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Sparse bridge estimation with a diverging number
of parameters

Sunghoon Kwon, Yongdai Kim and Hosik Choi
∗,†

The Bridge estimator with �νν-penalty for some ν > 0
is one of the popular choices in penalized linear regression
models. It is known that, when ν ≤ 1, the Bridge estima-
tor produces sparse models which allow us to control the
model complexity. However, when ν = 1, the Bridge esti-
mator fails to identify the correct model since it requires
certain strong sufficient conditions that are hard to hold in
general, and when ν > 1, it achieves no sparsity in parame-
ter estimation. In this paper, we propose the sparse Bridge
estimator that is developed to find the correct sparse ver-
sion of the Bridge estimator when ν ≥ 1. Theoretically, the
sparse Bridge estimator is asymptotically equivalent to the
oracle Bridge estimator when the number of predictive vari-
ables diverges to infinity but less than the sample size. Here,
the oracle Bridge estimator is an ideal Bridge estimator ob-
tained by deleting all irrelevant predictive variables in ad-
vance. Hence, the sparse Bridge estimator naturally inherits
the properties of the Bridge estimator without losing cor-
rect model identification asymptotically. Numerical studies
show that the sparse Bridge estimator can outperform other
penalized estimators with a finite sample.
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1. INTRODUCTION

Consider the linear regression model:

y = Xβ∗ + ε,

where y = (y1, . . . , yn)
′ is the response vector, X =

(X1, . . . , Xp) is the n × p design matrix, ε = (ε1, . . . , εn)
′
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is the random error vector, and β∗ is the true parameter
vector. For given ν > 0, the Bridge estimator [9] is defined as

(1) β̂
B,γ

= argminβ

{
‖y −Xβ‖22/2n+ γ‖β‖νν

}

for some γ > 0, where ‖β‖ν = (
∑p

j=1 |βj |ν)1/ν is the usual
�ν-norm operator. As a special case, when ν = 1, the Bridge
estimator is known as the least absolute shrinkage and se-
lection operator (Lasso) estimator [21],

(2) β̂
L,γ

= argminβ

{
β′(X′X)β/2n− y′Xβ/n+ γ‖β‖1

}
,

that is one of the popular choices for the variable selection
problems. Another example, when ν = 2, is the Ridge esti-
mator [10],

(3) β̂
R,γ

= argminβ

{
β′(X′X/2n+ γIp×p)β − y′Xβ/n

}
,

that properly handles the collinearity problems [10], where
the least square estimator is expected to perform worse.

For years, many penalized estimators have been devel-
oped for variable selection problems. Especially, some esti-
mators are asymptotically pursuing the equivalent perfor-
mance to the oracle estimator:

(4) β̂
oR

= argminβj=0,j∈{k:β∗
k=0}

{
‖y −Xβ‖22/2n

}
.

This ideal behavior is described as the oracle property by
[7]. Some typical examples are the smoothly clipped abso-
lute deviation (Scad) estimator [7], adaptive Lasso estimator
[26], Bridge estimator with ν < 1 [11], and minimax concave
penalty (Mcp) estimator [24]. These estimators are practi-
cally better in selecting variables compared to the Bridge
estimator with ν ≥ 1 since they are selection consistent
asymptotically.

However, there still exist several examples that present
the practical excellence of the Bridge estimators regardless
of the oracle property described above. The Lasso estimator
in (2) achieves higher prediction accuracy when the true
model includes relatively smaller coefficients compared to
the sample size [26]. And the Ridge estimator in (3) properly
handles the collinearity problems by stabilizing the variance
of the least square estimator [4, 10]. Another nice alternative
is the elastic net (Enet) estimator [25] defined as
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(5)

β̂
eN,γ,λ

= argminβ

{
β′
(X′X+ γIp×p

1 + γ

)
β−2y′Xβ+λ‖β‖1

}
.

Although the Enet estimator is not any Bridge estimator,
it can be thought of as an improved version of two Bridge
estimators, the Lasso and Ridge. Note that, however, these
estimators still suffer from the lack of selection consistency
that is a major uneasiness for them.

In this paper, we propose the sparse Bridge estimator that
is developed to find the correct sparse version of the Bridge
estimator defined in (1) when ν ≥ 1. The sparse Bridge esti-
mator resolves the major deficiency of the Bridge estimator
by imposing sparsity on it without losing its own practi-
cal advantage. Theoretically the sparse Bridge estimator is
asymptotically equivalent to the oracle Bridge estimator:
(6)

β̂
oB,γ

= argminβj=0,j∈{k:β∗
k=0}

{
‖y −Xβ‖22/2n+ γ‖β‖νν

}
.

As a consequence, the sparse Bridge estimator naturally in-
herits the properties of the Bridge estimator without losing
correct model identification asymptotically.

The rest of the paper is organized as follows. Section 2
introduces the proposed method, and Section 3 proves the-
oretical properties. Section 4 gives results of various numer-
ical studies. The conclusions and technical details are given
in Section 5 and Appendix, respectively.

2. SPARSE BRIDGE ESTIMATION

2.1 Definition and solution

Let L(β) = ‖y−Xβ‖22/2n. For a given ν ≥ 1, the sparse
Bridge estimator is defined as

(7) β̂
sB,γ,λ

= argminβQ
sB,γ,λ(β),

where

(8) QsB,γ,λ(β) = L(β) + J γ,λ(β)

and J γ,λ(β) =
∑p

j=1 J
γ,λ(|βj |). Here, Jλ,γ(·) is the sparse

Bridge penalty that satisfies Jγ,λ(0) = 0, and

∇Jγ,λ(t) = (−cγ,λtν + λ)I[t < a(λ− γ)](9)

+ γνtν−1I[t ≥ a(λ− γ)]

for some a > 0, where ∇Jγ,λ(t) = ∂Jγ,λ(t)/∂t and

cγ,λ = [λ− γν
{
a(λ− γ)

}ν−1
]/{a(λ− γ)}ν

for λ ≥ max{γ, γν{a(λ− γ)}ν−1} and a ≥ 1.
Here are some characteristics on the sparse Bridge

penalty which are main motivations of the paper:

• By definition, if λ = γ then the sparse Bridge penalty
is the same as the Bridge penalty.

• And if λ > γ, the sparse Bridge penalty is a smoothly
clipped version of the Bridge penalty near the origin.

• The penalty is concave on (0, a(λ − γ)) satisfying
limt→0+ ∇Jγ,λ(t) = λ and the same as the Bridge
penalty on [a(λ− γ),∞) satisfying Jγ,λ(t) = γνtν−1.

Hence the sparse Bridge penalty can select variables that
have the same type of shrinkage as the Bridge penalty. And
as a referee pointed out, two tuning parameters λ and γ play
different roles:

• λ controls the concavity of the sparse Bridge penalty
near the origin thresholding small coefficients.

• γ regularizes the amount of shrinkages over the esti-
mated nonzero coefficients by the same way as in the
original Bridge.

It is more transparent to see the solutions under or-
thonormal design, where X′X/n = I. The solution β̂j

satisfies ∇Jγ,λ(|β̂j |) + β̂j = ẑj , j = 1, . . . , p, where
ẑj = X ′

jy/n is the ordinary least square estimator. Since

lim|β̂j |→0 ∇Jγ,λ(|β̂j |) = λ and ∇Jγ,λ(|β̂j |) = γν|β̂j |ν−1 for

|β̂j | > a(λ − γ), it is easy to see that small coefficients are
excluded by the level of λ, and large solutions are exactly
the same as those of the original Bridge estimator with γ.
For example, if ν = 1,

β̂sB,γ,λ
j =

⎧⎪⎨
⎪⎩
0, |zj | < λ,
a

a−1 sign(zj)(|zj | − λ), λ ≤ |zj | < a(λ− γ) + γ,

sign(zj)(|zj | − γ), |zj | ≥ a(λ− γ) + γ,

for λ ≥ γ, and if ν = 2,

β̂sB,γ,λ
j =

⎧⎪⎨
⎪⎩
0, |zj | < λ,

u(zj), λ ≤ |zj | < a(1 + 2γ)(λ− γ),

zj/(1 + 2γ), |zj | ≥ a(1 + 2γ)(λ− γ),

for λ ≥ max{γ, γ∗} if γ ≤ 1/2a, and max{γ, γ∗} < λ < γ∗

if 2aγ > 1, where γ∗ = aγ(1 + 2γ)/(a − 1 + 2aγ), γ∗ =
2aγ2/(2aγ−1) and u(zj) is solution of −cγ,λβ2

j +βj+zj = 0.
See Figure 1 that draws the sparse Bridge penalties and
solutions when ν = 1 and 2. See Section 4, for numerical
results that show different roles of two tuning parameters.

2.2 Computational algorithm

The sparse Bridge penalty Jγ,λ(|t|) can be decomposed
as follows:

(10) Jγ,λ(|t|) = γ|t|ν + λ|t|+ J̃γ,λ(|t|),

where J̃γ,λ(|t|) is a continuously differentiable concave func-
tion. Hence, by letting J̃ γ,λ(β) = J γ,λ(β)−γ‖β‖νν−λ‖β‖1,
we can rewrite (8) by

QsB,γ,λ(β) = L(β) + γ‖β‖νν + λ‖β‖1 + J̃ γ,λ(β)
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Figure 1. The upper left two panels plot three penalties and derivatives: the Bridge (dotted) with (ν, γ) = (2, 1/2), Scad
(dashed) with (λ, a) = (1, 2) and sparse Bridge (line) with (ν, γ, λ, a) = (2, 1/2, 1, 2). The upper right panel shows the
corresponding solutions as functions of the ordinary least square estimator z under the orthonormal design. Similarly, the

below panels draw the plots when ν = 1.

which is a sum of convex and concave functions. Hence, we
can find a local minimizer of (8) by use of the convex-concave
procedure (CCCP) [23]. Note that the CCCP algorithm is
one of powerful optimization algorithms for nonconvex prob-
lems [3, 13, 20]. One of the main properties of the CCCP
algorithm is that it always converges to a local minimizer
[1, 2].

To be specific, let ∇J̃ γ,λ(β) = ∂J̃ γ,λ(β)/∂β. For a given

current solution β̂
c
, we update it by minimizing the upper

tight convex function,

UsB,γ,λ(β) = L(β) + γ‖β‖νν +∇J̃ γ,λ(β̂
c
)′β + λ‖β‖1,

until it converges. Many efficient optimization algorithms
are available to minimize this convex function, since it is
simply a �1-penalized convex problem. For special cases, if
ν = 1, then we can use the least angle regression algorithm
developed by [6]. For other cases, the predictor-corrector
algorithm introduced by [17] can be applied.

3. THEORETICAL PROPERTIES

In this subsection, we prove asymptotic equivalence be-
tween the sparse Bridge estimator and oracle Bridge esti-
mator so that it is asymptotically as efficient as the oracle
Bridge estimator in (6). This relationship is the same as that
of the Scad estimator and oracle estimator in (4) [8, 13].

Without loss of generality, we assume that

β∗ = (β∗
1
′
,β∗

2
′
)′,

where β∗
1 is a q × 1 vector whose elements are all nonzero,

and β∗
2 is a (p − q) × 1 vector whose elements are all zero.

Further we assume that εi, 1 ≤ i ≤ n are independent and
identically distributed random variables with E(εi) = 0
and V ar(εi) = σ2

0 for some σ0 < ∞. Let X = (X1,X2),
where X1 = (X1, . . . , Xq), X2 = (Xq+1, . . . , Xp) with
Xj = (x1j , . . . , xnj)

′, 1 ≤ j ≤ p.
Denote ρn and τn as the smallest and largest eigenvalues

of the matrix X′X/n, respectively. To allow the number of
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Figure 2. Decomposition of Jγ,λ(|β|) = γ|β|ν + λ|β| − J̃γ,λ(|β|).

parameters p < n to diverge to infinity, we require following

regularity conditions with positive constants ρ0, τ0, b0, δ0, d0
and c0 < 1:

(A1) ρ0 < ρn ≤ τn ≤ τ0 for all n ≥ 1.

(A2) max1≤j≤p‖Xj‖22/n ≤ b0 for all n ≥ 1.

(A3) log p/ log n → c0 as n → ∞.

(A4) max1≤j≤q |β∗
j | < d0 for all n ≥ 1.

(A5) min1≤j≤q |β∗
j |/(q/n)1/2 → 0 as n → ∞.

(A6) max1≤i≤n

∑p
j=1 x

2
ij/n → 0 as n → ∞.

(A7) E|ε1|2+δ0 < ∞.

Condition (A1) is standard for the asymptotic study on

linear regression model, and (A2) is directly satisfied if we

standardize the covariates. Condition (A3) specifies the or-

der of p. As pointed out by [27], it deletes the limitation

of p = o(n1/4) in [8] for the linear regression model. Con-

dition (A4) is technically considered for ease of exposition

that holds implicitly with fixed p and q. Conditions (A5),

(A6) and (A7) are used only to construct the limiting distri-

bution of the oracle Bridge estimator. Note that (A5) allows

the true coefficients to decrease toward zero.

3.1 Asymptotic properties of the oracle
Bridge estimator

First, we give an expected �2-risk bound of the oracle

Bridge estimator.

Theorem 3.1. Assume that (A1) holds then

(11) E‖β̂oB,γ

1 − β∗
1‖2 ≤ Δ(β∗

1, γ)/ρ0 + σ0(q/nρ0)
1/2,

where

Δ(β∗
1, γ) = νγ1/νq{(2−ν)/2ν}I(ν<2)(γ‖β∗

1‖νν+σ2
0q/2n)

(ν−1)/ν .

Theorem 3.1 is non-asymptotic and useful for develop-
ing asymptotic theories. In the theorem, the second term
σ0(q/nρ0)

1/2 is due to the random error that is O((q/n)1/2),
whereas, the first term yields extra bias that depends on the
tuning parameter γ and the size of the true nonzero param-
eters.

Remark 1. From Theorem 3.1, it is easy to see that the
oracle Bridge estimator is consistent if Δ(β∗

1, γ) → 0 that is
equivalent to

(12) γq1/2+{(ν−2)/2ν}I(ν≥2) → 0

as n → ∞. Hence, we require smaller γ for larger ν and p.
For example, when ν = 1 and ν = 2, q1/2γ → 0 implies
the consistency of the oracle Lasso and Ridge estimators,
respectively.

Let ∇1(β) = ∂(‖β‖νν)/∂β and X′
1X1/n = Σ1. The next

theorem gives (q/n)1/2-consistency and asymptotic normal-
ity of the oracle Bridge estimator.

Theorem 3.2. Assume that (A1)–(A7) hold then

(a) ‖β̂oB,γ

1 − β∗
1‖2 = Op((q/n)

1/2),
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(b) for any α ∈ R
q with ‖α‖2 = 1,

n1/2α′Σ
1/2
1 {β̂oB,γ

1 − β∗
1 + γΣ−1

1 ∇1(β
∗
1)} → N(0, σ2

0)

in distribution, provided

(13) γn1/2q{(ν−2)/2ν}I(ν≥2) → 0

as n → ∞.

In Theorem 3.2, γ must vanish toward zero faster than
the rate of consistency in (12) in Remark 1 by a factor of
(q/n)1/2 exactly, and this result is consistent to that of [15]
with fixed p and q. From Theorem 3.2, we can see that the
bias of the Lasso, when ν = 1, depends on the tuning pa-
rameter γ only while the bias depends on the size of the true
parameters also when ν > 1. Note that Theorem 3.1 plays
a major role for the results of Theorem 3.2 since (q/n)1/2-
consistency directly comes from (11).

3.2 Asymptotic equivalence between the
oracle Bridge estimator and sparse
Bridge estimator

Next, we prove the optimality of the oracle Bridge esti-
mator for the objective function defined in (8). That is, we
provide sufficient conditions under which the sparse Bridge
estimator is exactly the same as the oracle Bridge estimator
asymptotically.

Let ΩsB,γ,λ be the set of all local minimizers of (8). The
following theorem is our main result that proves the sparse
Bridge estimator is exactly the same as the oracle Bridge
estimator asymptotically.

Theorem 3.3. Assume that (A1)–(A4) hold. If λ → 0,
(n/p)1/2λ → ∞, and min1≤j≤q |β∗

j |/λ → ∞ then

(a) (Local optimality) P
(
β̂
oB,γ ∈ ΩsB,γ,λ

)
→ 1,

(b) (Global optimality)

P
(
β̂
oB,γ

= argminβQ
sB,γ,λ(β)

)
→ 1,

provided γ → 0 and

(14) (γ/λ)q1/2+{(ν−2)/2ν}I(ν≥2) → 0

as n → ∞.

In Theorem 3.3, the conditions imposed on λ are the same
as those of [8]. As [8] pointed out, these conditions show
the least favorable rate of min1≤j≤q |β∗

j | for oracle variable
selection. Note that, for the results to hold, γ must decrease
faster than both λ and the rate (12) in Remark 1, but slower
than (13). This implies that (14) is stronger than (12) but
weaker than (13).

4. NUMERICAL STUDIES

4.1 Simulation studies

In this section, we present simulation studies to evaluate
the finite sample performance of the sparse Bridge estima-
tor. Under the linear regression model,

(15) y = x′β∗ + ε, ε ∼ N(0, σ2
0).

The covariate vector x = (x1, . . . , xp)
′ is set to be a mul-

tivariate Gaussian random vector with mean zero and the
covariance of xj and xk to be ρ

|j−k|
0 , j, k = 1, . . . , p. We

select the true nonzero elements of β∗ as a sequence that
satisfies β∗

j = 1.5 − (j − 1)/(q − 1), j = 1, . . . , q and
β∗
j = 0, j = q + 1, . . . , p − q. For sample sizes n = 30, 60

and 120, we try p = [n/3] and q = [p/3]. Here, [x] indicates
the smallest integer greater than x.

We investigate two features: (a) prediction error based
on independent test data set of size 2n; (b) number of co-
efficients that are selected correctly and incorrectly. From
400 independent repetitions, we measure the medians of
averaged prediction errors, and the frequency of correctly
and incorrectly selected nonzero coefficients. For compari-
son, we consider six estimators: Lasso, Scad, Ridge, Enet,
sparse Bridge with ν = 1 (sLasso), and ν = 2 (sRidge). We
set a = 3.7 for the Scad, sLasso and sBridge, and choose
other tuning parameters using independent validation data
of size n/2.

Table 1 summarizes the results, and we present some ob-
servations:

1. The two sparse Bridge estimators sLasso and sRidge
outperform the other methods improving the Lasso
and Ridge respectively for almost all cases.

2. When the sample size n is large or the noise level σ0 is
small, the selection consistent estimators (Scad, sLasso
and sBridge) perform better than the others (Lasso,
Ridge and Enet).

3. When the sample size is small the characteristics of
penalties have positive effects on the prediction ac-
curacy, and this shows why the Scad performs worst
when σ0 = 3 even if it has the oracle property.

4. When ρ0 = 0.9 and σ0 = 3, the Ridge performs better
than other estimators except the sRidge, which clearly
shows that both sparsity and type of shrinkage closely
are related to the prediction accuracy with finite sam-
ple size. This is similar to the relation between the
Enet and the Lasso.

5. The Scad produces most sparse solutions, and the
sLasso and sRidge are sparser than the Lasso
and Enet respectively. Except the Ridge which
cannot control the selectivity, the Lasso has the
largest final model, and the order of model size
is Lasso>Enet>sRidge>sLasso>Scad. An interesting
point is that sRidge is sparser than Enet. This means
that the Enet estimator cannot control the sparsity
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Table 1. Simulation results comparing the medians of prediction errors, means of correctly and incorrectly selected nonzero
coefficients

Prediction error

σ0 r n p q Lasso sLasso Ridge sRidge Scad Enet

1 0.5 30 10 3 0.1946 0.1923 0.3399 0.1848 0.2146 0.2001
60 20 7 0.2220 0.1682 0.3593 0.1636 0.1817 0.2202

120 40 13 0.2076 0.1373 0.3888 0.1289 0.1311 0.1931
0.9 30 10 3 0.2457 0.1843 0.2173 0.1526 0.2506 0.2430

60 20 7 0.2233 0.1883 0.2588 0.1583 0.2003 0.2197
120 40 13 0.1883 0.1593 0.2341 0.1285 0.1603 0.1774

3 0.5 30 10 3 1.3319 1.3664 1.6174 1.3974 1.7645 1.4234
60 20 7 1.7928 1.7438 1.9212 1.7542 2.5425 1.7725

120 40 13 1.8318 1.7239 2.2429 1.5121 2.4645 1.7937
0.9 30 10 3 1.1938 1.0817 0.8902 1.0463 1.2718 1.3058

60 20 7 1.5983 1.3026 1.2839 1.1114 1.7236 1.5402
120 40 13 1.3841 1.2596 1.1983 0.8158 1.6262 1.3127

Number of nonzero coefficients correctly estimated

σ0 r n p q Lasso sLasso Ridge sRidge Scad Enet

1 0.5 30 10 3 2.92 2.74 3.00 2.78 2.66 2.92
60 20 7 6.98 6.88 7.00 6.90 6.81 6.97

120 40 13 13.00 12.98 13.00 12.98 12.96 13.00
0.9 30 10 3 2.51 2.24 3.00 2.43 2.04 2.49

60 20 7 6.70 6.24 7.00 6.48 5.99 6.71
120 40 13 12.89 12.53 13.00 12.65 12.23 12.88

3 0.5 30 10 3 2.33 2.07 3.00 2.12 1.91 2.32
60 20 7 6.23 5.51 7.00 5.54 4.82 6.23

120 40 13 12.46 11.59 13.00 11.64 10.47 12.45
0.9 30 10 3 1.74 1.53 3.00 1.72 1.46 1.73

60 20 7 4.91 3.97 7.00 4.71 3.53 4.87
120 40 13 10.64 9.08 13.00 10.52 7.80 10.61

Number of nonzero coefficients incorrectly estimated

σ0 r n p q Lasso sLasso Ridge sRidge Scad Enet

1 0.5 30 10 3 2.80 1.03 7.00 1.30 1.01 2.84
60 20 7 4.97 1.18 13.00 1.42 1.11 4.88

120 40 13 9.18 1.30 27.00 1.61 1.26 8.77
0.9 30 10 3 2.44 0.80 7.00 1.07 0.73 2.26

60 20 7 3.73 0.96 13.00 1.38 0.98 3.65
120 40 13 5.78 0.97 27.00 1.58 0.87 5.66

3 0.5 30 10 3 2.75 1.70 7.00 2.09 1.71 2.65
60 20 7 4.79 2.33 13.00 3.03 2.31 4.73

120 40 13 8.80 4.02 27.00 4.63 4.00 8.62
0.9 30 10 3 1.88 1.08 7.00 1.29 1.11 1.81

60 20 7 3.21 1.12 13.00 1.93 1.42 3.13
120 40 13 5.64 1.84 27.00 2.66 2.27 5.40

properly, and this is partly explained by the selection
consistency of the sRidge.

To sum up, we can see that the sLasso and sRidge can
be the correct sparse version of the Lasso and Ridge re-
spectively, and the sLasso and sRidge can be alternatives to
other penalized estimators. We note that when the sample

size is sufficiently large, one can expect the Scad performs
best as the asymptotic property shows [8, 14]. However when
the sample size is small we may carefully choose an appropri-
ate penalty. We recommend that one may use sLasso when
the sample size is small and the noise level is large, and
sRidge when there exists the collinearity problems as the
results of simulation studies show.
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Table 2. Performance results from 100 random partitions of the data (standard errors)

p Lasso sLasso Ridge sRidge Scad Enet

20 Prediction error 0.4259 0.4196 0.3671 0.3842 0.4493 0.4070
(0.0181) (0.0147) (0.0135) (0.0103) (0.0135) (0.0126)

No. of selected variables 8.97 4.98 20 6.84 2.79 8.70
(0.19) (0.17) (0) (0.20) (0.06) (0.18)

30 Prediction error 0.4319 0.4254 0.3891 0.3979 0.4556 0.4150
(0.0186) (0.0158) (0.0151) (0.0122) (0.0145) (0.0136)

No. of selected variables 9.44 5.10 30 8.13 2.83 9.07
(0.19) (0.17) (0) (0.23) (0.05) (0.19)

40 Prediction error 0.4291 0.4206 0.3910 0.3901 0.4645 0.4125
(0.0184) (0.0155) (0.0158) (0.0108) (0.0145) (0.0134)

No. of selected variables 10.58 5.67 40 9.23 2.98 10.30
(0.22) (0.19) (0) (0.50) (0.05) (0.21)

4.2 Real data example

4.2.1 Gene TRIM32

We employ the data set used in [19], which consists of
gene expression levels of 18,975 genes obtained from 120
rats. The main objective of the analysis is to find genes that
are correlated with gene TRIM32 known to cause Bardet-
Biedl syndrome. As was done by [12], we first select 3,000
genes with the largest variance in expression level, and then
choose the top p = 20, 30 and 40 genes that have the largest
absolute correlation with gene TRIM32 among the selected
3,000 genes.

We compare prediction accuracy and number of variables
selected in the model for the methods used in the previ-
ous subsection. The data set is randomly divided into three
parts: 70 samples for training, 30 samples for validating and
the other samples for testing.

Table 2 shows the results: all values are arithmetic means
of 100 replicated experiments. It is easy to see that the
Ridge has the smallest prediction errors and the sRidge fol-
lows it showing almost the same prediction errors but using
less than 10 variables. Given the way of the prescreening
method, the good performance of the Ridge is intuitive in
part since there are strong correlations among predictive
variables, and this can be a reason why the Enet shows
smaller prediction errors also.

On the other hand, the Scad has the largest prediction er-
rors including only 3 variables, which seems to be too sparse.
Further, the difference between the Scad and the others is
relatively large. This shows that there are cases where we
need to choose penalties carefully, and the sRidge carries
out this goal well in this example.

4.2.2 Diabetes study

As aforementioned above, two tuning parameters play dif-
ferent roles: one for selection and the other for shrinkage.
To address this issue numerically, we additionally investi-
gate the trajectory of nonzero coefficients of diabetes study
data [6]. This data includes 442 samples measured on 10

baseline variables (age, sex, bmi, map and 6 serum measure-
ments) from diabetes patients. The response of interest is
a quantitative measure of disease progression one year after
baseline.

Figure 3 shows the number of estimated nonzero coeffi-
cients (selection) and their �1-norm (shrinkage) for sLasso
(ν = 1) and sRidge (ν = 2). In the plot, we fix four values
of λ, and for each λ we find solution paths over 10 values
of γ = λ/2k, k = 1, . . . , 10. It is easy to see that the model
size increases as λ decreases, however, it rarely changes over
γ. On the other hand, the estimated �1-norm increases as γ
decreases. See Figure 4 that draws the paths of estimated
coefficients. This shows that the two tuning parameters λ
and γ play clearly as they are expected.

5. CONCLUDING REMARK

We proposed the sparse Bridge estimator to improve the
usual Bridge estimator, and proved that it is selection con-
sistent under mild conditions. We confirmed the theoretical
results via numerical studies which show how the sparse
Bridge estimator behaves and produces better prediction
accuracy and variable selectivity than the original one.

Besides ν, the sparse Bridge penalty has two more tun-
ing parameters λ and γ and this may cause computational
burdens in practice compared with the Lasso and Scad. We
refer to two simpler ways of choosing the tuning parame-
ters. One is to use the universal penalty level for λ fixed
with λ = σ0{(2/n) log p}1/2 as was done by [5, 24], and the
other one is to use a heuristic choice of γ fixed with γ = γ̂,
where γ̂ is the optimal one for the original Bridge penalty.
Although we do not present the results here, such a choice
of γ performs quite well. Once a tuning parameter is fixed,
one can apply known selection methods. For example, the
cross-validation method, training-validating-testing proce-
dure, AIC, BIC, and GCV, where the generalized degrees of
freedom is defined similar to [7, 21] and [22].

In this paper, we only consider linear regression mod-
els with diverging p < n, however we believe that the pro-
posed method can be extended to quite general models such
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Figure 3. Estimated number of nonzero coefficients and their �1-norm over γ for fixed λ: sLasso(ν = 1, upper) and
sRidge(ν = 2, below).

Figure 4. Estimated coefficient path over γ for fixed λ: sLasso(ν = 1, upper) and sRidge(ν = 2, below).
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as generalized linear models or maximum likelihood estima-
tions with p > n [13, 16, 24]. Another challenging problem is
to develop uniqueness conditions as [14] that enhances the
applicability of the sparse Bridge penalty. We leave these
problems for future work.

APPENDIX

For convenience, we define S(β) = (S1(β)
′,S2(β)

′)′,
where S1(β) = (S1(β), . . . , Sq(β))

′ and S2(β) = (Sq+1(β),
. . . , Sp(β))

′ with Sj(β) = X ′
j(y −Xβ)/n, 1 ≤ j ≤ p.

Proof of Theorem 3.1. From direct calculation,

(16) β̂
oB,γ

1 − β∗
1 = Σ−1

1

{
− S1(β̂

oB,γ
) +X′

1ε/n
}
.

From (A1),

E‖Σ−1
1 X′

1ε/n‖22 = trace
{
E
(
X1(X

′
1X1/n)

−2X′
1εε

′/n2
)}

≤ qσ2
0/(nρ0),

hence, it follows that

(17) E‖β̂oB,γ

1 −β∗
1‖2 ≤ E‖S1(β̂

oB,γ
)‖2/ρ0+σ0(q/nρ0)

1/2.

If ν = 1, by the Karush-Kuhn-Tucker (KKT) optimality

conditions (see, [18]), β̂
oB,γ

1 satisfies

{
Sj(β̂

oB,γ
) = γsign(β̂oB,γ

j ), β̂oB,γ
j 
= 0,

|Sj(β̂
oB,γ

)| ≤ γ, β̂oB,γ
j = 0,

(18)

for 1 ≤ j ≤ q, and if ν > 1, it satisfies

(19) Sj(β̂
oB,γ

) = γν|β̂oB,γ
j |ν−1sign(β̂oB,γ

j )

for 1 ≤ j ≤ q. Hence,

(20) ‖S1(β̂
oB,γ

)‖2 ≤ γν‖β̂oB,γ‖ν−1
2(ν−1).

On the other hand, by the definition of β̂
oB,γ

1 ,

γ‖β̂oB,γ

1 ‖νν
≤ γ‖β∗

1‖νν + ‖y −X1β
∗
1‖22/2n− ‖y −X1β̂

oB,γ

1 ‖22/2n
≤ γ‖β∗

1‖νν + ‖y −X1β
∗
1‖22/2n− ‖y −Π1y‖22/2n,

where Π1 = X1(X
′
1X1)

−1X′
1. Hence,

(21) γ‖β̂oB,γ

1 ‖νν ≤ γ‖β∗
1‖νν + ‖Π1ε‖22/2n.

Now, if ν < 2, from (20) and (21), it follows that

‖S1(β̂
oB,γ

)‖2 ≤ νγq(2−ν)/2ν‖β̂oB,γ

1 ‖ν−1
ν(22)

≤ νγ1/νq(2−ν)/2ν
(
γ‖β∗

1‖νν + qσ2
0/2n

)(ν−1)/ν

since E
(
‖Π1ε‖22/2n

)
= qσ2

0/2n. From (17) and (22),

E‖β̂oB,γ

1 − β∗
1‖2 ≤ Δ(β∗

1, γ)/ρ0 + σ0(q/nρ0)
1/2.

Similarly, if ν ≥ 2, from (20) and (21),

‖S1(β̂
oB,γ

)‖2 ≤ νγ‖β̂oB,γ

1 ‖ν−1
ν

≤ νγ1/ν
(
γ‖β∗

1‖νν + ‖Π1ε‖22/2n
)(ν−1)/ν

.

Hence, from (17) again,

E‖β̂oB,γ

1 − β∗
1‖2 ≤ Δ(β∗

1, γ)/ρ0 + σ0(q/nρ0)
1/2.

This completes the proof. �

Proof of Theorem 3.2. It is easy to see that (A4) and (13)
imply

Δ(β∗
1, γ) = Op((q/n)

1/2).

Hence, from Theorem 3.1, it follows that

(23) ‖β̂oB,γ

1 − β∗
1‖2 = Op((q/n)

1/2).

Next, we will show (b). From (16) and (19), we have

n1/2α′Σ
1/2
1 {β̂oB,γ

1 − β∗
1 +Σ−1

1 γ∇1(β
∗
1)}

= α′Σ
−1/2
1 X′

1ε/n
1/2

+ n1/2α′Σ
−1/2
1 γ{∇1(β

∗
1)−∇1(β̂

oB,γ

1 )}.

It is a standard [11] that, under (A1)–(A7),

α′Σ
−1/2
1 X′

1ε/n
1/2 → N(0, σ2

0)

in distribution for any α ∈ R
q with ‖α‖2 = 1. Hence, it

suffices to show that

Δ = n1/2α′Σ
−1/2
1 γ{∇1(β

∗
1)−∇1(β̂

oB,γ

1 )} = op(1).

If ν = 1, from (A5) and (23), sign(β̂oB,γ
j ) = sign(β∗

j ) for all
1 ≤ j ≤ p and sufficiently large n, which implies

|Δ|2 ≤ γ2n‖∇1(β
∗
1)−∇1(β̂

oB,γ

1 )‖22/ρ0 = 0.

If ν > 1, by Taylor’s expansion, there exists a β̃1 that lies

between β̂
oB,γ

1 and β∗
1 such that

‖∇1(β
∗
1)−∇1(β̂

oB,γ

1 )‖22 = ‖∇2(β̃1)(β̂
oB,γ

1 − β∗
1)‖22

≤ ν2(ν − 1)2 max1≤j≤q |β̃j |2(ν−2)‖(β̂oB,γ

1 − β∗
1)‖22.

If 1 < ν < 2, (A5) and (23) imply

max
1≤j≤q

|β̃j |2(ν−2) = min
1≤j≤q

{Op(|β∗
j |)}2(ν−2) = op((q/n)

ν−2).
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Hence, from (13), we have

|Δ|2 ≤ γ2nop((q/n)
ν−2)Op(q/n) = op(1).

Similarly, if ν ≥ 2, from (A4), (23), and (13),

|Δ|2 ≤ γ2nOp(1)Op(q/n) = op(1).

This completes the proof. �

We need two lemmas to prove Theorem 3.3.

Lemma 1. For given β̂ ∈ R
p, if β̂ satisfies{

Sj(β̂) = γν|β̂j |ν−1sign(β̂j), |β̂j | > a(λ− γ),

|Sj(β̂)| < λ, β̂j = 0,

for 1 ≤ j ≤ p, then β̂ ∈ ΩsB,γ,λ.

Proof. It suffices to show that there exists a δ > 0 such
that QsB,γ,λ(β) ≥ QsB,γ,λ(β̂) for all β ∈ B(β̂, δ). From the
convexity of L(β),

QsB,γ,λ(β)−QsB,γ,λ(β̂) ≥
∑p

j=1 vj(βj),

where

vj(βj) = −Sj(β̂)(βj − β̂j)/n+ Jγ,λ(|βj |)− Jγ,λ(|β̂j |).

First, if |β̂j | > a(λ− γ), then

vj(βj) = −γν|β̂j |ν−1sign(β̂j)(βj − β̂j) + γ|βj |ν − γ|β̂j |ν

≥ −γν|β̂j |ν−1(|βj | − |β̂j |) + γ|βj |ν − γ|β̂j |ν

≥ 0

for all βj ∈ B
(
β̂j , δj

)
, where δj = |β̂j | − a(λ− γ).

Next, if β̂j = 0, then

vj(βj) ≥ −|Sj(β̂)‖βj |+ Jγ,λ(|βj |)
= |βj |(−|Sj(β̂)| − cγ,λ|βj |ν/(ν + 1) + λ) ≥ 0

for all βj ∈ B
(
0, δj

)
, where

δj =
{(

ν + 1)(λ− |Sj(β̂)|
)
/cγ,λ

}1/ν
.

Hence,

QsB,γ,λ(β) ≥ QsB,γ,λ(β̂)

for all β ∈ B
(
β̂,min1≤j≤p δj

)
. This completes the proof. �

Lemma 2. Assume the conditions in Theorem 3.3 hold then

P
(
max
q<j≤p

∣∣Sj(β̂
oB,γ

)
∣∣ < λ

)
→ 1,

and

P
(
min

1≤j≤q
|β̂oB,γ

j | > a(λ− γ)
)
→ 1,

as n → ∞.

Proof. Theorem 3.1 and (14) imply

(24) ‖β̂oB,γ

1 − β∗
1‖2 = op(λ).

From (A1) and (A2), we have

maxq<j≤p

∣∣Sj(β̂
oB,γ

)
∣∣

≤ maxq<j≤p

∣∣X ′
jX1(β̂

oB,γ

1 − β∗
1)/n

∣∣+maxq<j≤p |Xj
′ε/n|

≤ b
1/2
0 τ

1/2
0 ‖β̂oB,γ

1 − β∗
1‖2 + ‖X′

2ε/n‖2.

Since E‖X′
2ε/n‖22 ≤ (p− q)τ0σ

2
0/n = o(λ2), from (24),

maxq<j≤p

∣∣Sj(β̂
oB,γ

)
∣∣ = op(λ).

On the other hand, from (24), min1≤j≤q |β∗
j |/λ → ∞ implies

min1≤j≤q |β̂oB,γ
j |/a(λ− γ)

≥ min1≤j≤q |β∗
j |/a(λ− γ)− ‖β̂oB,γ

1 − β∗
1‖2/a(λ− γ)

→ ∞

as n → ∞. This completes the proof. �

Proof of Theorem 3.3. It is easy to see that (a) holds by
Lemma 1 and 2. Hence, it suffices to prove (b). For this we
will show

P
(
QsB,γ,λ(β̂

oB,γ
) ≤ infβQ

sB,γ,λ(β)
)
→ 1

as n → ∞. For convenience, we omit the superscripts so

that we write β̂
oB,γ

= β̂ and Jγ,λ(·) = J(·). From (A1),

L(β)−L(β̂) ≥
∑p

j=1

{
−Sj(β̂)(βj−β̂j)/n+ρ0(βj−β̂j)

2/2
}
.

Hence, from Lemma 2 and (19), it follows that

QsB,γ,λ(β)−QsB,γ,λ(β̂) ≥
∑q

j=1 wj(βj) +
∑p

j=q+1 vj(βj),

where

wj(βj) = −γν|β̂j |ν−1sign(β̂j)(βj − β̂j)

+ ρ0(βj − β̂j)
2/2 + J(|βj |)− J(|β̂j |)

and vj(βj) = −op(λ)|βj |+ ρ0|βj |2/2 + J(|βj |).
First, consider the cases where j ≤ q. If |βj | ≥ a(λ− γ),

wj(βj) ≥ −γν|β̂j |ν−1sign(β̂j)(βj− β̂j)+γ(|βj |ν−|β̂j |ν) ≥ 0.
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And if |βj | < a(λ− γ),

wj(βj) ≥ −γν|β̂j |ν−1(|βj | − |β̂j |) + ρ0(βj − β̂j)
2/2

+ J(|βj |)− J(|β̂j |).

Since J(a(λ− γ))− J(|β̂j |) ≥ γν|β̂j |ν−1{a(λ− γ)− |β̂j |}, it
follows that

wj(βj) ≥ −γν|β̂j |ν−1{|βj | − a(λ− γ)}
+ ρ0(βj − β̂j)

2/2 + J(|βj |)− J(a(λ− γ))

≥ ρ0(βj − β̂j)
2/2− J(a(λ− γ)).

By triangular inequality, we have

|βj − β̂j | ≥ min1≤j≤q|β∗
j | − ‖β̂1 − β∗

1‖2 − a(λ− γ).

Hence, from (24), as n → ∞,

|βj − β̂j |/{a(λ− γ)} → ∞

since min1≤j≤q |β∗
j |/λ → ∞. On the other hand, cγ,λ =

O(λ1−ν) implies

J(a(λ− γ))/{a(λ− γ)}2

= −cγ,λ{a(λ− γ)}ν−1/(ν + 1) + λ/a(λ− γ) = O(1).

Hence, wj(βj) ≥ 0 for sufficiently large n. Next, consider
the cases where j > q. If |βj | > a(λ− γ),

vj(βj) > −op(λ)|βj |+ ρ0|βj |2/2
> |βj |

(
− op(λ) + ρ0a(λ− γ)/2

)
> 0

for all sufficiently large n. And if |βj | ≤ a(λ− γ),

vj(βj)

≥ −op(λ)|βj |+ J(|βj |)
≥ |βj |

(
− op(λ)− cλ,γ{a(λ− γ)}ν/(ν + 1) + λ

)
≥ |βj |

(
− op(λ)− [λ− γν{a(λ− γ)}ν−1]/(ν + 1) + λ

)
≥ 0

for all sufficiently large n. Hence,

QsB,γ,λ(β)−QsB,γ,λ(β̂) ≥ 0

for all sufficiently large n which completes the proof. �
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