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Penalized unsupervised learning with outliers

Daniela M. Witten

We consider the problem of performing unsupervised
learning in the presence of outliers – that is, observations
that do not come from the same distribution as the rest
of the data. It is known that in this setting, standard ap-
proaches for unsupervised learning can yield unsatisfactory
results. For instance, in the presence of severe outliers, K-
means clustering will often assign each outlier to its own
cluster, or alternatively may yield distorted clusters in or-
der to accommodate the outliers. In this paper, we take a
new approach to extending existing unsupervised learning
techniques to accommodate outliers. Our approach is an
extension of a recent proposal for outlier detection in the
regression setting. We allow each observation to take on an
“error” term, and we penalize the errors using a group lasso
penalty in order to encourage most of the observations’ er-
rors to exactly equal zero. We show that this approach can
be used in order to develop extensions of K-means cluster-
ing and principal components analysis that result in accu-
rate outlier detection, as well as improved performance in
the presence of outliers. These methods are illustrated in a
simulation study and on two gene expression data sets, and
connections with M -estimation are explored.

Keywords and phrases: Robust, Group lasso, Cluster-
ing, Principal components analysis, M-estimation.

1. INTRODUCTION

It has long been known that in the presence of out-
liers, classical statistical methods such as linear regres-
sion can fail. For this reason, many proposals for detect-
ing outliers in regression have been made (for a survey, see
Rousseeuw and Leroy, 1987; Rousseeuw and Hubert, 2011).
Recently, She and Owen (2011) proposed a new approach
for detecting outliers in regression problems. In regression,
one generally assumes the model

(1) y = Xβ + ε, ε ∼ N(0, σ2I),

where y is an outcome vector of length n, X is a n×p design
matrix, and ε a n-vector of error terms. If some outliers are
present among the observations, then a more accurate model
might be

(2) y = Xβ + γ + ε, ε ∼ N(0, σ2I),

where γ is a sparse n-vector whose nonzero elements cor-
respond to outlying observations. To fit the model (2),
She and Owen (2011) propose solving the optimization
problem

(3) minimize
β,γ

{
1

2
‖y − γ −Xβ‖2 +

n∑
i=1

P (γi;λ)

}
,

where P (γi;λ) is a penalty on γi that encourages sparsity,
and λ is a tuning parameter. It is shown in She and Owen
(2011) that there is a close connection between M -
estimation and (3). For instance, if P (γi;λ) = λ

∑n
i=1 |γi|,

then solving (3) is equivalent to the M -estimate based on
Huber’s loss function (Huber, 1964).

In this paper, we consider the problem of performing un-
supervised learning in the presence of outliers – that is, ob-
servations that do not come from the same distribution as
the rest of the data. Specifically, we investigate K-means
clustering and principal components analysis (PCA) in the
presence of outliers. Both of these methods can perform
very poorly when outliers are present. A number of pro-
posals have been made for modifying these techniques to
accommodate outliers (among others, Jolion and Rosenfeld,
1989; Dave, 1991; Garcia-Escudero and Gordaliza, 1999;
Jiang, Tseng and Su, 2001; Fraley and Raftery, 2002; Tseng
and Wong, 2005; Tseng, 2007). We instead propose an ap-
proach for unsupervised learning in the presence of outliers
that is motivated by the work of She and Owen (2011). The
flexible framework that we propose can be applied to K-
means clustering, PCA, and other unsupervised learning
techniques.

In recent years, much effort has focused upon the
use of penalties to perform feature selection in re-
gression problems, and to a lesser extent in the clas-
sification setting (for instance, see Tibshirani, 1996;
Fan and Li, 2001; Zou and Hastie, 2005; Zou, 2006;
Witten and Tibshirani, 2011). Other work has in-
volved transferring some of the ideas developed for
performing feature selection in supervised contexts
to the unsupervised setting (examples include Fried-
man, Hastie and Tibshirani, 2007; Pan and Shen, 2007;
Xie, Pan and Shen, 2008; Witten, Tibshirani and Hastie,
2009; Witten and Tibshirani, 2010; Guo et al., 2011).
In this paper, rather than using penalties to perform
feature selection in the unsupervised setting, we develop
an approach for performing observation selection in the
unsupervised context – that is, an approach to obtain
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Figure 1. (a): Three sets of observations were generated in two dimensions: two clusters (shown as circles and triangles) and a
set of outliers that belong to neither cluster (shown as crosses). (b): The cluster assignments from K-means are shown as
triangles and circles. K-means clustering fails to correctly identify the two clusters, due to the presence of outliers. (c): The
cluster assignments from our outlier clustering proposal (with a group lasso penalty) are shown as triangles and circles. The
squares indicate observations that were assigned nonzero errors; i.e. that were identified as outliers. (d): Xi −Ei is shown.
The cluster assignments are shown as circles and triangles, and the observations with nonzero errors are shown as squares.

The errors were assigned so that the resulting Xi −Ei are quite consistent with the true clusters.

not sparsity in the features, but rather sparsity in the
observations, where observations are excluded if they
appear not to arise from the unsupervised model being fit
to the majority of the observations.

Figure 1 illustrates the performances of K-means cluster-
ing and our outlier K-means clustering proposal on a small
simulated example that consists of two clusters, along with
a number of outliers. Our outlier K-means proposal is able
to successfully identify outliers and cluster the non-outlying
observations.

The rest of this paper is organized as follows. In Sec-
tion 2, we propose our approach for unsupervised learning
in the presence of outliers. In Section 3, we discuss K-means
clustering in the presence of outliers as well as its connec-
tion to a generalized version of K-means clustering using
Huber’s loss function. A simulation study and an applica-
tion to gene expression data are also presented. In Section 4

we discuss PCA in the presence of outliers, and present a

simulation study. The discussion is in Section 5.

2. A PROPOSAL FOR UNSUPERVISED
LEARNING WITH OUTLIERS

Suppose that we have a n× p data matrix X, consisting

of p feature measurements on a set of n observations. We

wish to perform an unsupervised analysis of this data set,

such as clustering or PCA. We assume that the procedure

of interest solves an optimization problem of the form

(4) minimize
θ∈D

{f(X, θ)} ,

where θ represents a set of parameters for the unsupervised

learning operation that is restricted to belong to a setD. For
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instance, K-means clustering involves solving the problem

(5) minimize
C1,...,CK ,μ1,...,μk

{
1

2

K∑
k=1

∑
i∈Ck

‖Xi − μk‖2
}

where Xi ∈ R
p denotes the ith observation (row) of the

data matrix X, μ1, . . . ,μK ∈ R
p denote the mean vectors

for the K clusters, and C1, . . . , CK denote a partition of the
n observations into K clusters, such that Ck ∩ Ck′ = ∅ for
k �= k′ and C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . , n}. PCA can also
be written as the solution to an optimization problem: the
first K principal components of X are the columns of the
matrix V that solves

(6) minimize
D,U,V

{
1

2
‖X−UDVT ‖2F

}
,

where D is a K × K diagonal matrix, and U and V are
n×K and p×K orthogonal matrices, respectively.

Now, suppose that some of the observations in X are
outliers. A simple model for this situation is as follows. We
wish to learn the underlying signal in a n × p data matrix
W via an unsupervised approach, but we do not observe W;
we instead observe X = W +E, where E is a n× p matrix
of errors for the observations. Most of the observations do
not have errors, and so most rows of E contain only zeros.
However, some subset of the observations are outliers, and
hence contain errors. These correspond to nonzero rows of
E. These errors might potentially be very large.

If E were known then our task would be simple: we could
just perform an unsupervised analysis on W = X − E in-
stead of X, leading to the optimization problem

(7) minimize
θ∈D

{f(X−E, θ)}

instead of (4). Unfortunately, this is not possible because E
is unknown. In particular, we do not know which observa-
tions are outliers, and much less the error terms associated
with these outliers.

Therefore, rather than solving (7) as written, we propose
to optimize it with respect to θ and E jointly. That is, we
will estimate the errors for the observations, subject to a
penalty intended to encourage just a few observations to be
outliers. In particular, we propose to solve

(8) minimize
θ∈D,E

{
f(X−E, θ) +

n∑
i=1

P (‖Ei‖2;λ)
}

where λ is a nonnegative tuning parameter, and where
P (·;λ) is a penalty function that encourages sparsity and
that is applied to the �2 norm of the ith error term, i.e.
it encourages the ith error term to be zero. There are a
number of possible choices for the penalty function, which
may be convex or non-convex; some possibilities are sur-
veyed in She (2011) and Mazumder, Friedman and Hastie

Algorithm 1A descent algorithm for unsupervised learning
with outliers

1. Initialize E, an n× p matrix of errors.

2. Iterate until convergence:

(a) Holding E fixed, solve (8) with respect to θ. This
amounts to performing unsupervised learning on the
matrix X−E.

(b) Holding θ fixed, solve (8) with respect to E. This
amounts to updating the estimates of which observa-
tions are outliers, given the current value of θ.

3. Perform unsupervised learning (solve (4)) on the observa-
tions that were assigned zero errors, i.e. on the observations
in the set {i : ‖Ei‖2 = 0}.

(2011). In the examples presented in this paper, we will
take P (‖Ei‖2;λ) = λ‖Ei‖2. This is a group lasso penalty
(Yuan and Lin, 2007). When λ → ∞ then Eij = 0 for all
i and j, and so (8) will just reduce to (4). When λ = 0,
then the errors can become arbitrarily large; each observa-
tion will be assigned an error, leading in general to useless
results. However, for an intermediate value of λ, just a sub-
set of the observations will be assigned nonzero errors. These
observations with nonzero errors are thought to be outliers.
Unsupervised learning is performed at the same time as the
outliers are identified, so outliers are defined with respect to
the unsupervised approach used.

In general, we will take an iterative approach to solving
the problem (8), as outlined in Algorithm 1. Each iteration
of Step 2 of Algorithm 1 decreases the objective. In the next
two sections, we will apply this formulation for unsupervised
learning with outliers to two specific problems, K-means
clustering and PCA.

3. K-MEANS CLUSTERING WITH
OUTLIERS

3.1 The proposal

Suppose that we wish to cluster a set of observations, but
we think that some of the observations are outliers that do
not belong to any cluster. Rather than solving (5), we can
instead solve the problem

minimize
C1,...,CK ,μ1,...,μK ,E

{
1

2

K∑
k=1

∑
i∈Ck

‖Xi −Ei − μk‖2(12)

+
n∑

i=1

P (‖Ei‖2;λ)
}
.

As previously described, E is a matrix of elements that al-
lows for “errors” in X. That is, if the observation Xi does
not seem to belong to any cluster, then Ei will take on a
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Algorithm 2 A descent algorithm for outlierK-means clus-
tering

1. Initialize the errors – e.g. takeEi = 0 for the 90% of observa-
tions that are closest to the overall mean of the observations
in terms of Euclidean distance, and Ei = Xi for the others.

2. Iterate until the objective (12) converges:

(a) Perform K-means clustering on the matrix X − E.
That is, solve

(9) minimize
C1,...,CK ,μ1,...,μK

⎧⎨
⎩

K∑
k=1

∑
i∈Ck

‖Xi −Ei − μk‖2
⎫⎬
⎭ .

(b) For each observation, i = 1, . . . , n, solve the problem
(10)

minimize
Ei

{
1

2
‖Xi −Ei − μC(i)‖

2 + P (‖Ei‖2;λ)
}

where C(i) indicates the current cluster assignment
of the ith observation, i.e. C(i) = k if i ∈ Ck. If
P (‖Ei‖2;λ) = λ‖Ei‖2, the solution takes the form
(Yuan and Lin, 2007)
(11)

Ei = (Xi − μC(i))max

(
0, 1− λ

‖Xi − μC(i)‖2

)
.

3. Perform K-means clustering on the observations that were
assigned zero errors, i.e. on the observations in the set {i :
‖Ei‖2 = 0}.

nonzero value such that Xi −Ei seems to belong to a clus-
ter. P (‖Ei‖2;λ) is a penalty function that encourages spar-
sity in ‖Ei‖2; throughout this paper, we take P (‖Ei‖2;λ) =
λ‖Ei‖2, a group lasso penalty. Then as λ → ∞, (12) be-
comes equivalent to the K-means clustering criterion (5),
since then the penalty for having a nonzero error becomes
arbitrarily large and so all errors are zero. On the other
hand, when λ = 0 we obtain a trivial result: there is no
penalty for having nonzero errors, and so the errors will be
such that the within-cluster sum of squares of X−E is zero,
i.e.

∑K
k=1

∑
i∈Ck

‖Xi − Ei − μk‖2 = 0. For an intermedi-
ate value of λ, some of the observations – those that do not
seem to belong to any cluster – will be assigned nonzero
errors. We refer to (12) as the outlier K-means clustering
optimization problem, and the clustering procedure based on
this criterion as outlier K-means clustering.

An example is shown in Figure 1, using a group lasso
penalty. Outlier K-means clustering successfully identifies
the outlying observations and assigns large errors to them,
allowing for correct discovery of the two true clusters.

Algorithm 2 is a descent algorithm for performing outlier
K-means clustering. That is, each step will decrease the ob-
jective of (12). Note that in Step 2(b), the problem (10) is
convex if P (‖Ei‖2;λ) is convex, in which case (11) solves it
exactly. However, in Step 2(a), (9) is a non-convex problem,

since K-means clustering is non-convex, and so only a local
optimum will be obtained.

3.2 Tuning parameter selection for outlier
K-means clustering

We now consider the problem of selecting the tuning pa-
rameter λ, assuming that K is known. We would like to
be conservative in calling observations outliers – we do not
want to call an observation an outlier unless we are quite
confident that it does not belong to any cluster. We choose
the largest value of λ (corresponding to the smallest number
of observations called outliers) such that no observation that
is not called an outlier appears to be one. That is, we choose
λ at the largest value such that no observation assigned zero
error has ‖Xi−μC(i)‖2 larger than m(λ)+3s(λ), where for
a given value of λ, m(λ) is the mean of ‖Xi−μC(i)‖2 over all
observations with zero error, and s(λ) is the standard devi-
ation of ‖Xi −μC(i)‖2 over all observations with zero error.
To implement this approach, we perform outlier K-means
clustering over a grid of λ values.

Throughout this paper, we assume that the number of
clusters K is known, but in real applications this is often
not the case. If K is unknown, then λ and K must be jointly
selected in some way. Consider Figure 1. Given that K = 2,
it is clear that a number of observations are outliers; how-
ever, if K were much larger, then each of the outliers shown
in panel (a) could be assigned to its own cluster, and no
observations would be assigned nonzero errors. More simply
put, it is impossible to distinguish a data set comprised of
K clusters and a single outlier from a data set comprised of
K +1 clusters and no outliers, unless one is willing to make
an assumption about the number of clusters or the proper-
ties of those clusters. This is a complex issue, and in what
follows we assume that K is known.

3.3 Connection with M -estimation

Our proposal for unsupervised learning in the presence
of outliers is motivated by a recent proposal in the regres-
sion setting (She and Owen, 2011). In that paper, it was
shown that there is a deep connection between performing
regression in the presence of outliers, using the model (3),
and M -estimation. We now show that there is a very close
connection between our proposal for outlier K-means, and
a generalized version of K-means given by

(13) minimize
μ1,...,μK ,C1,...,CK

{
K∑

k=1

∑
i∈Ck

ρ(‖Xi − μk‖2;λ)
}

where ρ(t;λ) is some loss function (Garcia-Escudero and
Gordaliza, 1999). Suppose that for a given penalty function
P (·;λ), the problem

(14) minimize
b

{
1

2
‖y − b‖2 + P (‖b‖2;λ)

}
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has the solution

(15) b = Θ(y;λ)

where Θ(·;λ) is a thresholding function (discussed exten-
sively in She, 2009; She, 2011). Consider the optimization
problem (12) with C1, . . . , CK fixed. Then it is not hard
to see that an iterative algorithm that successively holds
E1, . . . ,En fixed and solves for μ1, . . . ,μK and then holds
μ1, . . . ,μK fixed and solves for E1, . . . ,En will decrease the
objective at each step. If this algorithm is iterated until the
objective converges, then by inspection, the solution will
satisfy, for k = 1, . . . ,K,

(16)
∑
i∈Ck

(Xi − μk −Θ(Xi − μk;λ)) = 0.

Proposition 1. Suppose that Θ(Xi −μk;λ) +
∂

∂μk
ρ(‖Xi −

μk‖2;λ) = Xi − μk. Then, (16) implies that

(17)
∑
i∈Ck

∂

∂μk

ρ(‖Xi − μk‖2;λ) = 0.

In other words, the solution to (12) with C1, . . . , CK held
fixed satisfies the score equation associated with (13) with
C1, . . . , CK held fixed.

Proposition 1 indicates that there is a connection between
the outlier K-means clustering problem (12) and the gen-
eralized K-means problem (13) when C1, . . . , CK are held
fixed. For example, consider the use of a group lasso penalty
P (‖Ei‖2;λ) = λ‖Ei‖2, and let ρ(t;λ) be Huber’s loss func-
tion, given by (Huber, 1964)

(18) ρ(t;λ) =

{
λ|t| − λ2/2 if |t| > λ

t2/2 if |t| ≤ λ
.

Then, it is easily shown that the condition of Proposition
1 is satisfied, since Θ(Xi − μk;λ) = (Xi − μk)max(0, 1 −

λ
‖Xi−μk‖2

), and ∂
∂μk

ρ(‖Xi − μk‖2;λ) = Xi−μk

‖Xi−μk‖2
ρ′(‖Xi −

μk‖2;λ) where

(19) ρ′(t;λ) =

{
λ sign(t) if |t| > λ

t if |t| ≤ λ
.

In other words, with C1, . . . , CK held fixed, generalized K-
means with Huber’s loss function and outlier K-means with
a group lasso penalty yield the same estimates μ1, . . . ,μK .

Now, holding μ1, . . . ,μK fixed, suppose we wish to solve
(12) for C1, . . . , CK and E1, . . . ,En.

Proposition 2. Holding μ1, . . . ,μK fixed and minimizing
(12), with a group lasso penalty, with respect to C1, . . . , CK

and E1, . . . ,En amounts to assigning the ith observation to
the class for which ρ(‖Xi −μk‖2;λ) is smallest, where ρ is
Huber’s loss function.

Proof. Minimizing (12) with respect to E1, . . . ,En and
C1, . . . , CK amounts to assigning the ith observation to the
class for which the quantity

(20)
1

2
‖Xi − μk −Ei‖2 + λ‖Ei‖2

is minimized, where Ei = (Xi − μk)max(0, 1− λ
‖Xi−μk‖2

).

Note that (20) can be rewritten as

1

2
min(‖Xi − μk‖2, λ)2 + λmax(0, ‖Xi − μk‖2 − λ)

(21)

= ρ(‖Xi − μk‖2;λ).

Together, Propositions 1 and 2 indicate that a generalized
version of K-means with Huber’s loss function (13) is essen-
tially equivalent to our outlier K-means clustering proposal
with a group lasso penalty.

3.4 A related proposal

Tseng (2007) proposed performing K-means clustering in
the presence of outliers by solving

(22) minimize
C1,...,CK ,μ1,...,μK ,S

{
K∑

k=1

∑
i∈Ck

‖Xi − μk‖2 + λ|S|
}
,

where λ is a nonnegative tuning parameter and S is a set of
observations thought to be outliers. That is, if an observa-
tion is in S, then it does not belong to any of the clusters
C1, . . . , CK . In (22), |S| indicates the number of observations
in the set S. Solving (22) is not directly addressed, but a
descent algorithm could be obtained by clustering all of the
observations, assigning any observations that are more than
a distance

√
λ from the corresponding cluster mean to the

set S, reclustering all of the observations not in S, and so
on. It turns out that this algorithm is very closely related to
our outlierK-means proposal (12) using a hard-thresholding
penalty, given by P (‖Ei‖2;λ) = 1‖Ei‖2>0λ/2 (see e.g. She,
2009). Using this penalty, Step 2(b) in Algorithm 2 yields
Ei = 0 if ‖Xi − μC(i)‖2 <

√
λ and Ei = Xi − μC(i)

otherwise. This is identical to the first iteration of Tseng
(2007)’s procedure. However, further iterations of our proce-
dure will differ, because in Step 2(a) clustering is performed
on X1 −E1, . . . ,Xn −En rather than simply on the obser-
vations currently assigned nonzero errors.

3.5 Simulation study

We generated data with 25 p-dimensional observations in
each of K classes, along with q outliers. We used several
values of K, p, and q: K = 2 with p = 10, K = 5 with
p = 50, and q = 0, 5, 10. Each observation was generated
independently; for an observation in class k,

(23) Xi ∼ N(μk, I), μk ∼ N(0, σ2I),
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Table 1. In the simulation study described in the text, for various numbers of clusters (K) and outliers (q), K-means
clustering (KM), outlier K-means clustering (OKM), and model-based clustering (MCLUST) were performed. Means and

standard errors (over 50 repetitions) of the following quantities are reported: number of estimated outliers (q̂), CER, and OER

K q Approach q̂ CER OER

2

0
KM – 0.043(0.008) –
OKM 0.52(0.077) 0.051(0.009) 0.01(0.002)

MCLUST 9.78(1.508) 0.183(0.022) 0.196(0.03)

5
KM – 0.316(0.027) –
OKM 4.82(0.089) 0.103(0.022) 0.005(0.001)

MCLUST 5.1(0.091) 0.104(0.021) 0.006(0.001)

10
KM – 0.372(0.024) –
OKM 3.84(0.573) 0.261(0.025) 0.103(0.01)

MCLUST 8.48(0.493) 0.146(0.028) 0.026(0.008)

5

0
KM – 0.036(0.003) –
OKM 2.28(0.128) 0.044(0.003) 0.018(0.001)

MCLUST 30.38(1.58) 0.532(0.01) 0.243(0.013)

5
KM – 0.053(0.003) –
OKM 5.2(0.064) 0.033(0.003) 0.002(0)

MCLUST 8.84(0.507) 0.663(0.009) 0.03(0.004)

10
KM – 0.072(0.004) –
OKM 10.22(0.066) 0.032(0.002) 0.002(0)

MCLUST 10.44(0.115) 0.643(0.005) 0.004(0.001)

where σ = 1 ifK = 2 and σ = 0.5 ifK = 5. The outlying ob-
servations were also drawn according to (23), after random
assignment to one of theK clusters, with an additional inde-
pendent noise term for each feature. These noise terms were
drawn according to a Unif[(−6,−3) ∪ (3, 6)] distribution if
K = 2, and according to a Unif[(−2,−1) ∪ (1, 2)] distribu-
tion if K = 5. Three clustering approaches were compared:

1. KM : K-means clustering.
2. OKM : Outlier K-means clustering, with the tuning pa-

rameter selection approach described previously and us-
ing a group lasso penalty.

3. MCLUST : Model-based clustering, allowing for out-
liers, as described in Fraley and Raftery (2002). The
R package mclust was used, under the assumption of
spherical covariance matrices with common variance
(the same assumption that is made byK-means cluster-
ing). Note that the software automatically determines
the number of outliers.

To assess the accuracy of the clusters obtained by each
method, the clustering error rate (CER) is used. CER mea-
sures the extent to which two partitions R andQ of a set of n
observations are in agreement with each other. For instance,
R might be a partition obtained by clustering, whereas Q
could be the true class labels. Let 1R(i,i′) be an indicator
for whether partition R places the ith and i′th observations
in the same group, and define 1Q(i,i′) analogously. Then the

CER is defined as
∑

i>i′ |1R(i,i′)−1Q(i,i′)|/
(
n
2

)
. It equals zero

if the two partitions are in perfect agreement, and will take
on a positive value if they disagree. Note that the CER is
one minus the Rand Index (Rand, 1971). Table 1 reports the
CER in each simulation setting, where the outliers are coded

as a separate class. For purposes of computing the CER, the
partition estimated by K-means uses only K classes since
standard K-means clustering does not identify outliers; the
other clustering methods use K + 1 classes. Table 1 also
reports the outlier error rate (OER) – that is, the num-
ber of outliers erroneously thought to be non-outliers, plus
the number of non-outliers erroneously thought to be out-
liers, divided by the total number of observations. OutlierK-
means results in far lower CER than ordinary K-means, and
tends to yield lower OER and CER than does model-based
clustering (Table 1). However, a direct comparison between
the performances of outlier K-means and MCLUST is chal-
lenging, since each approach identifies a different number of
observations as outliers.

3.6 Application to gene expression data sets

We now study the performance of outlier K-means on
two gene expression data sets.

The first data set consists of colon tissue samples for
which 2,000 gene expression measurements are available,
and can be obtained from http://genomics-pubs.princeton.
edu/oncology/ (Alon et al., 1999). There are 40 tumor sam-
ples and 22 normal samples. The data were log-transformed,
and observations were centered to have mean zero and stan-
dard deviation one. Applying our outlier K-means proposal
with a group lasso penalty to this data set (with the auto-
mated tuning parameter selection procedure described ear-
lier) identifies two outliers, namely observations 3 and 57;
both are tumor samples. K-means clustering results in a
CER of 0.508, whereas outlier K-means results in a CER of
0.183. Results are displayed in Figure 2.
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Figure 2. The colon gene expression data set of Alon et al. (1999). The 62 observations are projected onto the first two
principal components. (a): Normal samples are shown as unfilled circles and tumor samples are shown as filled circles. (b):
K-means clustering was performed, and the two clusters are indicated using filled and unfilled circles. (c): Outlier K-means
was performed. The observations identified as outliers are shown as crosses, and the other observations are displayed as filled

or unfilled circles according to the cluster labels.

Figure 3. The glioma gene expression data set of Sun et al. (2006). The 180 observations are projected onto the first two
principal components, after taking only the 1,093 genes with highest variance. (a): The four classes are indicated using

distinct symbols. (b): K-means clustering was performed, and the resulting clusters are indicated using distinct symbols. (c):
Outlier K-means was performed. Observations identified as outliers are indicated using grey diamonds, and the cluster labels

of the other observations are indicated using distinct symbols.

We also performed K-means clustering on the glioma
gene expression data set of Sun et al. (2006), which consists
of 180 samples and 52,613 gene expression measurements.
The samples fall into four classes, one non-tumor class and
three types of glioma. The data are available from Gene Ex-
pression Omnibus (Barrett et al., 2005) with accession num-
ber GDS1962. Genes were standardized to have mean zero
and standard deviation one before K-means clustering and
outlier K-means clustering were performed on only the 2%
of genes with highest variance before standardization. Out-
lier K-means identified seven outlying observations; these
“outliers” were drawn from three of the four classes. The
results are displayed in Figure 3.

4. PCA WITH OUTLIERS

4.1 The proposal

We now consider the problem of performing PCA when
some of the observations are outliers. Rather than solving
the problem (6), we instead solve the problem

minimize
D,U,V,E

{
1

2
‖X−E−UDVT ‖2F(24)

+

n∑
i=1

P (‖Ei‖2;λ)
}
,

Penalized unsupervised learning with outliers 217



Figure 4. A two-dimensional example. In each figure, non-outliers are shown as black circles and outliers are shown as grey
triangles. (a): The observations are plotted and the first estimated principal component is shown. (b): Outlier PCA was
performed with a group lasso penalty, and Xi −Ei is plotted for i = 1, . . . , n. Only the three true outliers were assigned

nonzero errors. The resulting estimated principal component is shown.

Algorithm 3 A descent algorithm for outlier PCA

1. Initialize the errors – e.g. takeEi = 0 for the 90% of observa-
tions that are closest to the overall mean of the observations
in terms of Euclidean distance, and Ei = Xi for the others.

2. Iterate until the objective (24) converges:

(a) Compute U, D, and V, the components of the rank-K
singular value decomposition of the matrix X−E.

(b) For i = 1, . . . , n, solve the problem
(25)

minimize
Ei

{
1

2
‖Xi −Ei −UiDVT ‖2 + P (‖Ei‖2;λ)

}
,

where Ui denotes the ith row of U. If P (‖Ei‖2;λ) =
λ‖Ei‖2, then the solution takes the form (Yuan and
Lin, 2007)
(26)

Ei = (Xi −UiDVT )max

(
0, 1− λ

‖Xi −UiDVT ‖2

)
.

3. Compute the principal components of the observations that
were assigned zero errors, i.e. perform PCA on the observa-
tions in the set {i : ‖Ei‖2 = 0}.

where as in (6), D is a K×K diagonal matrix, and U and V
are n×K and p×K orthogonal matrices, respectively. We
call this the outlier PCA optimization problem, and columns
of the matrix V obtained by solving this problem the outlier
principal components. Algorithm 3 provides an iterative ap-
proach that will decrease the objective of (24) at each step,
but in general will not attain the global optimum since (24)
is non-convex (indeed, PCA itself as given in (6) is a non-
convex problem). We illustrate outlier PCA on a simple toy
example in Figure 4.

In the examples that follow, we assume that K is known,

we take P (·;λ) to be a group lasso penalty, and we select λ
to be the largest value (corresponding to the smallest num-
ber of observations declared outliers) such that no observa-
tion assigned zero error has ‖Xi − UiDVT ‖2 greater than
m(λ) + 3s(λ). For a given value of λ, m(λ) is defined to be
the mean of ‖Xi −UiDVT ‖2 over all observations assigned
zero errors, and s(λ) is defined to be the standard deviation
of ‖Xi − UiDVT ‖2 over all observations assigned zero er-
rors. In other words, we choose the smallest possible number
of outliers so that the low-rank model fits the observations
assigned zero errors well.

4.2 Related work

In a series of recent papers, a number of authors have
considered the problem of performing PCA in the case that
an n × p data matrix W that is exactly low rank is ob-
served with noise. That is, rather than observing W, we
instead observe X = W+E, where E is a n×p sparse noise
matrix that results from the corruption of certain elements
scattered at random throughout the data matrix. For this
problem, one can solve (Lin et al., 2009; Wright et al., 2009;
Candes et al., 2011)

(27) minimize
E

{‖X−E‖∗ + λ‖E‖1} ,

where λ is a nonnegative tuning parameter, and where ‖ · ‖∗
indicates the nuclear norm of a matrix, i.e. the sum of its sin-
gular values. It has been shown that under certain conditions
one can exactly recover the low-rank matrix W. We will re-
fer to the solution to the problem (27) as exact robust PCA,
to emphasize its assumption that the underlying matrix W
is exactly low rank. If we modify (27) in order to allow the
matrix W to be approximately low-rank rather than exactly
low-rank, and to encourage sparsity in the rows of E rather
than in the individual elements, then we obtain our outlier
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Figure 5. A comparison of outlier PCA with a group lasso penalty and exact robust PCA. Results are averaged over 50
simulated data sets. (a): Number of true positives versus number of false positives for outlier PCA and exact robust PCA.

“True positive” refers to an outlying observation that was correctly assigned a nonzero error, whereas “false positive” refers to
a non-outlying observation that was incorrectly assigned a nonzero error. (b): The vector space agreement, which in this case

is simply the square of the inner product between the true and estimated principal components, is shown.

PCA proposal (24). We note that our proposal is closely
related to a formulation in Xu, Caramanis and Sanghavi
(2010).

To compare the performances of our outlier PCA pro-
posal (24) to that of the exact robust PCA proposal (27),
we implemented the algorithm described in Candes et al.
(2011) to solve (27). Figure 5 shows a comparison of the
results obtained for the two approaches on a simulated ex-
ample where 100 observations are generated according to
a rank-one model with Gaussian noise in 10 dimensions,
and there are 15 outliers. Outlier PCA performs better be-
cause it can accommodate the fact that the data, even with
the outliers removed, is only approximately rank-one, and
because the group lasso penalty exploits the fact that we
expect entire observations to be outliers.

4.3 Simulation study

To evaluate the performance of outlier PCA, we gener-
ated a n × p data matrix X, with n = 50 or n = 100
observations in p = 5 dimensions, and q = 0, q = 5, or
q = 10 outliers. The n + q observations were generated ac-
cording to Xij = 50ui1vj1 + 10ui2vj2 + εij + δij1i>n, where
u1,u2 and v1,v2 are orthogonal unit vectors of lengths n+q
and p, respectively, and εij , δij are independent error terms:
εij ∼ N(0, 1) and δij ∼ Unif[(−5,−3) ∪ (3, 5)]. The last q
observations are outliers due to the additional noise terms
δij . Four approaches for estimating the first two principal
components were compared:

1. PCA: PCA with K = 2.
2. OPCA: Outlier PCA with K = 2, using a group lasso

penalty and the tuning parameter selection approach
described previously. Let q̂ denote the number of out-
liers identified.

3. OSPCA: “Outlier screening” followed by PCA. The q̂
observations with the largest mean distance to all other
observations were called “outliers”. Then PCA with
K = 2 was performed on the observations that were
not identified as outliers.

4. PCAOS : PCA followed by “outlier screening”. PCA
with K = 2 was performed on the full set of n+q obser-
vations. Then the q̂ observations for which the rank-two
approximation fit the worst (in terms of Euclidean dis-
tance) were called “outliers”.

These latter two approaches were included in the compar-
isons since they constitute simple alternatives to outlier
PCA.

To evaluate the accuracy of the principal component es-
timates, we computed the vector space agreement (VSA):
namely, trace(PtruePest)/2, where Ptrue is the orthogonal
projection matrix onto the space spanned by the two true
principal components used to generate the data, and Pest is
the orthogonal projection matrix onto the space spanned by
the two estimated principal components. This quantity lies
between 0 and 1. It will be 0 if the spaces spanned by the
true and estimated principal components are orthogonal to
each other, and will be 1 if the two spaces are identical. We
also computed the OER, defined in the previous section. Re-
sults are shown in Table 2. In general, outlier PCA and OS-
PCA yield the highest VSA. Outlier PCA and PCAOS have
comparable OERs; that of OSPCA is substantially worse.

5. DISCUSSION

In recent years, much effort has focused upon using
shrinkage penalties to develop statistical methods that are
sparse in the features. Such approaches were initially devel-
oped for the supervised setting (see e.g. Tibshirani, 1996;

Penalized unsupervised learning with outliers 219



Table 2. In the simulation study described in the text, for various numbers of observations (n) and outliers (q), we performed
PCA, outlier PCA (OPCA), outlier screening followed by PCA (OSPCA), and PCA followed by outlier screening (PCAOS).
The means and standard errors, over 50 simulated data sets, of three quantites are reported: the number of outliers selected
by OPCA using the automated tuning parameter selection approach (q̂), the vector space agreement (VSA), and OER. OER is

not reported for PCA since PCA does not identify outliers

n q q̂ Quantity PCA OPCA OSPCA PCAOS

50

0 0.24(0.084)
VSA 0.975(0.003) 0.974(0.003) 0.975(0.003) 0.975(0.003)
OER – 0.005(0.002) 0.005(0.002) 0.005(0.002)

5 3.34(0.142)
VSA 0.662(0.019) 0.695(0.021) 0.714(0.019) 0.662(0.019)
OER – 0.038(0.002) 0.059(0.004) 0.033(0.002)

10 6.44(0.368)
VSA 0.617(0.017) 0.646(0.02) 0.629(0.018) 0.617(0.017)
OER – 0.066(0.006) 0.083(0.005) 0.062(0.006)

100

0 0.48(0.104)
VSA 0.969(0.003) 0.969(0.003) 0.969(0.003) 0.969(0.003)
OER – 0.005(0.001) 0.005(0.001) 0.005(0.001)

5 3.94(0.197)
VSA 0.683(0.021) 0.745(0.024) 0.73(0.024) 0.683(0.021)
OER – 0.019(0.001) 0.019(0.001) 0.017(0.002)

10 8.86(0.631)
VSA 0.671(0.021) 0.728(0.023) 0.762(0.022) 0.671(0.021)
OER – 0.027(0.005) 0.028(0.005) 0.024(0.005)

Fan and Li, 2001; Zou and Hastie, 2005) but more recent
work has focused upon feature selection in the unsupervised
setting (see e.g. Pan and Shen, 2007; Xie et al., 2008; Wit-
ten et al., 2009; Witten and Tibshirani, 2010). Here instead
we develop an approach for unsupervised learning that uses
shrinkage penalties in order to obtain a result that is sparse
in the observations, and is intended for use if outliers may
be present among the observations. This general formula-
tion can be used in order to combine outlier detection with
any unsupervised learning method that can be written as
the solution to an optimization problem.

Our proposal for unsupervised learning with outliers al-
lows for any penalty to be applied to the �2 norm of the
error associated with an individual observation. For sim-
plicity, in the examples throughout the paper, we used a
group lasso penalty in order to identify outliers. However, it
is argued in She and Owen (2011) that convex penalties are
inherently non-robust in the context of outlier detection in
regression, and the use of non-convex penalties is espoused.
Therefore, it may be preferable to use a non-convex penalty,
such as hard-thresholding or SCAD, on the �2 norm of the
error associated with each observation in (8). In the context
of K-means clustering or PCA, this would require simply
a different update in Step 2(b) of Algorithm 2 or 3 (She,
2009; She, 2011). Alternatively, if one has prior knowledge
about the probability that a given observation is an outlier,
then one might wish to modify the optimization problem (8)
to allow a different penalty to be applied to each observa-
tion. Or if we believe that individual elements of the data
matrix X, rather than entire observations, contain errors,
then we could apply a penalty to individual elements of E,
e.g. λ

∑n
i=1

∑p
j=1 |Eij |. Indeed, this approach was taken in

Candes et al. (2011).
We demonstrated that there is a close connection be-

tween our proposal for K-means clustering with out-

liers and a generalized version of K-means discussed
by Garcia-Escudero and Gordaliza (1999). Those authors
showed that regardless of the loss function used, “gener-
alized K-means do[es] not inherit the robustness properties
of the M -estimator from which they came”. This calls into
question the extent to which our outlier K-means clustering
proposal inherits those robustness properties; more investi-
gation into this issue is needed.

Our proposal for unsupervised learning in the presence
of outliers is simple and elegant, and can be applied to a
range of problems. However, it also has some drawbacks.
Though the problem (8) naturally lends itself to an iter-
ative algorithm that decreases the objective at each step,
this iterative approach will not, in general, yield the global
optimum. Furthermore, the problem of selecting the tuning
parameter that controls the number of outliers identified is
quite challenging. Finally, in our simulation studies we have
found that in many cases, outliers in the unsupervised con-
text can be prohibitively difficult to identify, or else so easy
to identify that even very simple methods (such as PCA
followed by outlier screening) can do quite well.
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