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Reduced rank vector generalized linear models for
feature extraction

Yiyuan She
∗

Supervised linear feature extraction can be achieved by
fitting a reduced rank multivariate model. This paper stud-
ies rank penalized and rank constrained vector generalized
linear models. From the perspective of thresholding rules, we
build a framework for fitting singular value penalized mod-
els and use it for feature extraction. Through solving the
rank constraint form of the problem, we propose progres-
sive feature space reduction for fast computation in high
dimensions with little performance loss. A novel projective
cross-validation is proposed for parameter tuning in such
nonconvex setups. Real data applications are given to show
the power of the methodology in supervised dimension re-
duction and feature extraction.
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1. BACKGROUND

Recently, high dimensional data analysis attracts a great
deal of interest from statisticians. The availability of a
large pool of variables (relative to the sample size) poses
challenges in statistical modeling because in this high-
dimensional setup, both estimation accuracy and model in-
terpretability can be seriously hurt. Dimension reduction is
a natural and effective means to reduce the number of un-
knowns. One can remove nuisance and/or redundant vari-
ables, referred to as variable/feature selection; alternatively,
one can find low dimensional linear or nonlinear projections
of the input data, referred to as feature extraction. In this
paper, we focus on linear feature extraction for dimension
reduction purposes.

The most popular approach for linear feature extrac-
tion is perhaps the principle component analysis (PCA).
Given X ∈ R

n×p with n observations and p features, per-
form the Singular Value Decomposition (SVD) on the data
X = UDV T . Given any 1 ≤ r ≤ rank(X), denote by V r

the submatrix of V consisting of its first r columns. Then

Zr = XV r
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constructs r new features as linear combinations of the orig-
inal features. The extraction is optimal in the sense that
B̂ = XPV r = XV rV

T
r , with PV r being the projection

matrix onto the column space of V r, gives the best rank-r
approximation to X:

B̂ = arg min
B:rank(B)≤r

‖X −B‖2F ,

where ‖ · ‖F is the Frobenius norm. A by-product is that
the gram matrix of XV r is diagonal, which means all new
features are uncorrelated with each other.

On the other hand, PCA is unsupervised. In many sta-
tistical learning problems, we want to construct new fea-
tures that best predict the responses. Suppose Y ∈ R

n×m

is the response matrix, n being the sample size and m be-
ing the number of response variables. Supervised feature ex-
traction can be given by the reduced rank regression (RRR)

(Anderson, 1951), with the RRR estimator B̂ defined by

B̂ = arg min
B:rank(B)≤r

‖Y −XB‖2F .

Assume X has full column rank and define H =
X(XTX)−1XT . Then B̂ = B̂olsV rV

T
r , where B̂ols =

(XTX)−1XTY . V r is formed by the first r columns of
V from the spectral decomposition Y THY = V DV T . See
Reinsel and Velu (1998) for more details. Therefore,

Zr = X(B̂olsV r)

constructs r new features that best approximate Y in Frobe-
nius norm, and these new features are, again, uncorrelated.
The RRR framework includes the PCA as a special case, by
setting Y = X (Izenman, 2008). The above RRR solves
a nonconvex optimization problem in the classical setup
n > p. Recently, Bunea, She and Wegkamp (2011) studied
the problem under p > n and developed finite-sample theo-
ries as well as a computational algorithm.

On the other hand, the squared error loss may not al-
ways be appropriate. For vector generalized linear models
(GLMs), such as discrete responses arising in classification
problems, deviance loss is much more reasonable.

Although there is a large body of literature on the RRR—
Robinson (1974), Rao (1979), and Brillinger (1981), to name
a few, to the best of our knowledge, there is very little
work beyond the Gaussian model. Yee and Hastie (2003)
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studied the reduced-rank vector GLM problem and used
an iterative approximate estimation by fitting RRR repeat-
edly. Yet this only provides an approximation solution to
the original problem and there is no guarantee of converge.
Heinen and Rengifo (2008) resorted to a continuation tech-
nique to deal with discrete responses.

This paper aims to tackle the penalized and constrained
vector GLMs

min
B

− log-likelihood(B;Y ,X) +
λ2

2
rank(B), and(1.1)

min
B

− log-likelihood(B;Y ,X) s.t. rank(B) ≤ r.(1.2)

The imposed reduced rank structure is based on the be-
lief that the features’ relevant directions, in response to
Y , define a lower dimensional subspace in R

p. The rank
of such an estimator determines the number of new fea-
tures to construct. These two problems are not equivalent to
each other due to their nonconvexity. In fact, the rank func-
tion is nonconvex and discrete (and thus nondifferentiable),
thereby posing a challenge in optimization. Our algorithms
boil down to an iterative version, which is not surprising in
the GLM setup.

The rest of the paper is organized as follows. Section 2
starts by studying a matrix approximation problem, and
then builds a framework for fitting singular-value penal-
ized multivariate GLMs. Supervised feature extraction can
be attained for non-Gaussian models not necessarily using
the squared error loss. The framework covers a wide fam-
ily of penalty functions. A new parameter tuning strategy
is proposed. Section 3 tackles the rank constrained GLM
problem and comes up with a feature space reduction tech-
nique. Through this, (1.1) and (1.2) can be combined to
achieve better estimation accuracy and computational effi-
ciency. Section 4 illustrates real applications of the proposed
methodology. We conclude in Section 5. All technical details
are left to the Appendix.

2. PENALIZED VECTOR GLMS FOR
FEATURE EXTRACTION

In this section, we study the penalized form reduced rank
GLMs (1.1). Our algorithm and analysis apply to p > n
situations and cover a large family of singular-value penal-
ties, including nuclear norm, Frobenius norm, Schatten p-
penalties (0 < p < 1), and rank penalty. To achieve such
generality, we start by studying a simpler matrix approxi-
mation problem.

2.1 Singular-value penalized matrix
approximation

We consider the problem of matrix approximation with
a singular value penalty

min
B

1

2
‖Y −B‖2F +

∑
i

P (σ
(B)
i ;λ),(2.1)

where σ
(B)
i denote the singular values of B. The choice of

the penalty function P is flexible. For example, P (t;λ) =
λ|t| gives a multiple of the sum of singular values corre-
sponding to the trace norm or nuclear norm penalty. When
P (t;λ) = λ21t �=0/2, we get the rank penalty which is dis-
crete and nonconvex. For a general P , the closed-form solu-
tion to (2.1) is not known (to the best of our knowledge).
We address the problem from the standpoint of threshold
functions.

Definition 2.1 (Threshold function). A threshold function
is a real valued function Θ(t;λ) defined for −∞ < t < ∞
and 0 ≤ λ < ∞ such that

1. Θ(−t;λ) = −Θ(t;λ),
2. Θ(t;λ) ≤ Θ(t′;λ) for t ≤ t′,
3. limt→∞ Θ(t;λ) = ∞, and
4. 0 ≤ Θ(t;λ) ≤ t for 0 ≤ t < ∞.

Remarks. (i) A vector version of Θ (still denoted by Θ)
is defined componentwise if either t or λ is replaced by
a vector. (ii) There may be some ambiguity in defining a
threshold function. For example, the hard-thresholding can
be defined as ΘH(t;λ) = t1|t|>λ or ΘH(t;λ) = t1|t|≥λ. For-
tunately, commonly used thresholding rules have at most
finitely many discontinuity points and such discontinuities
rarely occur in real data. When applying Θ to a quantity
(say t), we always make the implicit assumption that Θ
is continuous at t. (iii) By definition, Θ−1(u;λ) � sup{t :
Θ(t;λ) ≤ u}, ∀u > 0 must be monotonically increasing on
(0,∞) and bounded between the identity line and u = 0;
its derivative is defined almost everywhere on (0,∞). We
assume that

dΘ−1(u;λ)/ du ≥ 1− LΘ a.e. on (0,∞)

for some constant LΘ ∈ [0, 1] independent of λ. (In fact, for
all convex penalties constructed through (2.5), LΘ can be
set to be 0.)

Next we introduce the matrix thresholding.

Definition 2.2 (Matrix threshold function). Given any
threshold function Θ(·;λ), its matrix version Θσ is defined
as follows

Θσ(B;λ) � Udiag{Θ(σ
(B)
i ;λ)}V T , ∀B ∈ R

n×m,(2.2)

where U , V , and diag{σ(B)
i } are obtained from the SVD of

B: B = UTdiag{σ(B)
i }V .

Note that Θ(0;λ) = 0 by definition, and Θσ(B;λ) is not
affected by the ambiguity of the SVD form.

Proposition 2.1. Given an arbitrary thresholding rule Θ,
let P be any function satisfying

P (θ;λ)− P (0;λ)(2.3)

=

∫ |θ|

0

(sup{s : Θ(s;λk) ≤ u} − u) du+ q(θ;λ),
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Table 1. Some basic singular-value penalties and their coupled thresholding functions

Nuclear norm Frobenius Rank Schatten-p, p ∈ (0, 1)

Penalty function λ‖B‖∗ = λ
∑

σ
(B)
i λ‖B‖2F λ2

2
rank(B) λ

∑
(σ

(B)
i )p

Thresholding rule (t− sgn(t)λ)1|t|>λ
t

1+λ
t1|t|>λ Ex 2.7 in She (2012)

(soft) (ridge) (hard)

where q(·;λ) is nonnegative and q(Θ(t;λ);λ) = 0 for all
t ∈ R. Then, the singular-value penalized minimization

min
B

F (B) = ‖Y −B‖2F /2 +
∑

P (σ
(B)
i ;λ)(2.4)

has a unique optimal solution B̂ = Θσ(Y ;λ) for every Y ,
provided Θ(·;λ) is continuous at any singular value of Y .

See Appendix A for its proof.
The function q is often just zero, but can be nonzero in

certain cases. In fact, we can use a nontrivial q to attain the
exact rank penalty; see (2.7). The proposition implies that
multiple (infinitely many, as a matter of fact) penalties can
result in the same solution, which justifies our thresholding
launching point (rather than a penalty one). Some examples
of the penalty P and the coupled Θ are listed in Table 1.

We point out two special cases of Proposition 2.1 as fol-
lows.

A fusion between nuclear norm and Frobenius norm Define
a continuous thresholding rule

ΘB(t;λ,M) =

⎧⎪⎨
⎪⎩
0, if |t| ≤ λ,

t− λ sgn(t), if λ < |t| < λ+M,
t

1+ λ
M

, if |t| > λ+M.

(2.5)

When M → ∞, ΘB becomes the soft-thresholding. When
M = 0, ΘB reduces to the ridge thresholding. The penalty
constructed from (2.5) is given by

P (θ;λ,M) =

{
λ|θ|, if |θ| ≤ M,

λ θ2+M2

2M , if |θ| > M,

which is exactly the “Berhu” penalty (Owen, 2007) whose
composition reverses that of Huber ’s robust loss function.
The Berhu penalty on the singular values provides a convex
fusion of the nuclear norm penalty and the Frobenius norm
(squared) penalty in the problem of (2.4). Unlike the elastic
net (Zou and Hastie, 2005), this fusion is nonlinear and fully
preserves the nondifferentiable behavior (around zero) of the
nuclear norm.

A fusion between rank and Frobenius norm A direct
thresholding rule that fuses the hard-thresholding and the
ridge-thresholding is the hard-ridge thresholding (She, 2009)

ΘHR(t;λ, η) =

{
0, if |t| < λ,
t

1+η , if |t| ≥ λ.
(2.6)

Setting q ≡ 0 in Proposition 2.1, we obtain one associated
penalty

P (θ;λ, η) =

{
−1

2θ
2 + λ|θ|, if |θ| < λ

1+η ,
1
2ηθ

2 + 1
2

λ2

1+η , if |θ| ≥ λ
1+η .

Interestingly, noticing that ΘHR is discontinuous at λ, we
can choose

q(θ;λ, η) =

{
(1+η)(λ−|θ|)2

2 , if 0 < |θ| < λ,

0, if θ = 0 or |θ| > λ,
(2.7)

which leads to P (θ) = 1
2ηθ

2 + 1
2

λ2

1+η1θ �=0. Therefore,

ΘHR(·;λ, η) can deal with the following rank-Frobenius
penalty in (2.4)

1

2
η‖B‖2F +

1

2

λ2

1 + η
rank(B).(2.8)

This penalty may be of interest in statistical learning tasks
that have joint concerns of accuracy and parsimony: the
rank portion enforces high rank deficiency, while the ridge
(Frobenius) portion shrinks B to compensate for large noise
and decorrelates the input variables in large-p applications.

At the end of this subsection, we present a perturbation
result which will be used to establish the main result in the
next subsection.

Proposition 2.2. Given Y ∈ R
n×m, let Q(B) = ‖Y −

B‖2F /2 +
∑

PΘ(σ
(B)
i ;λ), where PΘ is the penalty obtained

from (2.5). Denote by B̂ the minimizer of Q(B). Then for
any matrix Δ ∈ R

n×m

Q(B̂ +Δ)−Q(B̂) ≥ C1

2
‖Δ‖2F ,

where C1 = 1− LΘ ≥ 0.

See Appendix B for its proof.

2.2 Singular-value penalized vector GLMs

In this subsection, we generalize the results obtained for
matrix approximation to vector GLMs.

Let Y = [y1, . . . ,ym] ∈ R
n×m be the response ma-

trix with m response variables and n samples for each. As-
sume yi,k are independent and each follows a distribution in
the natural exponential family f(yi,k; θi,k) = exp(yi,kθi,k −
b(θi,k) + c(yi,k)), where θi,k is the natural parameter. Let
Li,k = log f(yi,k, θi,k), L =

∑
k

∑
i Li,k. The canonical link
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function g = (b′)−1 is applied throughout the paper. Let the
model matrix and the corresponding coefficient matrix be

X = [x1, . . . ,xn]
T
= [x̃0, x̃1, . . . , x̃p] ∈ R

n×(p+1) and

B = [β1, . . . ,βm] = [β̃0, β̃1, . . . , β̃p]
T ∈ R

(p+1)×m,

(2.9)

respectively. If x̃0 = 1, β̃0 represents the intercept vector.
For convenience, we use B◦ = [β̃1, . . . , β̃p]

T to denote the

submatrix of B obtained by deleting the first row β̃
T

0 , and
use X◦ to denote the submatrix of X obtained by deleting
the first column x̃0. Given any GLM with coefficients β, we
introduce

μ(β) � [g−1(xT
i β)]n×1 and

I(β) � XTWX = XTdiag
{
b′′(xT

i β)
}n

i=1
X

to denote the mean vector and the information matrix at β.
For the m-response vector GLM, the mean matrix μ(B) =
[μi,k]n×m is defined as [μ(β1), . . . ,μ(βm)].

Remarks. (i) Having x̃0 and β̃0 is necessary. For non-
Gaussian GLMs, one cannot center the response variables
because this may violate the distributional assumption. (ii)
For clarity, the above setup does not include any disper-
sion parameter. But all discussions in this subsection can
be trivially extended to the exponential dispersion family
f(yi,k; θi,k, φ) = exp{(yi,kθi,k − b(θi,k))/a(φ) + c(yi,k, φ)}
which covers the vector Gaussian regression.

Our goal is to minimize (1.1) or more generally, the fol-
lowing objective function

F (B) � −
m∑

k=1

n∑
i=1

Li,k(βk;xi, yik) +

p∧m∑
s=1

P (σ(B◦)
s ;λ)

(2.10)

for a large family of penalty functions (possibly nonconvex).
The penalty is not imposed on β̃0.

We construct the following sequence of iterates for solving
the problem: given B(j), perform the update

{
B◦(j+1) = Θσ(B◦(j) +X◦TY −X◦Tμ(B(j));λ),

β̃
(j+1)

0 = β̃
(j)

0 + (Y − μ(B(j)))T x̃0.

(2.11)

Theorem 2.1. Given an arbitrary thresholding rule Θ,
let P (·) be any function satisfying (2.5). Starting with any

B(0) ∈ R
(p+1)×m, run (2.11) to obtain a sequence {B(j)}.

Denote by Ak the set of {tβ(j)
k +(1−t)β

(j+1)
k : t ∈ (0, 1), j =

1, 2, . . .}, 1 ≤ k ≤ K, and define

ρ = max
1≤k≤m

sup
ξk∈Ak

‖I(ξk)‖2.

Suppose ρ < 2− LΘ. Then F (B(j)) is decreasing and satis-
fies

F (B(j))− F (B(j+1)) ≥ C‖B(j) −B(j+1)‖2F /2,(2.12)

j = 1, 2, . . .

where C = 2− LΘ − ρ. Any limit point B∗ of the sequence
B(j), referred to as a Θσ-estimator, is a solution to the fol-
lowing equation:{

B◦ = Θσ(B◦ +X◦TY −X◦Tμ(B);λ),

0 = (Y − μ(B))T x̃0,
(2.13)

under the assumption that Θ is continuous at all singular
values of B◦∗ +X◦TY −X◦Tμ(B∗).

The proof details are given in Appendix C.
Recall that LΘ ≤ 1. In implementation, we can scale

the model matrix by X/k0 for any k0 ≥ √
ρ regardless of

Θ, and then perform (2.11). The Θσ-estimate, obtained on
the scaled data, can be scaled back to give an estimate on
the original X. The procedure has a theoretical guarantee
of convergence and (2.12) yields a good stopping criterion

based on the change in B(j). Empirically, we always observe
B(j) has a unique limit point. Similar to She (2012), when
it is possible to explicitly calculate the curvature parameter
LΘ, say for SCAD or soft-thresholding, we recommend using
the smallest possible value of k0 =

√
ρ/(2− LΘ), which sig-

nificantly speeds the convergence of the algorithm based on
extensive experience. (For example, with a convex penalty
we can set k0 =

√
ρ/2.) We give two typical situations to

find an upper bound for ρ in theory.

Example 2.1 (Penalized Vector Gaussian GLM). For
Gaussian regression, we can ignore the intercept term (after
centering both responses and predictors beforehand), and
the objective function (2.10) becomes

‖Y −XB‖2F /2 +
p∧m∑
s=1

P (σ(B)
s ;λ).(2.14)

(2.11) reduces to

B(j+1) = Θσ(B(j) +XTY −XTXB;λ).(2.15)

Here, I = XTWX = XTX. According to the theorem,
k0 can be chosen to be ‖X‖2 regardless of the thresholding
rule and the penalty, where ‖ ·‖2 denotes the spectral norm.

In the special case of imposing a direct rank penalty,

where
∑p∧m

s=1 P (σ
(B)
s ;λ) = λ2

2 rank(B), another computa-
tional procedure based on the classical RRR algorithm
can be used. In fact, RRR studies a relevant but dif-
ferent problem, with no penalty but subject to a low
rank constraint. But we can adapt the procedure to min-
imizing ‖Y − XB‖2F /2 + λ2/2 · rank(B) as follows (cf.
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Bunea, She and Wegkamp (2011)). Suppose XTX is non-
singular and H is the hat matrix X(XTX)−1XT . (i) Ap-
ply spectral decomposition to Y THY : Y THY = V D2V T

where D = diag{d1, . . . , dm} with d1 ≥ d2 ≥ · · · ≥ dm ≥ 0.
(ii) Given any value of λ, define r = max{i : di ≥ λ} and
V r = V [ , 1:r], by taking the first r columns in V . (iii) Then
the (globally) optimal solution is given by

B̂(λ) = (XTX)−1XTY PV r
= (XTX)−1XTY V rV

T
r ,

where PV r is the orthogonal projection onto the column
space of V r. We can show the Θσ-estimate defined by (2.15)
reduces to the RRR estimate in this case, the proof details
given in Appendix D.

Proposition 2.3. Suppose X ∈ R
n×p (n ≥ p) has full col-

umn rank and ‖X‖2 ≤ 1. Then the RRR estimate B̂(λ) con-

structed above must satisfy the Θσ-equation B̂ = Θσ
H(B̂ +

XTY −XTXB̂;λ) for matrix hard-thresholding Θσ
H .

Unlike RRR, our algorithm and convergent analysis do
not requireX to have full rank or n > p. In comparison with
the large-p RSC (Bunea, She and Wegkamp, 2011), (2.11)
applies to any Θ (and covers all vector GLMs).

Example 2.2 (Penalized Vector Logistic GLM). As-
sume a classification setup where yik are all binary. The
singular-value penalized vector logistic regression minimizes

−
m∑

k=1

n∑
i=1

(
yi,kx

T
i βk − log(1 + exp(xT

i βk))
)

(2.16)

+

p∧m∑
s=1

P (σ(B◦)
s ;λ).

The first iteration step in (2.11) becomes

B
◦(j+1) = Θσ

(
B

◦(j) +X
◦TY

(2.17)

−X
◦T

[
1/(1 + exp(−xT

i β
(j)
k ))

]
n×m

;λ
)
.

In R, the matrix μ(B) can be simply constructed by
1/(1+exp(-X%*%B)). Since W (β) = diag{b′′(xT

i β)} =
diag{πi(1 − πi)} � I/4 with πi = 1/(1 + exp(−xT

i β)),
a crude but general choice of the scaling constant is
k0 ≥ ‖X‖2/2, again, regardless of Θ and λ. Yet in applying
a convex penalty such as the nuclear norm penalty, we can
use k0 = ‖X‖2/(2

√
2) to speed the convergence.

Some related works There has been a surge of interest
in nuclear norm penalization recently, in which case the
penalty in (2.10) simplifies to a multiple of the sum of all
singular values of B◦ or λ‖B◦‖∗. This gives a convex opti-
mization problem. In the statistics community, Yuan et al.

(2007) seem to be the first to study the nuclear norm pe-
nalized least squares estimator. A popular equivalent formu-
lation of the nuclear norm minimization in optimization is
through semidefinite programming (SDP) Fazel (2002). See,
e.g., Candès and Recht (2009), Candès and Tao (2010), and
Ma et al. (2009) for some recent theoretical and computa-
tional achievements.

Although the nuclear norm provides a convex relaxation
to the rank penalty, this approximation works only under
certain regularity conditions (e.g., Candès and Plan (2011)).
Bunea, She and Wegkamp (2011) show that direct rank pe-
nalization achieves the same oracle rate in a much less re-
strictive manner. Yet in addition to the reduced rank regres-
sion studies (see Example 2.1), there have been very few at-
tempts to extend the rank penalization beyond the Gaussian
framework. Two commonly cited works are Yee and Hastie
(2003) and Heinen and Rengifo (2008). See Section 1 for
their limitations. In comparison with these works, our ma-
trix thresholding algorithm has a theoretical guarantee of
convergence, is simple to implement, and covers a wide fam-
ily of penalty functions as well as loss functions.

Finally, we point out a major difference between the
thresholding-based iterative selection procedures (TISP)
(She, 2009) and the proposed algorithm which can be re-
ferred to as matrix-TISP. TISP aims for variable selection in
a single-response model, while here we discuss singular value
regularization in vector GLMs. The singular-value sparsity
or low rankness, different than coefficient sparsity, offers a
new type of parsimony that can be used for supervised fea-
ture extraction. It brings a true multivariate flavor into our
analysis.

Feature extraction In many high-dimensional problems,
feature extraction, by transforming the input variables and
creating a reduced set of new features, is a useful technique
for dimension-reduction. For example, PCA considers linear
projections of correlated variables to construct new orthog-
onal features ordered by decreasing variances. For singular-
value penalized models, once a low-rank estimate B̂ is ob-
tained, one can attain the same goal. Suppose the rank of
B̂ is r. A direct way is to apply the reduced form SVD on
B̂, getting B̂ = UDV T with D an r × r diagonal matrix.
Next, construct a new model matrix

Type-I: Z � XU (or XUD),(2.18)

which has only r new predictors. We refer to this as Type-I
extraction. It can be used for parameter tuning later.

On the other hand, it may be preferred to work on
XB̂ in some situations. Perform the spectral decomposi-

tion B̂
T
XTXB̂ = V DV T , where V is an m×r orthogonal

matrix. It follows that XB̂ = XB̂V V T . Therefore, for the
new design matrix Z defined by

Type-II (Post-Decorrelation): Z � X(B̂V ) ∈ R
n×r,

(2.19)
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each column (z-predictor) can be represented as a linear
combination of the columns of X, and the r newly ob-
tained z-predictors are uncorrelated with each other, i.e.,
ZTZ is diagonal. We refer to this as Type-II extraction or
post-decorrelation. Type-I and Type-II are not equivalent in
general (but coincide for the RRR estimate). The (linear)
feature extraction is supervised and the corresponding di-
mension reduction can be dramatic when r is much smaller
than p.

Initial point When the problem (2.10) is convex, we can
further show (based on Theorem 2.1) that any Θσ-estimate
is a global minimum point. In this case, the choice of the ini-
tial estimate B(0) is not essential and a pathwise algorithm
with warm starts can be used in computing the solution
path B̂(λ) for a series of values of λ. However, for noncon-
vex problems, we do not have such global optimality given
any initial point B0. Although one can try multiple ran-
dom starts, we found that empirically, simply setting B(0)

to be the zero matrix leads to a solution with good statistical
performance. Intuitively, such initialization looks for a local
optimum that is close to zero. Of course, other initialization
choices are possible.

Parameter tuning The challenge still comes from noncon-
vexity. Take the rank penalty as an example. The solution
path B̂(λ) is discontinuous, while the optimal penalty pa-
rameter λ (as a surrogate for the Lagrange multiplier in con-
vex programmings) is a function of both the data (X,Y )
and the true coefficient B. Therefore, plain cross-validation
with respect to λ does not seem to be appropriate, as slightly
perturbed data may result in serious regularization parame-
ter mismatches. We propose to cross-validate the range space
of the low rank estimator (as a function of λ) and refer to
it as the projective cross-validation (PCV). In the follow-
ing, we focus on the rank-Frobenius penalty (2.8) and the
associated hard-ridge thresholding rule (2.6) to describe the

idea. Let B̂ be a Θσ
HR estimator obtained from (2.11) and

write it as
[ ˆ̃βT

0

B̂◦

]
following our previous notation (cf. (2.9)).

For the penalized part B̂
◦
, denote its rank by r and its SVD

by B̂
◦
= UDV T with D ∈ R

r×r. Construct r new features
(Type-I) Z◦ = X◦U and set Z = [x̃0,Z

◦] = [z1, . . . , zn]
T .

Let Ĉ
◦

= DV T and Ĉ = [
ˆ̃
β0, Ĉ

◦T
]T = [c1, . . . , cm] ∈

R
(r+1)×m.

Proposition 2.4. Under the condition on ρ given in The-
orem 2.1, for any Θσ

HR-estimator B̂, Ĉ defined above is
a Frobenius penalized estimator associated with new model
matrix Z, i.e.,

Ĉ ∈ arg min
C∈R(r+1)×m

−
m∑

k=1

n∑
i=1

Li,k(ck; zi, yik) +
η

2
‖C◦‖2F .

(2.20)

See its proof in Appendix E. When η > 0 orZ has full col-
umn rank, the optimization problem (2.20) is strictly convex

and so Ĉ is the unique optimal solution.
The proposition implies that once U is extracted, we can

simply use maximum likelihood estimation on the projected
data to obtain the rank penalized estimator, or ridge pe-
nalized estimation to obtain the rank-Frobenius penalized
estimator. There is no need to run the more expensive re-
duced rank fitting algorithms.

We now state the K-fold PCV procedure for tuning the
rank penalty parameter in (1.1).

1. Run Algorithm (2.11) on the whole dataset for a grid

of values for λ. The solution path is denoted by B̂(λl),
l = 1, . . . , L.

2. Obtain L candidate models via (2.18), each with a new
model matrix Z(l) = XU(l), 1 ≤ l ≤ L.

3. Compute the cross-validation error for each model.
Concretely, partition the sample index set into K
(roughly) even subsets T1, . . . , TK . Given Z(l), fit a
vector GLM on the data without the subset indexed
by Tk, and evaluate its validation error (measured by
deviance) on the left-out subset. In all, K maximum
likelihood estimates are obtained and their validation
errors are summed up to yield the CV error of the can-
didate model Z(l). Repeat this for all l : 1 ≤ l ≤ L.

4. Find the optimal model that minimizes the CV error.

In the pursuit of a parsimonious model with very low rank, a
BIC penalty term can be added to the CV error (She, 2012).
This is necessary in the large-p setup (Chen and Chen,
2008).

PCV is much more efficient than CV because the more
involved reduced rank fitting algorithm runs only once be-
forehand, rather than K times in the CV trainings. The ML
fitting in Step 3, justified by Proposition 2.4, involves very
few predictors. Another benefit of PCV is that the param-
eter mismatch issue is eliminated and all K trainings are
regarding the same model and feature space.

When there is an additional ridge parameter (cf. (2.8)),
the procedure still applies, but a two-dimensional grid for
(λ, η) has to be used. Fortunately, according to our expe-
rience, the statistical performance is not very sensitive to
small changes in the ridge parameter and we can choose a
sparse grid for it. Step 3 now fits a series of l2-penalized
GLMs. But again, this type of problems is smooth and con-
vex; Newton-based algorithms are reasonably fast. Finally,
we mention that PCV shares some similarities to the selec-
tive cross-validation (SCV) proposed for variable selection
(She, 2012).

3. RANK CONSTRAINED VECTOR GLMS
FOR FEATURE SPACE REDUCTION

In this section, we study the reduced rank GLMs in con-
straint form (cf. (1.2)). For any r ≥ 1 and η ≥ 0, the problem
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of interest is

min
B∈R(p+1)×m

−
m∑

k=1

n∑
i=1

Li,k(βk;xi, yik) +
η

2
‖B◦‖2F(3.1)

s.t. rank(B◦) ≤ r.

The additional Frobenius norm penalty is to handle
collinearity. Again, neither the penalty nor the constraint
is imposed on the first row of B.

We introduce a quantile thresholding rule Θ#(·; r, η) as
a variant of the hard-ridge thresholding. Given 1 ≤ r ≤ p
and η ≥ 0, Θ#(a; r, η) : Rp → R

p is defined for any a ∈
R

p such that the r largest components of a (in absolute
value) are shrunk by a factor of (1 + η) and the remaining
components are all set to be zero. In the case of ties, a
random tie breaking rule is used. The matrix version of Θ#

is defined as

Θ#σ(B;λ) � Udiag{Θ#([σ
(B)
i ]; r, η)}V T , ∀B ∈ R

p×m

where U , V , and diag{σ(B)
i } are obtained from the SVD of

B: B = UTdiag{σ(B)
i }V .

Then, a simple procedure similar to (2.11) can be used

to solve (3.1): given B(j), perform the update

{
B◦(j+1) = Θ#σ(B◦(j) +X◦TY −X◦Tμ(B(j)); r, η),

β̃
(j+1)

0 = β̃
(j)

0 + (Y − μ(B(j)))T x̃0.

(3.2)

Starting with anyB(0) ∈ R
(p+1)×m, denote the sequence ob-

tained from (3.2) by {B(j)}. Let F be the objective function
(3.1). Define ρ as in Theorem 2.1.

Theorem 3.1. If ρ ≤ 1, F (B(j)) is decreasing and satisfies

F (B(j))− F (B(j+1)) ≥ (1− ρ)‖B(j) −B(j+1)‖2F /2,

and rank(B◦(j)) ≤ r, ∀j ≥ 1.

See Appendix F for its proof. The preliminary scaling of
X/k0 for any k0 ≥ √

ρ guarantees the convergence. Still,
PCV can be used for parameter tuning and model selection
although the obtained estimate may not be globally optimal
due to nonconvexity.

Rank penalty vs. rank constraint We have developed al-
gorithms (2.11) and (3.2) for solving (1.1) (or (2.10)) and
(1.2) (or (3.1)), respectively. The obtained estimates are usu-
ally local optimizers of the corresponding objective func-
tions. However, in non-Gaussian GLM setups, we found
that the nonconvexity of either problem can be very strong.
For instance, there may exist many local optima all hav-
ing the same rank but spanning different subspaces in R

p.
In consideration of this, the penalized solution path B̂(λ)
(0 ≤ λ < +∞) may provide more candidate models ofcer-
tain rank (if existing) than the constrained solution path

B̂(r) (r = 1, 2, . . . , p ∧ m), which is advantageous in the

stage of parameter tuning. This phenomenon is often ob-
served in datasets where p is comparable to or larger than
n. Note that typically the direct rank penalized B̂(λ) has
no rank monotonicity.

On the other hand, computing the solution path for the
penalty form is often more time-consuming in large-p ap-
plications. The path B̂(λ) has jumps. Assuming no prior
knowledge of the appropriate interval for λ, one has to spec-
ify a large search grid fine enough to cover a reasonable
number of candidate models. By contrast, for the problem of
constraint form, we can set a small upper bound for r in pur-
suing a low rank model (say, r ≤ 0.5n∧p∧m could be good),
and the natural grid spacing is 1. With the grid focusing on
small values of r (which amounts to applying large thresh-
olds in the iteration steps), Algorithm (3.2) runs efficiently.

Feature space reduction To combine the virtues of both ap-
proaches, we propose to solve the rank constrained problem
to perform feature space reduction, and then run the rank
penalized algorithm in the reduced feature space. This is
very helpful in large-p applications. A crude sketch is as
follows. First, we set r = αn ∧ p ∧ m with α < 1 (e.g.,

α = 0.5) and solve (1.2). Using the estimate B̂(r), we ex-
ecute Type-I feature extraction (2.18) to construct a new
model matrix Z = XU1(r) with only r factors (in addition
to the intercept). Next, we turn to the penalized problem
(2.10) on (Y ,Z): Get the solution path from running Al-
gorithm (2.11), and tune the regularization parameters to

find the optimal estimate, denoted by B̂
′
(λo). Our final co-

efficient matrix estimate is given by U1(r)B̂
′
(λo). A small

number of new predictive features can be constructed (and
decorrelated) based on (2.19).

According to this scheme, the sample size of the reduced
problem on Z is large relative to the reduced dimension.
It is not difficult to show that for n > p, the update in
(2.11) is essentially a contraction, and so Algorithm (2.11)
converges fast.

A crucial assumption here is that the rank of the true
model, denoted by r∗, is very small, compared with the
sample size n. This makes it possible to choose a safe rank
constraint value r in (1.2), which, though possibly much
less than p, is still much larger than the true r∗. Hence the
computational cost of obtaining a solution path according
to Algorithm (2.11) can be effectively reduced with little
performance loss. This idea shares similarity with the vari-
able screening (Fan and Lv, 2008) proposed in the context of
sparse variable selection. In the process of screening, all rel-
evant variables should be kept, while in feature space reduc-
tion, only the necessary factors, being linear combinations of
the original predictors and typically as few as a handful, are
required to lie in reduced feature space we project X onto.

In implementation, we further adopt a path-following
(annealing) idea to reduce computational load and avoid
greedy reduction. Define a cooling schedule r(t) (0 ≤ t ≤ T )
with r(0) = p and r(T ) = r, where r is an upper bound of
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Table 2. Rank constraint vs. rank penalty. Misclassification rates of the constrained and penalized reduced rank logistic
regressions (RRL(c) and RRL(p)) are shown for the zipcode (sub)dataset where p = 257, n = 300. The rank r controls the #

of newly constructed features

r 1 2 3 4

RRL(c) 66.52% 55.06% 38.47% 33.83%

RRL(p) 66.52% 55.06% 38.32%, 38.37% 33.83%

RRL(c)+SVM 59.24% 47.48% 33.58% 30.79%

RRL(p)+SVM 59.24% 47.48% 33.63%, 33.58% 30.79%

5 6 7 8 9

24.86% 22.27% 21.33% 21.33% 20.43%
24.81%, 24.86% 22.42% 21.47%, 21.33% 21.33% 20.43%, 19.13%

23.02% 20.38% 20.43% 20.28% 18.53%
23.02% 21.08% 20.33%, 20.43% 20.33%, 20.28% 18.53%, 15.84%

the target rank. We conduct progressive feature space reduc-
tion as follows. (As aforementioned, Z◦ refers to Z without
the first column, B◦ refers to B without the first row, and
U◦ refers to U without the first row and the first column.)

1. Let t ← 0, Z ← X, U ← I.
2. Iterate until r(t) ≤ r:

(a) Set the rank constraint value to be r(t) and per-
form the update (3.2) on (Y ,Z) for at most M
times (with M pre-specified);

(b) Obtain the left singular vectors of the current slope
estimate B◦, denoted by U1(r(t));

(c) Let Z◦ ← Z◦U1(r(t)), U
◦ ← U◦U1(r(t));

(d) t ← t+ 1.

At the end, Z is delivered as the new design, and the or-
thogonal matrix U gives the accumulated transformation
matrix.

The previously described prototype reduction scheme
corresponds to r(t) = r for any t. With an annealing algo-
rithm design, the dimensionality of the feature space keeps
dropping; the B involved in (3.2) has only r(t) columns. A
slow cooling schedule with a small number of M is recom-
mended. Based on our experiments, it is not too greedy and
is usually computationally affordable for large-p problems.

4. DATA EXAMPLES

We use two real data examples to illustrate the proposed
methodology for dimension reduction and supervised feature
extraction.

Example 4.1. First, we make a practical comparison of the
rank penalized estimators from solving (1.1) and the rank
constrained estimators from solving (1.2) by use of a zip-
code dataset. The whole dataset (available at the website of
Hastie et al. (2001)) contains normalized handwritten dig-
its in 16 × 16 grayscale images. The digits were originally
scanned from envelopes by the U.S. Postal Service and have

been deslanted and size normalized. The space of pixel pre-
dictors is of dimension 256. We standardized all such pre-
dictors. The intercept term is included in the model and
is always unpenalized. We introduced m = 9 indicator re-
sponse variables for digits 0–8, using 9 as the reference class.

The training set is large in comparison with p and m
(7, 291 images). We chose a subset of n = 300 at random
in this experiment to compare the penalized solution path
and the constrained solution path. No additional Frobenius-
norm penalty was enforced. The prediction results of the
estimates are shown in Table 2, evaluated on 2,007 test ob-
servations.

From the table, at certain values of r, the rank penalty
offered more candidate models along its solution path than
the rank constraint. Note that these rank-r estimators may
behave differently in prediction and feature extraction. For
p ∼ n or p > n, this phenomenon is commonly seen. With
an appropriate parameter tuning strategy, the penalty form
gives better chances to achieve a low error rate.

Of course, this comes with a price in computation. In our
experiment, the time for obtaining the RRL(c) path was less
than one minute, while computing the RRL(p) path, with a
50-point grid for λ, took about four minutes.

There is no obligation to predict through the obtained
estimator; perhaps more useful is the much lower dimen-
sional feature space yielded from such an estimator. Fancier
classifiers such as SVM can be applied with the new fea-
tures automatically extracted and decorrelated via (2.19),
and result in lower error rates as shown in the table.

Finally, we add a comment that in some situations there
may exist no penalized solution at certain rank values. Yet
with a large λ-grid chosen, the performance of the penal-
ized estimator (after parameter tuning) does not seem to be
worse than that of the constrained estimator.

Example 4.2. The Computer Audition Lab 500 (CAL500)
dataset is collected by Turnbull et al. (2008) and involves
502 Western popular songs by different artists selected from
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the past 50 years. Digital audio files were played to stu-
dents to annotate these songs with m = 174 words repre-
senting emotion, genre, instrument, vocals, etc. The con-
cepts characterized by the words are not mutually exclusive
and one song can be annotated with multiple labels. This
is called multi-label data in machine learning. The predic-
tors are MFCC-Delta audio features from analyzing a short-
time segment of the audio signal. Turnbull et al. (2008) used
68 such feature vectors. To allow for interactions between
these audio features and to make a more challenging prob-
lem, we consider a full quadratic model including all main
effects, quadratic effects, and pairwise interactions. Hence
p = 68 + 68(69)/2 + 1 = 2, 415. We split the data into two
halves and used n = 251 songs for training and the other
251 for testing.

For this small-sample-size-high-dimensional problem, the
SVM using all 2, 415 predictors gave a total misclassification
rate of 21.2%, which is not all bad. On the other hand, the
proposed reduced rank methodology can be applied to auto-
matically construct new predictive audio features, possibly
much fewer than 2, 415. The supervised nature is important
because only the audio features helpful in annotation (clas-
sification) are truly meaningful in this learning task.

First, we conducted the progressive feature space reduc-
tion introduced in Section 3, with the upper bound of the
target rank set to be 20. Then we ran Algorithm (2.11)
to fit a penalized reduced rank vector logistic regression
with the 20 extracted features. The rank-Frobenius penalty
was chosen due to serious collinearity arising from the high-
dimensional quadratic model. The parameters were tuned
by 5-fold PCV with BIC correction.

Surprisingly, our final estimate B̂ has rank(B̂◦) = 2,
which gives a dramatic dimension reduction from 2, 514 to
2. But the SVM trained based on just the two new fea-
tures yielded an improved error rate of 14.13%. In fact, even
using the vanilla reduced rank estimator, we can achieve
an error rate of 14.36%. The per-word precision and re-
call (cf. Turnbull et al. (2008) for the detailed definitions)
are, respectively, 35.6% and 8.7% on the test dataset, com-
parable to the rates of the two advocated approaches in
Turnbull et al. (2008). But our model is more parsimonious
and creates two concise audio summary indexes for semantic
annotation.

5. CONCLUSION

Supervised linear feature extraction can be obtained from
a reduced rank vector model. We studied rank penalized and
rank constrained generalized linear models and discussed
how to adapt them to feature extraction and feature space
reduction. The latter technique helps to reduce the compu-
tational cost significantly in high dimensions. We also no-
ticed the strong nonconvexity of such problems raises some
serious issues in data-resampling based parameter tunings,
but the proposed projective cross-validation works decently

in general and is efficient. Through reduced rank modeling,
dimension reduction can be attained if the rank of the model
is small relative to the number of predictors. The work can
be viewed as a supervised and parametric generalization of
the principle component analysis.

APPENDIX A. PROOF OF
PROPOSITION 2.1

To prove Proposition 2.1, we first introduce two lemmas.

Lemma A.1 (von Neumann (1937)). Let A,B be two n×n
matrices. Then

|Tr(AB)| ≤
∑

σi(A)σi(B),(A.1)

where σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) and σ1(B) ≥ σ2(B) ≥
· · · ≥ σn(B) are ordered singular values of A and B respec-
tively.

We refer to Grigorieff (1991) for an elementary proof.

Lemma A.2. Given a thresholding rule Θ, let P be any
penalty satisfying condition (2.5) in Proposition 2.1. Then,
the univariate minimization problem minθ(t−θ)2/2+P (θ;λ)

has a unique optimal solution θ̂ = Θ(t;λ) for every t at
which Θ(·;λ) is continuous.

Proof. Apply Lemma 1 in She (2012).

Proof of the optimality part of Proposition 2.1. Let Y ∈
R

n×m and assume n ≥ m without any loss of generality.
Let Y = U0D0V

T
0 and B = UDV T be the SVDs where

D0 = diag(d0,i) and D = diag(di) with d0,1 ≥ d0,2 ≥ · · · ≥
d0,m and d1 ≥ d2 ≥ · · · ≥ dm. Clearly,

‖Y −B‖2F = ‖Y ‖2F + ‖B‖2F − 2Tr(Y TB)

= ‖Y ‖2F + ‖B‖2F − 2Tr([Y 0]T [B 0]),

where [B 0] ∈ R
n×n and [Y 0] ∈ R

n×n. It follows from
Lemma A.1 that Tr(Y TB) ≤

∑
d0,idi. Hence

F (B) ≥ (‖D0‖2F + ‖D‖2F − 2Tr(D0D))/2 +
∑

P (di;λ)

(A.2)

=
∑

(d0,i − di)
2/2 +

∑
P (di;λ).

Now the problem reduces to

min
di

∑
(d0,i − di)

2/2 +
∑

P (di;λ).

The optimal solution B̂ then follows from Lemma A.2.

The argument above only implies the singular values of B̂
are unique (up to permutation). Although one can possibly

argue the uniqueness of B̂ by studying the condition under
which equality is achieved in (A.2), another formal proof of
the uniqueness is deferred to Appendix B.
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APPENDIX B. PROOF OF
PROPOSITION 2.2

Let B = B̂+Δ. Suppose Y = U0D0V
T
0 , B̂ = U0D̂V T

0 ,
and B = UDV T are the SVDs. We have

‖Y −B‖2F /2− ‖D0 −D‖2F /2
= −Tr(BTY ) + Tr(D0D)

= −Tr(BT (Y − B̂)) + Tr((D0 − D̂)D)

+ Tr(DD̂)− Tr(BT B̂)

= −Tr(V DUTU0(D0 − D̂)V T
0 ) + Tr((D0 − D̂)D)

+ Tr(DD̂)− Tr(BT B̂).

By Proposition 2.1 D̂ � D0, i.e., D0 − D̂ is positive
semi-definite. By augmenting Y − B and B and applying
Lemma A.1, we can prove

Tr(D(D0 − D̂) ≥ Tr(V DUTU0(D0 − D̂)V T
0 ),

from which it follows that

‖Y −B‖2F /2− ‖D0 −D‖2F /2
≥ Tr(DD̂)− Tr(BT B̂) ≥ C1(Tr(DD̂)− Tr(BT B̂)).

Now we have

Q(B)−Q(B̂)

= ‖Y −B‖2F /2− ‖Y − B̂‖2F /2
+
∑

PΘ(di;λ)−
∑

PΘ(d̂i;λ)

≥ ‖D0 −D‖2F /2− ‖D0 − D̂‖2F /2
+
∑

PΘ(di;λ)−
∑

PΘ(d̂i;λ) + C1Tr(DD̂ −BT B̂)

=
∑

((d0,i − di)
2/2 + PΘ(di;λ))

− ((d0,i − d̂i)
2/2 + PΘ(d̂i;λ)) + C1Tr(DD̂ −BT B̂)

≥ C1

∑
(di − d̂i)

2/2 + C1Tr(DD̂ −BT B̂)

= C1(‖D − D̂‖2F /2 + Tr(DD̂)− Tr(BT B̂))

= C1(‖D‖2F /2 + ‖D̂‖2F /2− Tr(BT B̂))

= C1‖B − B̂‖2F /2.

The second inequality is due to Lemma 2 in She (2012).

Proof of the optimality part of Proposition 2.1. From the
comment in Appendix A, any optimal solution B must have
the same nonzero singular values (up to permutation) as B̂,

i.e., di = d̂i, seen from the proof of Proposition 2.1. A more
careful examination of the proof of Proposition 2.2 shows
Q(B) −Q(B̂) ≥ Tr(DD̂ −BT B̂) = ‖B − B̂‖2F /2. There-
fore, the globally optimal solution B̂ in Proposition 2.1
must be unique.

APPENDIX C. PROOF OF THEOREM 2.1

The proof is similar to that of Theorem 2.1 in She (2012).
Define a surrogate function G for any A = [α1, . . . ,αm] =
[α̃0, α̃1, . . . , α̃p]

T and B = [β1, . . . ,βm] ∈ R
(p+1)×m

G(B,A)

= −
m∑

k=1

n∑
i=1

Li,k(αk) +

p∧m∑
s=1

P (σ(A◦)
s ;λ)

+
1

2
‖A−B‖2F −

m∑
k=1

n∑
i=1

(b(xT
i αk)− b(xT

i βk))

+

m∑
k=1

n∑
i=1

μi,k(x
T
i αk − xT

i βk),

where μi,k = g−1(xT
i βk) = b′(xT

i βk). It can be shown that
given B, minimizing G over A is equivalent to

argmin
A

1

2

∥∥∥A−
[
B +XTY −XTμ(B)

]∥∥∥2
F

+

p∧m∑
s=1

P (σ(A◦)
s ;λ).

By Proposition 2.1, B(j+1) in (2.11) can be characterized

by argminA G(B(j),A). Furthermore, we have for any Δ ∈
R

(p+1)×m

G(B(j),B(j+1) +Δ)−G(B(j),B(j+1)) ≥ C1

2
‖Δ‖2F

(C.1)

with C1 = max(0, 1−LΘ), by applying Proposition 2.2 and

Lemma 1 in She (2012), and noting that qs(σ
(B◦(j+1))) = 0,

for B◦(j+1) obtained by Θσ-thresholding.
Next, Taylor series expansion gives

F (B(j+1))

+
∑
k

1

2
(β

(j+1)
k − β

(j)
k )T (I − I(ξ(j)k ))(β

(j+1)
k − β

(j)
k )

= G(B(j),B(j+1))

≤ G(B(j),B(j))

−
∑
k

C1

2
(β

(j+1)
k − β

(j)
k )T (β

(j+1)
k − β

(j)
k )

= F (B(j))− C1

2
‖B(j+1) −B(j)‖2F

(2.12) can be obtained. In fact, this decreasing property
holds for any ρ ≤ 2− LΘ.

Let B(jl) → B∗ as l → ∞. Under the condition ρ <
2 − LΘ, C is strictly positive and ‖B(jl+1) − B(jl)‖2F /2 ≤
(F (B(jl))−F (B(jl+1)))/C≤(F (B(jl))−F (B(jk+1)))/C → 0.

That is, Θσ(B◦(jl)+X◦TY −X◦Tμ(B(jl));λ)−B◦(jl) → 0.
Therefore, B∗ is a solution to (2.13) due to the continuity
assumption.
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APPENDIX D. PROOF OF
PROPOSITION 2.3

Let M = (XTX)−1/2XTY and r0 = rank(M). Ob-

viously, r0 ≤ p ∧ m. Note that MTM = Y THY . As-

sume M = UDV T is the SVD of M with U ∈ R
p×r0 ,

V ∈ R
m×r0 , and D ∈ R

r0×r0 . Suppose all (positive) di-

agonal entries of D are arranged in decreasing order. Let

A � XTY −XTXB̂. To prove B̂ obeys the Θσ-equation

(2.13) for hard-thresholding, it suffices to show that (i) there

exists a p× r0 orthogonal matrix U∗ satisfying UT
∗ U∗ = I

such that UT
∗ (B̂B̂

T
)U∗ and UT

∗ (AAT )U∗ are both diago-

nal; (ii) there exists an m × r0 orthogonal matrix V ∗ such

that V T
∗ (B̂

T
B̂)V ∗ and V T

∗ (A
TA)V ∗ are both diagonal;

(iii) Tr(B̂
T
A) = 0; (iv) the singular values of A are all

bounded by λ.

Recall that r = max{i : di ≥ λ} and V r = V [ , 1:r].

Introduce V −r = V [ , (r+1):r0], formed by deleting the

first r columns in V . Then we have

A = XTY −XTXB̂ = XTY −XTHY PV r
(D.1)

= XTY (I − PV r ) = XTY PV −r

= XTY V −rV
T
−r = (XTX)1/2MV −rV

T
−r.

Obviously, Tr(B̂
T
A) = 0. (iii) is true. On the other hand,

we can rewrite B̂ as

B̂ = (XTX)−1/2MV rV
T
r

(D.2)

= (XTX)−1/2MV

[
Ir×r

0(r0−r)×(r0−r)

]
V T

= (XTX)−1/2UD

[
Ir×r

0(r0−r)×(r0−r)

]
V T

= (XTX)−1/2Θσ
H(M ;λ).(D.3)

Now we obtain

B̂
T
B̂ = V

[
Ir×r

0(r0−r)×(r0−r)

]
DUT (XTX)−1UD

(D.4)

·
[

Ir×r

0(r0−r)×(r0−r)

]
V T ,

ATA = V

[
0r×r

I(r0−r)×(r0−r)

]
DUT (XTX)UD

(D.5)

·
[

0r×r

I(r0−r)×(r0−r)

]
V T .

(iv) is straightforward from (D.5):

‖ATA‖2 ≤ ‖X‖22 ·
∥∥∥∥UD

[
0r×r

I(r0−r)×(r0−r)

]
V T

∥∥∥∥
2

2

≤ 1 · d2r+1 ≤ λ2.

(D.4) + (D.5) also implies (ii). In fact, introducing
G = DUT (XX)−1UD, H = DUT (XX)UD, G11 =
G[1:r, 1:r], H22 = H[(r+1):r0, (r+1):r0], and assuming the
spectral decompositions of the two submatrices are given by
G11 = UG

11D
G
11(U

G
11)

T and H22 = UH
22D

H
22(U

H
22)

T , respec-
tively, then,

V ∗ = V

[
UG

11

UH
22

]

simultaneously diagonalizes B̂
T
B̂ and ATA and satisfies

V T
∗ V ∗ = I.
Finally, we construct U∗ to prove (i). From (D.3) and

(D.2),

B̂V ∗ = (XTX)−1/2UD(D.6)

·
[

Ir×r

0(r0−r)×(r0−r)

] [
UG

11

UH
22

]
,

AV ∗ = (XTX)1/2UD(D.7)

·
[

0r×r

I(r0−r)×(r0−r)

] [
UG

11

UH
22

]
.

Let G̃ = (XTX)−1/2UD and H̃ = (XTX)1/2UD. Then

G̃
T
G̃ = G, H̃

T
H̃ = H. By construction, UG

11 and UH
22

must be the right-singular vectors of G̃1 = G̃[ , 1:r] and

H̃2 = H̃[ , (r+1):r0] respectively. Denoting by U G̃
1 and U H̃

2

their associated left-singular vectors respectively, we get

U∗ =
[
U G̃

1 U H̃
2

]
,

which makes both UT
∗ B̂B̂

T
U∗ and UT

∗ AATU∗ diagonal.
To prove U∗ is the desired matrix in (i), it remains to show
the orthogonality of U∗. It follows from (D.6) and (D.7)
that

(G̃1U
G
11)

T H̃2U
H
22

= (UG
11)

T

(
(XTX)−1/2UD

[
Ir×r

0

])T

· (XTX)1/2UD

[
0

I(r0−r)×(r0−r)

]
UH

22

= (UG
11)

T
[
Ir×r 0

]
DUT (XTX)−1/2(XTX)1/2

·UD

[
0

I(r0−r)×(r0−r)

]
UH

22

= (UG
11)

T
[
Ir×r 0

]
DUTUD

[
0

I(r0−r)×(r0−r)

]
UH

22
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= (UG
11)

T
[
Ir×r 0

]
D2

[
0

I(r0−r)×(r0−r)

]
UH

22

= 0.

Since G11 and H22 are positive definite (noting that D ∈
R

r0×r0 is nonsingular), we further obtain (U G̃
1 )

TU H̃
2 = 0.

Hence UT
∗ U∗ = I. The proof is now complete.

APPENDIX E. PROOF OF
PROPOSITION 2.4

From Theorem 2.1, B̂ satisfies{
B̂

◦
= Θσ

HR(B̂
◦
+X◦TY −X◦Tμ(B̂;X);λ, η),

0 = (Y − μ(B̂;X))T x̃0.
(E.1)

Here, we write μ(B̂;X) to emphasize the dependence of the
mean matrix on the design. In this proof, we use the same
submatrix notation as in Appendix D.

Given the SVD B◦ = UDV T , by Definition 2.2, there
exist orthogonal matrices Ū and V̄ , as augmented ver-
sions of U and V , respectively, i.e., U = Ū [I, ] and V =

V̄ [I, ] for some index set I, such that B̂
◦
= ŪΣV̄

T
and

X◦TY − X◦Tμ(B̂;X) = ŪWV̄
T

are both the SVDs.
Clearly, Σ[I, I] = D, Σ[Ic, Ic] = 0. Using the hard-ridge
thresholding (2.6), we rewrite the first equation in (E.1) as

(1 + η)B◦ + λ(1 + η)ŪSV̄
T
= B◦ +X◦T (Y − μ(B̂;X)),

(E.2)

where S is diagonal and satisfies S[I, I] = 0 and S[i, i] ≤ 1
for any i ∈ Ic. Left-multiplying both sides of (E.2) by UT

yields

ηDV T = UTX◦T (Y − μ(B̂;X)).

On the other hand, from the construction of Ĉ and Z, it
is easy to verify xT

i B̂ = zT
i Ĉ, from which it follows that

μ(B̂;X) = μ(Ĉ;Z). Therefore, Ĉ satisfies

{
ηC◦ = Z◦T (Y − μ(Ĉ;Z)),

0 = (Y − μ(Ĉ;Z))T z̃0.
(E.3)

Noticing that the optimization problem in (2.20) is convex
and (E.3) gives its KKT equation, the conclusion follows.

APPENDIX F. PROOF OF THEOREM 3.1

Lemma F.1. Given any Y ∈ R
n×, B̂ = Θ#σ(Y ; r, η) is a

globally optimal solution to

min
B

1

2
‖Y −B‖2F +

η

2
‖B‖2F s.t. rank(B) ≤ r.(F.1)

Proof. The problem is equivalent to minimizing

1 + η

2

∑
(σ

(B)
i )2 − 〈Y ,B〉

subject to rank(B) ≤ r. Applying Lemma A.1 yields the
result.

The remainder of the proof follows the same lines to the
proof of Theorem 2.1. See Appendix C for details.
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