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Testing the statistical significance of an
ultra-high-dimensional näıve Bayes classifier
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The näıve Bayes approach is one of the most popular
methods used for classification. Nevertheless, how to test
its statistical significance under an ultra-high-dimensional
(UHD) setup is not well understood. To fill this important
theoretical gap, we propose a novel testing statistic with a
standard normal asymptotic null distribution, even if the
predictor dimension is considerably larger than the sample
size. This makes the proposed method useful for UHD data
analysis. Simulation studies are presented to demonstrate its
finite sample performance and a text classification example
is described for illustration.
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1. INTRODUCTION

Supervised classification is widely used in real-world ap-
plications [8], including medical diagnoses [17], handwriting
recognition [12], and web mining [11], among many others.
Various supervised classification methods have been devel-
oped for such important applications. These include linear
and quadratic discriminant analysis (LDA and QDA), lo-
gistic regression, nearest-neighbor methods, the näıve Bayes
(NB) approach, support vector machines (SVMs), and many
others. Among these, NB is ranked in the top ten most pop-
ular classification methods in practice [14, 18].

In theory, the NB method is applicable to situations with
either continuous or binary predictors [2]. However, in this
study we focus on the binary case because our work is mainly
motivated by a text classification problem in which a text
document is typically represented by a high-dimensional bi-
nary vector; see Example 4 in Section 3.3 for more details.
Thus, we are interested in testing whether there exists at
least one binary predictor related to the response category.
Such a test is standard in classical linear regression analysis
(i.e., the overall F-test) and is typically carried out before
investigating the statistical significance of each individual
predictor for good control of the family-wise error [15].

Conditional on the response category, the NB approach
assumes that different predictors are mutually independent.
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Consequently, the statistical significance of a predictor can
be tested by investigating its marginal relationship with the
response variable. This idea is similar in approach to sure
independent screening [3]. When the predictor is binary, this
amounts to construction of a two-way contingency table and
testing of its row and column independence [9]. Under a
classical setup with a large sample size (denoted by n) and a
fixed predictor dimension (denoted by p), this can be carried
out via a standard chi-square test and has been widely used
in practice [1, 16, 19].

However, in scientific research it is common to encounter
situations in which the sample size n is very limited but the
predictor dimension p can be very large. The limited sam-
ple size may be because of budget limitations, timing con-
straints, or other practical reasons. By contrast, the large
predictor dimension p might be because of technological ad-
vances that enable researchers to collect a large amount of
information quickly and economically. Thus, how to test the
statistical significance of a NB method under an ultra-high-
dimensional (UHD) setup is of interest. To fill this important
theoretical gap, we propose a novel testing statistic with a
standard normal asymptotic null distribution, even if the
predictor dimension is much greater than the sample size.
Thus, the proposed method is useful for UHD data analysis.
Extensive simulation studies are presented to demonstrate
its finite sample performance and a real text classification
example is described for illustration.

The remainder of the article is organized as follows. Sec-
tion 2 presents the model and the notation used. The test
statistic and its theoretical properties are also described.
Section 3 presents numerical studies, which include simula-
tion studies and a real data example. Section 4 concludes
with a short discussion. All the proofs are contained in the
Appendix.

2. METHODOLOGY

2.1 Model and notation

Let (Yi, Xi) be the observation for the ith subject (1 ≤
i ≤ n), where Yi ∈ {0, 1} is the response variable (or class
label) and Xi = (Xi1, · · · , Xip)

� ∈ R
p is the associated

p-dimensional binary predictor, i.e., Xij ∈ {0, 1} for every
1 ≤ j ≤ p. We also assume that (Yi, Xi) for 1 ≤ i ≤ n are
independent and identically distributed. Furthermore, for a
fixed i conditional on Yi, the NB method requires different
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Xijs to be mutually independent. Next, for every k ∈ {0, 1}
and l ∈ {0, 1}, we define πj

kl = P (Yi = k,Xij = l), πk· =

P (Yi = k), πj
·l = P (Xij = l). If no predictor is related to

the response, then the following null hypothesis should be
correct.

(1) πj
kl = πk. × πj

.l for every k, l and j.

For a given data set, these quantities can be empiri-
cally estimated by π̂j

kl = n−1
∑

I(Xij = l)I(Yi = k),

π̂k· = n−1
∑

I(Yi = k), and π̂j
·l = n−1

∑
I(Xij = l), re-

spectively. It is then natural to consider the following test
statistic

(2) Tn = n

p∑
j=1

1∑
k=0

1∑
l=0

(π̂j
kl − π̂k·π̂

j
·l)

2

π̂k·π̂
j
·l

.

Under the assumption that p is fixed but n → ∞, Tn is
asymptotically distributed as a chi-square distribution with
p degrees of freedom [1]. Our numerical experience suggests
that it is indeed a good approximation to the empirical dis-
tribution if the sample size is large and the predictor dimen-
sion is small. However, if the predictor dimension is large
but the sample size is limited, a chi-square distribution is
no longer a good approximation. This motivates us to de-
velop a new test statistic that works better for cases with
large p but limited n.

2.2 New test statistic

To solve the problem, we develop a new testing procedure.
More specifically, we decompose the total sample size as
n = n0+n1, where nk (k = 0, 1) is the sample size associated
with Yi = k, that is, nk =

∑n
i=1 I(Yi = k). We then define

αkj = P (Xij = 1|Yi = k) with k ∈ {0, 1}. By definition, we

know that αkj = πj
k1/πk·. Then the null hypothesis (1) can

be rewritten as

(3) H0 : α0j = α1j = αj for some αj and every j.

It is clear that αkj can be estimated by α̂kj =
n−1
k

∑n
i=1 I(Yi = k)Xij . We then consider the following

rather simple test statistic:

(4) T =

p∑
j=1

(α̂0j − α̂1j)
2.

Intuitively, if the null hypothesis (3) is indeed correct, the
value of T is expected to be relatively small. Consequently,
we can reject the null hypothesis (3) if the value of T is
sufficiently large.

2.3 Mean-variance analysis

Although the basic idea of (4) is intuitive, it is not clear
how large the value of T needs to be considered sufficiently
large in practice. To address this issue, we conduct a mean-
variance analysis for T .

Theorem 2.1. Under the null hypothesis (3) and assuming
n → ∞, we have (1) E(T ) = (1/n0 + 1/n1)

∑p
j=1 αj(1 −

αj) and (2) var(T ) = 2(1/n0 + 1/n1)
2
∑p

j=1 α
2
j (1 − αj)

2 +

op(pn
−2).

The proof is given in Appendix A. Note that E(·) de-
notes the expectation conditional on n0 and n1. The no-
tation var(·) is defined similarly. Theorem 2.1 leads to an
important theoretical finding. Consider a highly simplified
case with n0 = n1 = n/2 and n/p → 0. Then, by Theorem
2.1 we should have that E(T ) is of order p/n and var(T )
is of order p/n2. As a result, the order of E(T )/var1/2(T )
should be

√
p → ∞. Hence, it is impossible for T/var1/2(T )

to follow any non-degenerate probability distribution. The
main reason is the bias of T . Consequently, before we can
use T for hypothesis testing, appropriate bias correction is
required.

2.4 Bias-corrected test statistic

Motivated by the theoretical findings in the previous sub-
section, we consider a bias-corrected test statistic given by
(5)

Tc =

p∑
j=1

{
(α̂0j − α̂1j)

2 −
( 1

n0
+

1

n1

)( n

n− 1

)
α̂j(1− α̂j)

}
,

where α̂j =
∑

Xij/n is an estimator for αj in the null hy-
pothesis (3). We can easily verify that the new test statistic
is exactly unbiased for 0 if the null hypothesis (3) is indeed
correct. We next consider its asymptotic variance, which is
given by the next theorem.

Theorem 2.2. Under the null hypothesis (3) and assuming
n → ∞, we have (1) ETc = 0 and (2) var(Tc) = 2(1/n0 +
1/n1)

2
∑p

j=1 α
2
j (1− αj)

2 + op(pn
−2).

The proof is given in Appendix B. By Theorem 2.2, we
know that the bias-corrected test statistic Tc shares the
same asymptotic variance as T . We can then consider use of
Tc/var

1/2(Tc) as a test statistic because var(Tc) involves the
unknown parameter αj , which can be replaced by its esti-

mator α̂j . This leads to the final test statistic Tf = Tc/D̂p,

where D̂2
p = 2(1/n0+1/n1)

2
∑p

j=1 α̂
2
j (1−α̂j)

2. The next the-
orem shows that such a test statistic has a standard normal
asymptotic distribution if the null hypothesis (3) is indeed
true.

Theorem 2.3. Under the null hypothesis (3), assume that
there exist αmin and αmax such that

(6) 0 < αmin ≤ αj ≤ αmax < 1 for every j.

Further assume that p/n2 → ∞. We then have Tf →d

N(0, 1) as n → ∞, where “→d” denotes convergence in dis-
tribution.
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Table 1. Example 1. Empirical size based on 1,000 simulation replicates

Sample Test Predictor dimension
size statistic 100 200 500 1,000 5,000 40,000

50 Tf 0.053 0.039 0.054 0.047 0.043 0.0550
Tn 0.068 0.058 0.075 0.125 0.291 0.8680

100 Tf 0.049 0.051 0.048 0.045 0.049 0.0510
Tn 0.064 0.059 0.057 0.074 0.122 0.4110

200 Tf 0.052 0.051 0.062 0.060 0.051 0.0530
Tn 0.054 0.067 0.070 0.072 0.087 0.1770

The proof is given in Appendix C. By Theorem 2.3 we
know that the asymptotic null distribution of Tf is a stan-
dard normal distribution. As a result, we can reject the null
hypothesis (3) if |Tf | > z1−α/2, where z1−α/2 denotes the
(1− α/2)th percentile of a standard normal distribution.

Remark 1. Condition (6) is a very reasonable assumption.
It can be violated if the frequency observed for some pre-
dictor is extremely high or low. In either case, such predic-
tors carry little information about the response variable Yi,
and thus should be excluded from the formal analysis [10].
Otherwise, the asymptotic null distribution of Tf might be
seriously distorted. Consider for example an extreme situa-
tion in which αj = 1 for every j. In this case, we would have

both Tc and D̂p equal to 0. Consequently, Tf becomes an
invalid test statistic and the asymptotic normality theory as
claimed in Theorem 2.3 is no longer applicable.

3. NUMERICAL STUDY

To demonstrate the finite sample performance of the pro-
posed testing method, we present a number of numerical
studies.

3.1 Size and power

Example 1. This example focuses on the empirical size of
the proposed test statistic Tf . For comparison, the näıve
test statistic Tn is also evaluated. The response Yi is gener-
ated from a binary distribution with P (Yi = 1) = 0.5. Re-
gardless of the value of Yi, Xij is independently generated
with P (Xij = 1) = π·j , where π·j is randomly simulated
from a uniform distribution on [0.3, 0.8]. Because Xijs are
generated independently with respect to Yi, we know that
the null hypothesis (3) is true. The experiment is randomly
replicated 1,000 times. The nominal level is fixed to 0.05
and results for the empirical sizes are listed in Table 1. The
empirical size results for Tf are fairly close to the nominal
level 0.05, which corroborates our asymptotic theory quite
well. By contrast, those for the näıve test statistic Tn show
large deviation from 0.05. This is particularly true for cases
with small sample size and high dimension. To gain an intu-
itive understanding of the asymptotic distribution of Tf , the
empirical density for n = 200 and p = 5, 000 is compared
with the standard normal distribution in Figure 1. The dis-

Figure 1. Empirical density of Tf compared to the standard
normal density.

tributions are very close to each other, which confirms that
the asymptotic null distribution of Tf is indeed a standard
normal distribution.

Example 2. In this example, we numerically investigate
the power of the proposed test statistic Tf . To this end, we
fix an integer p0 = 10 and for each 1 ≤ j ≤ p0 we simu-
late Xij from a Bernoulli distribution with mean πkj , given
Yi = k with k = 0 or 1. Here π0j is generated from a uniform
distribution on [0.2, 0.4], while π1j is generated from a uni-
form distribution on [0.6, 0.8]. Next, for every p0 < j ≤ p,
Xij is simulated from a Bernoulli distribution with param-
eter πj , where πj is generated from a uniform distribution
on [0.2, 0.8]. Obviously, the null hypothesis (3) is violated
for this case. Then, for each parameter specification for n
and p, we replicate the experiment 1,000 times. Results for
the empirical power with significance level α = 0.05 are
listed in Table 2. It is clear that for a given sample size, a
larger predictor dimension leads to smaller power. This is
expected because the number of relevant predictors is fixed
to p0 = 10. Thus, a larger predictor dimension introduces a
greater number of irrelevant predictors, which decreases the
power of the proposed test. Conversely, if the predictor di-
mension is fixed, a larger sample size leads to better power,
as expected.
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Table 2. Example 2. Empirical powers based on 1,000 simulation replicates

Sample Predictor dimension
size 500 1,000 1,500 2,000 2,500 3,000

50 0.775 0.721 0.393 0.376 0.290 0.211
100 0.997 0.997 0.973 0.742 0.742 0.730
200 1.000 1.000 1.000 0.994 0.996 0.996

Table 3. Example 3. Number of important variables missed, number of irrelevant variables selected, and prediction accuracy
for various sample sizes and significance levels α

Sample Performance α Specification
Size Measure 0.01 0.05 0.10 0.50 0.75 1

50 Missed variables 14 12 12 8 7 0
Irrelevant variables 0 1 2 3 3 980
Prediction accuracy 0.857 0.882 0.864 0.896 0.911 0.656

100 Missed variables 10 9 8 6 6 0
Irrelevant variables 0 2 2 6 8 980
Prediction accuracy 0.933 0.923 0.936 0.931 0.922 0.793

200 Missed variables 8 6 6 4 4 0
Irrelevant variables 0 0 0 1 2 980
Prediction accuracy 0.963 0.969 0.969 0.974 0.970 0.906

3.2 Variable selection and prediction
accuracy

Example 3. In this example, we demonstrate some po-
tential applications of our method for variable selection.
We also evaluate its effect on the prediction accuracy. We
fix p = 1, 000 in this experiment. For a fixed sample size
n, we simulate each Yi from a Bernoulli distribution with
P (Yi = 1) = 0.5. Given the value of Yi = k, we simu-
late Xij for 1 ≤ j ≤ p0 = 20 from a Bernoulli distribu-
tion with P (Xij = 1) = πkj . Here π0j is generated from
a uniform distribution on [0.2, 0.4], while π1j is generated
from a uniform distribution on [0.6, 0.8]. For j > p0 = 20,
Xij is always simulated from a Bernoulli distribution with
P (Xij = 1) = 0.5, regardless of the value of Yi. As a result,
only the first p0 = 20 predictors are relevant to the response
prediction. This gives us the training data.

For variable selection, we first compute a marginal
chi-square test statistic for each predictor as χ2

j =

n
∑1

k=0

∑1
l=0(π̂

j
kl − π̂k·π̂

j
·l)

2/(π̂k·π̂
j
·l). Using a sure indepen-

dent screening method [3], we then rank the importance of
each predictor in decreasing χ2

j order. This gives us a solu-
tion path, denoted as j1, j2, . . . , jp, where {j1, j2, . . . , jp} =
{1, 2, . . . , p}. If the first k (1 ≤ k ≤ p) predictors are suf-
ficient for response prediction, the test statistic computed
based on the remaining predictors should follow the stan-
dard normal distribution asymptotically. As a result, the re-
sulting p-value is expected to be nonsignificant. By contrast,
if the first k predictors are insufficient for response predic-
tion, the resulting p-value computed based on the remaining
predictors should be significant. Thus, the best model can

be specified as M = {j1, j2, . . . , jk}, where (k + 1) is the
first integer for which the test statistic Tf is nonsignificant.

Depending on the choice of α, the resulting models can
differ and their out-of-sample forecasting accuracy might be
different. To gain an intuitive idea of this, the out-of-sample
forecasting accuracy was evaluated for testing data with a
sample size of 1, 000. The results are given in Table 3. It is
evident that the model size increases with α. As a result,
the number of important variables missed by our method
decreases but the number of irrelevant variables selected in-
creases. If the ultimate objective is forecasting, it seems that
α = 0.50 is a reasonable choice. Such a phenomenon is not
surprising, because the asymptotic null distribution of the
empirical p-value is uniform on [0, 1]. As a result, for a p-
value less than 0.50, it is more likely that some relevant
variables will not be included.

3.3 Text mining example

Example 4. We apply the method to a Chinese text data
set for 1,119 text documents. Each document represents
one appeal phone call made to the Mayor’s public hotline
(MPH). The appeals are classified into two categories ac-
cording to the functional department involved, giving sam-
ple sizes of 550 and 569. For a more detailed description
about MPH, one can refer to [4]. We then represent each
document by a UHD binary vector Xi = (xi1, . . . , xip) with
p = 15, 759, where Xij = 1 if the jth keyword exists in the
ith document, and 0 otherwise [13]. A total of n0 = n1 = 100
documents are randomly selected from each category as the
training data, while the rest are reserved for testing. We fol-
low the same technique as in the previous simulation study
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to select important variables based on the training data set.
A NB classifier is then constructed and its prediction accu-
racy is evaluated for the test data. For reliable evaluation,
the experiment was randomly replicated 1,000 times. The
resulting average prediction accuracy is 0.9201. In compari-
son, classification and regression tree [8] and linear support
vector machine [10] methods gave prediction accuracy of
0.9292 and 0.9181, respectively. These values are similar to
the NB accuracy. However, the NB method is much simpler,
both computationally and theoretically.

4. DISCUSSION

We proposed a novel procedure for testing the statistical
significance of a UHD NB model. Our numerical experience
suggests that the proposed method is particularly useful for
UHD data. However, it is not clear if the proposed test
statistic is optimal under certain alternative hypotheses. To
the best of our knowledge, well-established optimality re-
sults for high-dimensional tests are extremely limited in lit-
erature, although some pioneer results for regression models
have been published [5–7]. Further research into this issue
is required.

APPENDIX A. PROOF OF THEOREM 2.1.

We consider first Theorem 2.1 (1). We can easily
verify that Eα̂kj = αj and Eα̂2

kj = n−1
k αj(1 − αj) + α2

j .

Consequently, we have E(α̂0j − α̂1j)
2 = Eα̂2

0j + Eα̂2
1j −

2Eα̂0jEα̂1j = (1/n0+1/n1)αj(1−αj). This leads to E(T ) =∑p
j=1 E(α̂0j − α̂1j)

2 = (1/n0 + 1/n1)
∑p

j=1 αj(1− αj).

We next consider Theorem 2.1 (2). We can verify that
Eα̂4

kj = n−3
k αj{(nk − 1)(nk − 2)(nk − 3)α3

j +6(nk − 1)(nk −
2)α2

j + 7(nk − 1)αj + 1}, E(α̂2
0jα̂

2
1j) = n−1

0 n−1
1 α2

j{(n0 −
1)αj + 1}{(n1 − 1)αj + 1}, and for k �= k′, E(α̂3

kjα̂k′j) =

n−2
k α2

j{(nk −1)(nk −2)α2
j +3(nk −1)αj +1}. We then have

E(α̂0j− α̂1j)
4 = {3(n−1

0 +n−1
1 )2−6(n−3

0 +n−3
1 )}(α4

j −2α3
j +

α2
j ) + (n−3

0 + n−3
1 )(αj − α2

j ). This leads to

var(T ) =

p∑
j=1

var(α̂0j − α̂1j)
2

=

p∑
j=1

E(α̂0j − α̂1j)
4 −

p∑
j=1

{
E(α̂0j − α̂1j)

2
}2

=
{
2(n−1

0 + n−1
1 )2 − 6(n−3

0 + n−3
1 )

} p∑
j=1

α2
j (1− αj)

2

+ (n−3
0 + n−3

1 )

p∑
j=1

αj(1− αj).

By the law of large numbers, we have nk/n →p πk· for
k = 0, 1. This, together with the fact that α2

j (1− αj)
2 < 1,

implies that (n−3
0 + n−3

1 )
∑p

j=1 α
2
j (1 − αj)

2 ≤ p(n−3
0 +

n−3
1 ) = pn−2op(1). Consequently, (n

−3
0 + n−3

1 )
∑p

j=1 α
2
j (1−

αj)
2 = op(pn

−2). Similarly, it is also true that (n−3
0 +

n−3
1 )

∑p
j=1 αj(1−αj) = op(pn

−2). Hence, we have var(T ) =

2(1/n0+1/n1)
2
∑p

j=1 α
2
j (1−αj)

2+op(pn
−2). This completes

the proof.

APPENDIX B. PROOF OF THEOREM 2.2.

We consider first Theorem 2.2(1). We know that E(α̂0j−
α̂1j)

2 = (1/n0+1/n1)αj(1−αj) for every 1 ≤ j ≤ p. Hence,
it suffices to show that E{α̂j(1−α̂j)} = (n−1)n−1αj(1−αj).
Under the null hypothesis (3), we know that E(α̂j) = αj and
E(α̂2

j ) = α2
j + n−1αj(1− αj). This proves E{α̂j(1− α̂j)} =

(n− 1)n−1αj(1− αj).
We next consider Theorem 2.2 (2). Denote (α̂0j− α̂1j)

2−
(1/n0 + 1/n1)n(n − 1)−1α̂j(1 − α̂j) by Tj . We then have
Tc =

∑p
j=1 Tj and var(Tc) =

∑p
j=1 var(Tj) =

∑p
j=1 E(T 2

j ).

We next investigate E(T 2
j ) as

T 2
j = (α̂0j − α̂1j)

4 +A2(α̂4
j − 2α̂3

j + α̂2
j )(7)

− 2A(α̂0j − α̂1j)
2(α̂j − α̂2

j ),

where A = (1/n0 + 1/n1)n(n− 1)−1. We then evaluate the
above three terms separately. For the first term, following
similar techniques as in the proof of Theorem 2.1, we have
E(α̂0j − α̂1j)

4 = {3(n−1
0 + n−1

1 )2 − 6(n−3
0 + n−3

1 )}α2
j (1 −

αj)
2+(n−3

0 +n−3
1 )αj(1−αj). For the second term, we have

E(α̂4
j − 2α̂3

j + α̂2
j ) = n−3(n− 1)(n− 2)(n− 3)α2

j (1− αj)
2 +

(n−1)2n−3αj(1−αj). We then have A2E(α̂4
j −2α̂3

j + α̂2
j ) =

(n−1
0 + n−1

1 )2{(n − 2)(n − 3)n−1(n − 1)−1α2
j (1 − αj)

2 +

n−1αj(1 − αj)}. We next consider the third term. Because
α̂j = (n0α̂0j + n1α̂1j)/n, we have

(α̂0j − α̂1j)
2(α̂j − α̂2

j )

= n−1n0(α̂
3
0j + α̂0jα̂

2
1j − 2α̂2

0jα̂1j)

+ n−1n1(α̂1jα̂
2
0j + α̂3

1j − 2α̂0jα̂
2
1j)

− n−2α̂2
0j(n

2
0α̂

2
0j + n2

1α̂
2
1j + 2n0n1α̂0jα̂1j)

− n−2α̂2
1j(n

2
0α̂

2
0j + n2

1α̂
2
1j + 2n0n1α̂0jα̂1j)

+ 2n−2α̂0jα̂1j(n
2
0α̂

2
0j + n2

1α̂
2
1j + 2n0n1α̂0jα̂1j)

= L1 + L2 − L3 − L4 + 2L5.

The quantities L1 to L5 then need to be investigated
separately as follows. E(L1) = α3

j{−n−1n0(n
−1
0 + n−1

1 ) +

2n−1n−1
0 }+α2

j{n−1n0(n
−1
0 +n−1

1 )−3n−1n−1
0 }+αjn

−1n−1
0 .

Similarly, E(L2) = α3
j{−n−1n1(n

−1
0 + n−1

1 ) + 2n−1n−1
1 } +

α2
j{n−1n1(n

−1
0 + n−1

1 ) − 3n−1n−1
1 } + αjn

−1n−1
1 . Next, we

have E(L3) = α4
j{n−2n−1

0 (n − 2)(n − 3)(n0 − 1)} +

α3
j{5n−2(n − 2) + n−2n−1

0 (n − 2)(n − 6)} + α2
j{4n−2 +

n−2n−1
0 (3n − 7)} + αjn

−2n−1
0 . We also have E(L4) =

α4
j{n−2n−1

1 (n − 2)(n − 3)(n1 − 1)} + α3
j{5n−2(n − 2) +

n−2n−1
1 (n − 2)(n − 6)} + α2

j{4n−2 + n−2n−1
1 (3n − 7)} +
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αjn
−2n−1

1 . Finally, we can verify that E(L5) = α4
jn

−2(n −
2)(n− 3) + α3

j5n
−2(n− 2) + α2

j4n
−2. Combining the above

results, we obtain

E{(α̂0j − α̂1j)
2(α̂j − α̂2

j )}
= E(L1) + E(L2)− {E(L3) + E(L4)− 2E(L5)}
= (n−1

0 + n−1
1 ){n−2(n− 2)(n− 3)α2

j (1− αj)
2

+ n−2(n− 1)αj(1− αj)}.

The above conclusions together with (7) lead to

E(T 2
j ) = E(α̂0j − α̂1j)

4 +A2E(α̂4
j − 2α̂3

j + α̂2
j )

− 2AE((α̂0j − α̂1j)
2(α̂j − α̂2

j ))

=
{
(2 + n−1(n− 1)−1(4n− 6))(n−1

0 + n−1
1 )2

− 6(n−3
0 + n−3

1 )
}
α2
j (1− αj)

2

+
{
(n−3

0 + n−3
1 )− n−1(n−1

0 + n−1
1 )2

}
αj(1− αj).

Recall that nk/n →p πk·, so we have E(T 2
j ) =

{2(n−1
0 + n−1

1 )2 + Op(n
−3)}α2

j (1 − αj)
2 + Op(n

−3)αj(1 −
αj). As a result, we obtain var(Tc) = {2(n−1

0 + n−1
1 )2 +

Op(n
−3)}

∑p
j=1 α

2
j (1−αj)

2+Op(n
−3)

∑p
j=1 αj(1−αj). Be-

cause αj(1−αj) < 1, it is obvious that O(n−3)
∑p

j=1 α
2
j (1−

αj)
2 = o(pn−2) and O(n−3)

∑p
j=1 αj(1 − αj) = o(pn−2).

Consequently, var(Tc) = 2(n−1
0 + n−1

1 )2
∑p

j=1 α
2
j (1−αj)

2 +

op(pn
−2). This completes the proof.

APPENDIX C. PROOF OF THEOREM 2.3.

Denote var(Tc) by A2
p and let B2

p = 2(1/n0 +
1/n1)

2
∑p

j=1 α
2
j (1 − αj)

2. Then, by Theorem 2.2, we have

A2
p = B2

p + op(pn
−2). Theorem 2.3 can be proved in three

steps.

First step We first prove that A2
p/B

2
p →p 1. Since there

exist αmin, αmax such that 0 < αmin ≤ αj ≤ αmax < 1
for every j, there exists a constant M such that 0 < M ≤
αj(1− αj) ≤ 1/4 for every j. Consequently,

2M2pΔ2 ≤ B2
p = 2Δ2

p∑
j=1

α2
j (1− αj)

2 ≤ pΔ2/8,

where Δ = 1/n0 + 1/n1. Thus, |po(n−2)/B2
p | ≤

|o(n−2)|/(2M2Δ2) → 0. Combining the fact that

A2
p/B

2
p = 1 + pop(n

−2)/B2
p ,

we can obtain A2
p/B

2
p →p 1.

Second step In this step, we verify that Tc/Ap →d N(0, 1).
Because

Tj =
(
α̂0j − α̂1j

)2 −Δ
n

n− 1
α̂j(1− α̂j),

it is easy to show that for every j, |Tj | ≤ 1+Δn/(n−1) � K.
By the strong law of large numbers, with probability 1, we
have nk/n → πk· for k = 0, 1. Hence, K = 1+o(n−1/2) with
probability 1. Using the proof of Theorem 2.2, we also have
that A2

p = 2Δ2
∑p

j=1 α
2
j (1− αj)

2 + pn−2o(1) ≥ pn−2(2M +

o(1)) with probability 1. Furthermore, p/n2 → ∞, so it is
true that A2

p → ∞ with probability 1. This implies that,
with probability 1, K/Ap → 0. As a result, as long as n is
large enough, we have that, for arbitrary τ > 0 and every j,
P (|Tj | ≤ τAp) = 1. Consequently,

lim
n→∞

1

A2
p

p∑
j=1

∫
|x|>τAp

x2dFj(x) = 0,

where Fj is the distribution function of Tj given n0, n1. Con-
sequently, the Lindeberg condition is satisfied. Then, by the
central limit theorem, we have Tc/Ap →d N(0, 1).

Third step Finally, we demonstrate that D̂2
p/B

2
p →p 1. Let

zj =
√
n(α̂j − αj); then α̂j = n−1/2zj + αj , 1 − α̂j = (1 −

αj) − n−1/2zj and E(zj) = 0, var(zj) = αj(1 − αj) < 1.
Furthermore, we can obtain

α̂2
j (1− α̂j)

2 = α2
j (1− αj)

2 + ej ,

where ej = n−2z4j + (4αj − 2)n−3/2z3j + (1 − 6αj(1 −
αj))n

−1z2j + 2αj(1 − αj)(1 − 2αj)n
−1/2zj . For arbitrary ε,

let S2 = 2/ε. By Tchebycheff’s inequality, we have P (|zj | ≤
S) ≥ 1− var(zj)/S

2 > 1− 1/S2 > 1− ε, for every1 ≤ j ≤ p.
For fixed M0 = S4 + S3 + S2 + 2S, we have P (|√nej | ≤
M0) ≥ P (|z4j |+|z3j |+|z2j |+2|zj | ≤ M0) ≥ P (|zj | ≤ S) > 1−ε,
which implies that

√
nej = Op(1) for every j. Conse-

quently, it is true that
∑p

j=1 ej = pop(1). Hence, D̂2
p =

2(1/n0+1/n1)
2
∑p

j=1{α2
j (1−αj)

2+ ej} = B2
p + pn−2op(1).

From the first step, we know that pn−2op(1)/B
2
p →p 0, and

hence D̂2
p/B

2
p →p 1. Combining the results of these three

steps, we have

Tf =
Tc

D̂p

=
Tc

Ap

Ap

Bp

Bp

D̂p

→d N(0, 1).

This completes the proof.
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