Frontal Sup Orb R
Paracentral Lobule L
Precentral R
Olfactory L
Occipital Mid R
Temporal Pole Mid L
Parietal Sup L
Frontal Sup Orb L
Frontal Mid Orb R
Parietal Sup R
Frontal Mid Orb R
Amygdala L
Pallidum R

Frontal Mid R
Frontal Mid Orb L
Calcarine R
Temporal Pole Sup R
Occipital Inf R
Cingulum Post R
Frontal Mid L
Frontal Sup R
ParaHippocampal L
Angular R
Occipital Inf L
Frontal Mid Orb L
Olfactory R
Cingulum Mid L
Putamen L
Caudate R

Frontal Sup L

Supp Motor Area R
Hippocampus R
Amygdala R
Fusiform L
Precuneus L
Caudate L

Heschl R

Lingual L
Precentral L
Parietal Inf R
Rolandic Oper L
Temporal Pole Mid R
Calcarine L

Insula R

Temporal Sup R
Cingulum Ant R
Cingulum Mid R
Putamen R
Thalamus R
Cuneus R

Frontal Inf Oper L
Fusiform R
ParaHippocampal R
Frontal Inf Orb L

27
24
23
23
22
20
19
19
19
18
18
18
18
18
17
17
17
17
17
17
17
17
17
16
16
16
16
16
16
16
16
15
15
14
14
14
14
14
14
14
14
13
13
13
13
13
13
13
13
13
13
12
12
12
12
12
12
12
12
12

Occipital Inf R
Temporal Sup L
Frontal Inf Oper R
Angular R
Temporal Mid R
Amygdala L
Frontal Mid Orb L
Frontal Inf Tri L
Cingulum Mid L
Parietal Inf L
Occipital Sup L
Frontal Mid Orb L
Occipital Sup R
Occipital Inf L
Calcarine L
Hippocampus L
ParaHippocampal L
Temporal Mid L
Heschl L

Caudate L
Thalamus L
Precuneus R
Olfactory L

Frontal Sup L
Lingual R
Temporal Inf L
Temporal Pole Mid L
Pallidum L
Angular L
SupraMarginal L
Frontal Mid R
Calcarine R
Thalamus R
Fusiform L

Frontal Inf Orb L
Frontal Inf Orb R
Temporal Pole Sup L
Parietal Sup R
Olfactory R
Paracentral Lobule R
Insula R

Temporal Sup R
Cuneus L

Occipital Mid R
Frontal Mid L
Temporal Pole Mid R
Occipital Mid L
Postcentral R
Parietal Sup L
Temporal Pole Sup R
Cingulum Ant L
Frontal Inf Oper L
Temporal Inf R
Cingulum Post R
Amygdala R
Precentral L
Cuneus R

Parietal Inf R
Fusiform R
SupraMarginal R

32
31
30
29
29
28
26
26
25
25
25
24
24
22
22
22
21
21
20
19
19
19
18
18
18
17
17
17
17
17
17
16
16
16
16
16
16
16
15
15
15
15
15
15
14
14
14
14
14
13
13
13
13
12
12
12
12
12
12
12
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p(@kk/) X |9kk/|ak‘k"71eXp(fbkk/wk-k/D, where agpr > 0 and
brxs > 0. Then, the posterior distribution of © is given by

d k-1

(det ©)% Heak I IT 10w 1

k=2Fk'=1

p(OlY)

d k-1
exp {— —tr(S0) Zﬁkekk_z Z bik |Ori | }

k=2k'=1

This is particularly attractive for Bayseian analysis since
appropriate choice of shape and scale paramters can lead to
an infinite spike of the prior at 0 and heavier tails leading to
larger shrinkage of smaller parameters and smaller shrinkage
of larger parameters compared to Li-penalties.

Like many Bayesian methods, scalability to larger dimen-
sions is a challenge for BCLASSO. Nevertheless, the poste-
rior estimators for dimensions up to 50 do well and net-
works dimension near 100 works similar to CLASSO and
ACLASSO as evidenced by the brain imaging data exam-
ple. The main advantage of a fully Bayesian approach is the
ability to sample the whole posterior distribution instead of
just estimating the posterior mode.
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APPENDIX |

Proof of Theorem 1. Without loss of generality, we parti-
tion and rearrange the columns of current ©(*) as

o1 = < 9(%? ag; )
T
0k ekrk:

Since @(3@14: > 0, all of its diagonal elements are positive
and all the leading determinants are positive. In particu-
lar, (@@Ck)_l > 0 and so there exists an Ay such that

(@g;k)’l = A, A} based on the Cholesky decomposition.
We only need to show that after updating the first col-
umn (6x; and 6y), the diagonal element H,Efljl) is positive
and the last determinant is positive, i.e., det(©)!*t) =
D,(fH) det(@&%) > 0; this implies D,(f'H) > 0 since @(_tik -
0. When we update the last column (or equivalently row)
we have

o) = (o)r ", 10y = (A1ey))T AFeL) =0Ty > 0.

Thus, we have

Hl(fkﬂ) = C,(:) + Gamma (g +1, g(skk + p)) > 0.

Let « be the proposed value for 0(t+1) Then D, =

(0](:“)) - a:T(G)(_tzgk)’la:. Thus, p(z|Y, G(H_l) G)(_t;fk) is pro-
portional to

D} eXP{__(Sk + 7). (Dy > 0).

However, p(x]Y, 0,8;:1),@@6,6) = 0 whenever D, < 0, so

that the Metropolis acceptance probability is

Y 9(t+1 @(t)
a=min\ 1, ((J t+1) (]zk) =
p(0" |y, 000 e )

That is, we can only accept the proposed value when D, >

0. Thus, 0,(;“) x = D, > 0. This is true for any column
of © that we update, therefore leading to positive definite
values of © at any stage in the updating process. This com-
pletes the proof.

Derivation of (6): Let p ~ Gamma(ag, 0.5n3p). Then the
joint posterior of (0, p) becomes

p(6,plY) = p(©, p|S) o det(©)"/2p !

exp(0.5n{—tr(50) — pl|O]li, — pbo}),
which yields that

p(p|©.Y) o p*~ exp {—0.5np(Bo + [|O]1,)}

which is the kernel of a Gamma(ag, 0.5n(80 + ||O]|,)) dis-

tribution. Now, using the partition in (5), we can write

det(@) = det(@,kk)Dk, where D), = (ekk — GEG:ika)

Moreover, [|O]|;; = [|O—kklli; +2]|0k]li, + Ok and tr(SO) is
S_kk Sk O_pr Ok

given by
tr(S@):tr{( G )( e )}

— i S_kkO_pk + 8K0%,  S_kkOk + SKOkk
SEO ik + sk, SEOk + skkbkk

= tr(S_pk©O—_ki) + 2850k + SkpOkk-

Therefore, the joint posterior distribution of (0, p) can be
written as

p(©, plY, p) = det(©)™/? exp(0.5n{—tr(SO) — p| |01, })
= det(@—kk)n/QDZ/z eXp(0.5’/l{—tI'(S_k-k@_kk) — 23}50k
(1©—kk e, + 21|10k, + Oki)})-

After dropping unnecessary constants, we have

— Skkbkk — p

n n
P(0rr]Y, 0k, ©_ki, p) x D exp{—g(skk +0)0kk },

n n
P(Ok|Y, Ok, © ki, p) o< D2 eXp{—g(szek + pl10k]l1,)}-
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To derive the full conditional distribution of 6, we write

n n
POk |Y, 0k, © ki, p) < D7 eXp{—§(5kk + )01}

= (O, — C) ® exp{—n/2(skx + p)Oxi }
o (O — Ci) 2

eXp{—g(Skk + p)(Okr — C)}-

Thus, we have

(1]

2]

(3]

(4]
(5]
[6]

[7]

(8]
(9]
(10]

(11]

(12]

(13]

[14]

(15]

[16]

258

Ok |Y, 0k, © _gr ~ Cr+Gamma (n/24+1,n/2(skx+p)) -

O
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