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Dimension reduction in functional regression
using mixed data canonical correlation analysis

Guochang Wang, Nan Lin and Baoxue Zhang
∗

We propose a new dimension reduction method, mixed
data canonical correlation (MDCANCOR), for functional
regression with a scalar response and a functional predic-
tor. MDCANCOR achieves dimension reduction using the
canonical correlation analysis between the functional pre-
dictor and a set of B-spline basis functions that represent
the transformed response space. And we propose a modi-
fied version of BIC to determine the dimensionality of the
effective dimension reduction (EDR) space. This criterion
is generally applicable to dimension reduction problems in
functional regression. Asymptotically, we prove that MD-
CANCOR consistently estimates the directions when the
dimensionality of the EDR space is given, and the modified
BIC consistently estimates the dimensionality of the EDR
space. Both simulation and real data examples show that
the MDCANCOR method performs similarly as the regu-
larized functional sliced inverse regression and better than
other existing dimension reduction methods.
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1. INTRODUCTION

Functional data analysis (FDA) is widely used for data
in the form of curves or functions. In this article, we fo-
cus on functional regression with a scalar response and a
functional predictor. The basic approach to analyzing such
data is functional linear regression [11, 17, 22, 28], while
more flexible functional regression models can be found in
[2, 5, 16, 27] and many others. A thorough discussion on
this issue is given in [24, Chapter 15], and more comprehen-
sive reviews of functional regression models can be found in
Ramsay and Silverman [23, 24] and Ferraty and Vieu [10].

Let L2([a, b]) be the space of squared integrable functions

supported on [a, b] with inner product 〈f, g〉 =
∫ b

a
f(t)g(t)dt,

and the associated norm be ‖f‖ =
√

〈f, f〉. The functional
linear regression model provides a natural extension of lin-
ear regression to the functional domain by assuming the
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relationship between a scalar response y and a functional
predictor x(t) ∈ L2([a, b]) as

(1) y = 〈x, β〉+ ε,

where ε is a random error term satisfying E(ε) = 0,
E(ε2) < ∞ and E(xε) = 0, and β ∈ L2([a, b]) is the func-
tional regression coefficient. While the functional linear re-
gression model (1) has gained great popularity for its sim-
plicity, the linear form limits its application to data with
more complicated structures. On the other hand, more flex-
ible functional regression models often encounter the chal-
lenge of ‘curse of dimensionality’ as functional predictors
are essentially of infinite dimensions. Researchers have de-
veloped methods based on functional principal component
analysis to overcome the high-dimensional nature of the
functional regression problem [18, 27]. However, a limita-
tion of this type of method is that the reduced dimensions
are derived regardless of the response variable and hence
may not be relevant to the regression problem. Therefore,
we consider regression-based dimension reduction and use a
set of inner products to represent the reduced dimensions.
More specifically, we focus on the following model

(2) y = f(〈β1, x〉, . . . , 〈βK , x〉, ε),

where β1, . . . , βK are K linear independent functions in
L2([a, b]) that span a subspace EK , and f is an unknown link
function from R

K+1 to R. In dimension reduction literature,
the space EK is usually called the effective dimension reduc-
tion (EDR) space, and β1, . . . , βK are the EDR directions.
A number of methods have been proposed for finding βi’s in
(2) following the idea of sliced inverse regression (SIR) [21]
for multivariate predictors, including functional SIR (FSIR)
[7], functional inverse regression (FIR) [8], wavelet smooth-
ing (WS) [1], and regularized FSIR (RFSIR) [9]. The afore-
mentioned methods are all able to consistently estimate the
EDR directions in that they guarantee that the estimated
directions are contained in the EDR space. However, this
property depends critically on a linearity condition on the
predictor variable. When this condition fails, the estimated
directions may no longer be consistent and become hard to
interpret.

In this paper, we take a different approach to reducing
the dimensionality of the functional predictor. Fung et al.

http://www.intlpress.com/SII/


[12] proposed CANCOR as an alternative to SIR for di-
mension reduction of multivariate predictors. The CANCOR
method is based on a B-spline representation of the inverse
link function, and estimates the EDR space as the span of
the canonical variates from the canonical correlation analy-
sis of the B-spline basis functions and the multivariate pre-
dictors. We propose the mixed-data canonical correlation
(MDCANCOR) method as an extension of CANCOR to
functional regression. MDCANCOR finds the EDR space
using canonical variates based on the functional predictor
x and the set of B-spline functions that represent the re-
sponse variable y transformed by the inverse link function.
MDCANCOR shares the same consistency property as other
functional SIR-based approaches when the linearity condi-
tion on the predictor holds, and otherwise still gives the
projections of the functional predictor x that are best corre-
lated with the transformed response in terms of a penalized
correlation. MDCANCOR is also computationally simpler
than functional SIR-based methods.

A critical issue in dimension reduction methods is deter-
mining the dimensionality. For multivariate predictors, Li
[21] developed a sequential chi-square test for deciding the
dimensionality in the SIR method. This motivated a similar
application in the functional case [1]. However, the authors
did not provide any theory to show that the null distribu-
tion is still chi-square under the functional setup. In addi-
tion, Ferré and Yao [8] proposed a trace criterion, but this
method requires an exhaustive search over a huge number
of enumerations and hence computationally prohibitive in
most applications. We treat the dimensionality as a model-
ing parameter and propose using a modified Bayesian infor-
mation criterion (BIC) to determine it. Our proposal is mo-
tivated by Zhu et al. [31] who proposed a generic BIC-type
procedure applicable to many multivariate dimension reduc-
tion methods. However, it is difficult to choose the penalty
constant Cn in their criterion. Borrowing the ideal of the
BIC, we propose another modified BIC based on the eigen-
values of the MDCANCOR operator, and we will illustrate
the performance of the proposed MBIC by simulations.

In one of our earlier studies, Wang et al. [25] proposed
FLIRST as a special application of MDCANCOR to the
transformation model for functional linear regression

(3) h(y) = 〈x, β1〉+ ε,

where h(·) is a smooth function estimated by splines, and ε
represents random noise independent of x. This special case
essentially assumes the dimensionality of the EDR space is
one, and hence the FLIRST method only uses the leading
canonical variable in the MDCANCOR method. In this arti-
cle, we investigate the usage and property of MDCANCOR
for dimension reduction in a more general context. In par-
ticular, we derive in Section 3 the asymptotic property of
the estimated covariance operator Γ̂e, where Γ̂e is the esti-
mate of Γe = cov(E(x|y)). Under some mild assumptions,

we prove that Γ̂e converges to Γe at the rate of n−1/2. In
addition, in Section 4, we propose a modified BIC to de-
termine the dimensionality of the EDR space and prove its
consistency.

This paper is organized as follows. In Section 2, we intro-
duce the MDCANCOR algorithm and the associated esti-
mation procedure. Asymptotic properties are then derived
in Section 3. In Section 4, we propose a modified BIC for de-
termining the dimensionality in the MDCANCOR method
and prove its consistency. Next, in Section 5, we demon-
strate the merit of the MDCANCOR method by numeri-
cal examples, including two simulation studies and two real
data examples. We then conclude the paper in Section 6.
Technical proofs are given in the Appendix.

2. THE MDCANCOR METHOD

In this section, we propose the MDCANCOR method
which is based on the canonical correlation between the
functional predictor x and a B-spline basis representation
of the response space.

2.1 Canonical directions

Following Fung et al. [12], without loss of generality, we
suppose that the response variable y is supported on a
bounded interval [c, d]. We first generate χn + l B-spline
basis functions of order l with χn internal knots in [c, d].
Since the B-spline basis functions sum to 1 for each y, we
need only use the first χn + l − 1 basis functions of y,
π(y) = (B1(y), . . . , Bχn+l−1(y))

T . Suppose that the EDR
space is K-dimensional. MDCANCOR solves an optimiza-
tion problem that sequentially finds the canonical direction
βi’s that give the maximum penalized correlation between
the canonical variates 〈x, βi〉 and a linear combination of the
spline basis functions bTi π(y) for i = 1, . . . ,K, where bi are
some unknown constant vectors.

Without loss of generality, suppose that the functional
predictor x belongs to L2([a, b]) with zero mean. Denote
Γ = E(x ⊗ x) as the covariance operator of x, where ⊗
denotes the tensor product in L2([a, b]). The tensor product
for any f, g ∈ L2([a, b]) is given by (f ⊗ g)(v) = 〈f, v〉g for
any v ∈ L2([a, b]). Denote by S the subspace of L2([a, b])
containing functions with a squared integrable mth order
derivative. We define the first canonical direction β1 as the
solution to the following optimization problem:

(4) max
(β∈S,b∈Rχn+l−1)

cov(〈x, β〉,bTπ(y)),

subject to

(5) 〈Γβ, β〉+ α1PENm(β) = var(bTπ(y)) = 1,

where PENm(u) = 〈u(m), u(m)〉 defines the roughness (or
smoothness) of the functional parameter β, and u(m) de-
notes the mth order derivative of u. Constraint (5) penalizes
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the roughness of β, and uses a pre-specified positive smooth-
ing parameter α1 to control the degree of penalization. The
penalization is necessary because the covariance operator Γ
is otherwise empirically not estimable.

The rest of the canonical directions can be defined simi-
larly. For identifiability, we require any subsequent canoni-
cal direction βi (i = 2, . . . ,K) to be uncorrelated with the
preceding canonical directions β1, . . . , βi−1. We then define
the ith (i ≥ 2) canonical direction βi as the solution to the
following optimization problem:

(6) max
(β∈S,b∈Rχn+l−1)

cov(〈x, β〉,bTπ(y)),

subject to

〈Γβ, β〉+ αiPENm(β) = var(bTπ(y)) = 1,(7)

〈Γβ, βj〉+ αi〈β(m), β
(m)
j 〉 = 0, j = 1, . . . , i− 1,(8)

cov(bTπ(y),bT
j π(y)) = 0, j = 1, . . . , i− 1.(9)

Our definition then results in a set of canonical directions
(β1, . . . , βK). In practice, the smoothing parameters αi’s in
(5), (7) and (8) can be selected by cross-validation. However,
our experience suggests that using a common value α for all
i provides satisfactory performance and meanwhile reduces
the numerical complexity. So, we will set all αi being equal
in the sequel.

Denote the penalty term in (5) and (7) by

(10) Qα(f, f) = 〈Γf, f〉+ αPENm(f).

Then through some simple algebra, it is easy to see that
the optimization problems in (4) and (6) are equivalent to
sequentially maximizing

(11) γα(bj , βj) =
(cov(〈x, βj〉,bT

j π(y)))
2

Qα(βj)(bT
j var(π(y))bj)

under the following set of orthogonal constraints, for j =
1, . . . ,K,

Qα(βi, βj) = bT
i var(π(y)bj = δij , for all i = 1, . . . , j,

where δij = 1 for i = j and δij = 0 for i 	= j, and βj ∈ S
and bj ∈ R

χn+l−1.
Next, we give the key property of MDCANCOR. That is,

the canonical directions defined by MDCANCOR are in the
EDR space under a linearity condition.

Lemma 2.1. Suppose that the following linearity condition
holds.

(a1) For any β ∈ L2([a, b]), there exists a vector c ∈ R
K

satisfying E(〈β, x〉|B) = cTB, where B = (〈β1, x〉, . . . ,
〈βK , x〉)T .

Then E(x|y) belongs to the subspace spanned by
Γβ1, . . . ,ΓβK .

Lemma 2.1 is Theorem 1 in Ferré and Villa [9], where
readers are referred to find the proof.

Remark. The linearity condition (a1) is the same as condi-
tion 1 in Ferré and Yao [8] and is similar to the Condition 3.1
used in the multivariate case [21]. In the multivariate case,
Hall and Li [13] proved that the linearity condition holds
when the explanatory variable has a symmetric elliptical dis-
tribution or the dimension of the observed predictors is much
larger than the dimension of the EDR space K. And it is of-
ten true that, even if the original predictor variables do not
satisfy the linearity condition, some appropriate transforma-
tion will make it so. In the functional case, Ferré and Yao
[7] proved a similar result that the linearity condition holds
when the functional predictor is elliptically distributed, e.g.
the Gaussian process.

If Condition (a1) does not hold, the directions found by
MDCANCOR are not always guaranteed to be contained in
the EDR space EK but are still useful in identifying some
main features of the regression model because the projec-
tions 〈x, β̂j〉 have the most significant penalized correlation
with some transformation of the response variable y.

2.2 Estimation of the canonical directions

For real data, we estimate the canonical directions βi’s
based on a sample version of the procedure described in
Section 2.1. In reality, the functional predictor x(t) is often
observed only at a finite set of values of t. If the discrete
observations are densely observed smooth data, for most
theoretical and practical purposes, one can fit continuous
curves to the discrete data and then treat the fitted curves
as the true functional data; see, for example, [4, 29]. The
case of sparsely observed functional data requires more care-
ful treatment and can possibly be solved using the idea in
Yao et al. [26]. In the present paper, we assume that the
predictor curves are entirely observed in our theoretical de-
velopment.

For a given random sample (xi, yi), i = 1, . . . , n, we
propose estimating the canonical directions βi by replac-
ing Γ, cov(〈x, β〉) and var(bTπ(y)) in (11) by their sample
versions, i.e. by maximizing the function
(12)

γ̂α(bj , βj) =
(n−1

∑n
i=1〈xi − x̄, βj〉bT

j π
c(yi))

2

Q̂α(βj , βj)(n−1bT
j

∑n
i=1(π

c(yi))Tπc(yi)bj)
,

under orthogonal constraints, for j = 1, . . . ,K,

Q̂α(βi, βj) = bT
i

n∑
i=1

(πc(yi))
Tπc(yi)bj = δij ,

for all i = 1, . . . , j,

where πc(yi) = π(yi) − n−1
∑n

j=1 π(yj), x̄ = n−1
∑n

i=1 xi,

Γ̂ = n−1
∑n

i=1[xi(s)− x̄(s)] ⊗ [xi(t) − x̄(t)] and Q̂α(f, f) =

〈Γ̂f, f〉+ αPENm(f).
Next, we give the MDCANCOR procedure for estimating

the canonical directions βi’s.
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• Step 1. Choose a set of B-spline basis functions
ϕ1(t), . . . , ϕM (t) such that the functional parameters
are represented as

(13) β(t) =

M∑
i=1

aiϕi(t),

where ai’s are some unknown coefficients.
• Step 2. Let x̄(t) = n−1

∑n
i=1 xi(t) and π̄ =∑n

i=1 π(yi)/n. Centralize (xi, π(yi)) as x
c
i (t) = xi(t)− x̄

and πc(yi) = π(yi)− π̄.
• Step 3. Compute the n × M matrix C whose (i, j)th
entry is 〈xc

i , Bj〉 and the M × M matrix R with

the (i, j)th entry being 〈ϕ(m)
i , ϕ

(m)
j 〉, and Π be the

n× (χn + l− 1) matrix which is the centered version of
(π(y1), . . . , π(yn))

T .
• Step 4. For a given smoothing parameter α, compute
the eigenvalue-eigenvector decomposition of the matrix

Ψ̂ = (CTC + nαR)−1/2(14)

× CTΠ(ΠTΠ)−1ΠTC(CTC + nαR)−1/2.

Let {âij}i=1,...,K,j=1,...,M be the first K eigenvectors cor-

responding to the K largest eigenvalues of Ψ̂. Then, we es-
timate the canonical directions {βi(t)}i=1,...,K by β̂i(t) =∑M

j=1 âijϕj(t), which span the EDR space EK under Con-
dition (a1).

3. ASYMPTOTIC PROPERTIES

In this section, we will show the consistency of the MD-
CANCOR method. First, we give some technical assump-
tions.

(a2) There is a positive constant δ1 such that
E‖x‖4+δ1 < +∞;

(a3) For all α > 0, ρα = inf‖β‖=1,β∈S Qα(β, β) > 0;
(a4) limn→+∞ α = 0, limn→+∞

√
nα = ∞;

(a5) There exist a unique maximizer (b0
j , β

0
j )j=1,...,K , b0

j ∈
R

χn+l−1 and β0
j ∈ S.

(a6) Assume that y has a probability density f(y), and f(y)
is bounded away from 0 and infinity on [a, b];

(a7) For every t ∈ [a, b], ζ(v) = E(x(t)|y = v) is a function
on [c, d]. Suppose ζ(v) have a p′th derivative ζp

′
(v) such

that

|ζp′
(v)− ζp

′
(u)| ≤ C1|v − u|p̃, u, v ∈ [c, d],

where C1 > 0 and p̃ ∈ (0, 1], In what follows, we set
r = p′ + p̃;

(a8) χn = Op(n
ε1) and en = Op(n

−ε2), where ε1 and ε2
are positive scalars such that ε2/r + 1/(4r) < ε1 <
1/2− 2ε2;

(a9) The function ϕ(v) = E(‖x‖2|y = v) is continuous and√
nE(‖ζ(v)‖2I{f(y)<en}) tends to zero.

We first define the maximizer of the unregularized ver-
sion of (11), i.e. α = 0, as (b0

j , β
0
j ) and the maximum

(or supreme) as λj . That is, λj = γ0(b
0
j , β

0
j ). The corre-

sponding quantities for the sample version is then defined
by λn

j = sup(bj∈Rχn+l−1,βj∈S) γ̂α(bj , βj) = γ̂α(b̂j , β̂j).
The consistency here is defined through a mode of con-

vergence in the functional space [19].

Definition. A sequence of functions un(t) converges in the
Γ-norm to u(t) if cor2(〈x, un〉, 〈x, u〉) → 1 as n → ∞, where
x is the functional predictor.

Theorem 3.1. Under the linearity condition (a1) and the
assumptions (a2)–(a5) and (a9), with probability converg-
ing to 1, the function γ̂α(b, β) reaches its maximum on
R

χn+l−1 × S when n grows to +∞. Then, we have, as

n → +∞, γ0(b̂j , β̂j)
p→ λj = limn→+∞ λn

j , and β̂j → βj

in the Γ-norm.

Proof of the theorem is given in the Appendix A.1. Wang
et al. [25] considered Theorem 3.1 by focusing on the leading
canonical variate. Here, we present this theorem for all first
K canonical variates and in addition, following [9], we prove
that γ̂α(b, β) reaches its maximum on R

χn+l−1 × S with
probability 1.

In the following, we will prove the consistency of

(15) Γ̂e =

n∑
i=1

1

n
ζ̂(yi)⊗ ζ̂(yi),

where Γe = cov(E(x|y)) and ζ̂(yi) is the spline estimate
of ζ(yi) = E(x(t)|y = yi). Denoting the Hilbert-Schmidt
operator norm by ‖ · ‖hs, and for any Hilbert-Schmidt op-
erator A, take ‖A‖hs = (

∑
j ‖Agj‖2)1/2, where (gj) is any

orthonormal basis in L2([a, b]).

Theorem 3.2. Under conditions (2), (a2) and (a6)–(a9),
we have ‖Γ̂e − Γe‖hs = OP (n

−1/2).

The proof of the Theorem 3.2 is given in the Ap-
pendix A.2.

Remark. Assumptions (a2)–(a5) are technical assump-
tions that ensure the existence and convergence of the
estimated canonical directions (β̂j)j=1,...,K , and (a6)–(a9)
are general assumptions that guarantee the convergence of
‖Γ̂e − Γe‖hs = OP (1/

√
n). Assumption (a2) is essential to

having Γ̂ converge to Γ at the
√
n-rate. Assumption (a3),

also used in [9], is due to regularization and controls the
scaling of γα(b, β). Assumption (a4) ensures that the de-
nominator of γ̂α(b, β) does not go too fast to zero. Assump-
tion (a6)–(a9) are rather general assumptions which are also
used in [8].

4. ESTIMATING THE DIMENSIONALITY
OF THE EDR SPACE

In previous sections, we have assumed that the dimen-
sionality of the EDR space K is known. In practice, it
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is rarely given, though. MDCANCOR estimates the EDR
space EK by using the eigenvectors of Γe corresponding to
the nonzero eigenvalues, where Γe = cov(E(x|y)). Then,
determining K is equivalent to estimating the number of
nonzero eigenvalues of the operator Γe. For real data, Γe is
estimated by Γ̂e defined in (15).

Denote the eigenvalues of Γe by θ1 ≥ · · · ≥ θM , and
the corresponding estimate is θ̂1 ≥ · · · ≥ θ̂M . Zhu et al.
[31] proposed a BIC-type procedure for determining the di-
mensionality of the EDR space for multivariate dimension
reduction. The modified BIC proposed by Zhu et al. [31] is
as follows, for k = 0, . . . ,M − 1,

G(k) =
n

2

M∑
i=1+min(k,τ)

(log(θ̂i +1)− θ̂i)−
Cnk(2M − k + 1)

2
,

where τ denote the number of θ̂i’s that are greater than 0.
This is a general method which can be applied to functional
data by just treating the discretized observations of the func-
tional predictor as a random vector. However, in their cri-
terion, the choice of the penalty function Cn is difficult to
choose in practice. To avoid the inconvenience of selecting
Cn in the penalty term, we propose another modified BIC
based on the eigenvalues of the MDCANCOR operator.

We define a modified BIC based on the estimated eigen-
values θ̂i as follows.

(16) MBIC(k) = n

∑k
i=1(θ̂

2
i )∑M

i=1(θ̂
2
i )

− log(n)k

2M
.

The second term of MBIC is a penalty with k being the
number of θ̂i needed to be estimated. Similar to BIC, we
include the factor log(n) in the penalty. Then we estimate
K by

(17) K̂ = argmax
1≤k≤M

MBIC(k).

The next theorem shows that this criterion consistently es-
timates the dimensionality K.

Theorem 4.1. Under the assumptions of Theorem 3.2, the
estimated dimension K̂ converges to K in probability.

The proof of Theorem 4.1 is similar with the Theorem 2
of Zhu et al. [31] and hence omitted, and we refer the readers
to Zhu et al. [31] for more details.

5. NUMERICAL STUDIES

5.1 Simulation study

In this section, we carry out simulations to study the per-
formance of MDCANCOR. We compare our method with
existing methods, including FSIR [7], FIR [8], WS [1] and
RFSIR [9], in their prediction accuracy and estimated EDR
dimensions.

To measure the predictive performance of different meth-
ods, we use the root mean squared prediction error,

RMSE =
√

1
n

∑n
j=1(yj − ŷj)2, where ŷj denotes the pre-

dicted value and yj is the corresponding true value. In the
simulation, we compute ŷj through replacing βj in the true

model by its estimate β̂j , j = 1, . . . ,K. For real data, similar

to Amato et al. [1], we compute ŷj =
∑K

i=1〈xj , β̂j〉.
Another way to compare the performance of different

methods is by the accuracy of estimating the EDR dimen-
sions. We adopt the squared trace correlation coefficient [8]

between 〈β1, x〉, . . . , 〈βK , x〉 and 〈β̂1, x〉, . . . , 〈β̂K , x〉. Empir-
ically, we evaluate it by discretization on a set of points
t1, . . . , tD on [a, b], i.e.

R2(β) =
trace[β(Σβ)T β̂(Σβ̂)T ]

K
,

where β = ((β1(t1), . . . , β1(tD))T , . . . , (βK(t1), . . . ,

βK(tD))T ), β̂ = ((β̂1(t1), . . . , β̂1(tD))T , . . . , (β̂K(t1), . . . ,

β̂K(tD))T ) and Σ is the D × D matrix given by Γ̂(ti, tj),
i, j = 1, . . . , D. For a given data set, t1, . . . , tD are taken as
those on which the functional predictor xi is measured.

For the considered methods, we need to decide the follow-
ing tuning parameters, 1) for MDCANCOR: the number of
knots χn and the order of the B-spline basis function l for
π(y), the smoothing parameter α, the order of the deriva-
tive m, and the number of the basis function M in (13);
2) for FSIR and WS: the number of slices H; 3) for FIR:
the bandwidth h; 4) for RFSIR: the number of slices H and
a smoothing parameter λ.

Our experience suggested that the results are not sensi-
tive to the choice of χn, l, m, M and H among the above
tuning parameters. In all simulations, we set χn = 9, l = 3,
m = 3, M = 15 and H = 15. Other tuning parameters are
chosen by 10-fold cross-validation. Suppose that the sub-
jects are partitioned into 10 subsets {ω1, . . . , ω10}. Taking
α as an example, we select α as

(18) α̂ = argmin
α>0

10∑
i=1

∑
j∈ωi

(yj − ŷ
(−ωi)
j )2,

where ŷ
(−ωi)
j is the predicted value by using samples in

{ω1, . . . , ωi−1, ωi+1, ω10}.

Example 5.1. Here we consider the following two models,

Model A: yi = sin
(
π
2 〈xi, β1〉

)
+ 〈xi, β2〉+ εi,

Model B: yi = sin
(
π
2 〈Ui, β1〉

)
+ 〈Ui, β2〉+ εi,

with Ui(tj) = xi(tj) + ε̃ij ,

where xi(t)t∈[0,1] is taken as the standard Brownian motion
and εi is from the standard normal distribution and inde-
pendent of xi(t)t∈[0,1], and ε̃ij from N(0, 0.25) is the mea-
surement error. Mode A was previously considered in Ferré
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Table 1. Average ( standard error) of RMSE and R2(B) for FSIR, FIR, WS, RFSIR and MDCANCOR for Example 5.1

Model FSIR FIR WS RFSIR MDCANCOR

A RMSE 1.522(0.110 ) 1.508(0.107 ) 1.493(0.186 ) 1.072(0.096 ) 1.063(0.090 )
R2(B) 0.90(0.021 ) 0.92(0.019 ) 0.92(0.068 ) 0.94(0.023 ) 0.95(0.025 )

B RMSE 1.523(0.111 ) 1.510(0.108 ) 1.512(0.187 ) 1.089(0.121 ) 1.070(0.100 )
R2(B) 0.89(0.024 ) 0.92(0.021 ) 0.91(0.071 ) 0.94(0.023 ) 0.94(0.030 )

Table 2. Average ( standard error) of RMSE and R2(B) for FSIR, FIR, WS, RFSIR and MDCANCOR for Example 5.2

Model FSIR FIR WS RFSIR MDCANCOR

A RMES 1.385(0.257 ) 1.151(0.146 ) 1.184(0.168 ) 1.073(0.087 ) 1.067(0.096 )
R2(B) 0.89(0.021 ) 0.90(0.059 ) 0.89(0.116 ) 0.94(0.021 ) 0.95(0.023 )

B RMES 1.387(0.259 ) 1.161(0.154 ) 1.192(0.170 ) 1.076(0.0902 ) 1.070(0.101 )
R2(B) 0.89(0.024 ) 0.89(0.066 ) 0.88(0.118 ) 0.95(0.022 ) 0.95(0.026 )

and Yao [8], and Model B is a contaminated version with
measurement error. In these models, β1(t) = (2t−1)3+1 and
β2(t) = cos(π(2t−1))+1 span the EDR space. To make the
directions of the functional space identifiable, we consider
the Γ-orthonormed β1 and β2 in calculating R2(β) and the
RMSE. That is, we impose the constraints 〈Γβi, βj〉 = δij
for i, j = 1, 2, where δij = 1 if i = j and 0 otherwise. In this
study, we simulate 2,000 Monte Carlo samples each of size
400 from model A and model B of Example 5.1. and each
random curve xi(t) is sampled at p = 128 equally spaced
points in the interval [0, 1]. To evaluate the prediction per-
formance, the sample was divided into two parts, a training
sample of size 300 to estimate the EDR space, and a test
sample of size 100 to compute the RMSE. In computing the
RMSE and R2(β), we use the true dimensionality of the
EDR space, i.e. we set K = 2 for all methods.

In Table 1, we observe that MDCANCOR outperforms
other methods with the smallest RMSE and the largest
trace correlation. RFSIR is nearly as good as MDCANCOR,
whereas FIR, WS and FSIR have significantly larger RMSE
and a smaller trace correlation. Among the last three, we
also noticed that FIR and WS perform similarly and better
than FSIR.

Example 5.2. In this simulation study, we consider the
following models,

Model A: yi = (〈xi, β1〉)2 + |〈xi, β2〉|+ εi,

Model B: yi = (〈Ui, β1〉)2 + |〈Ui, β2〉|+ εi,

with Ui(tj) = xi(tj) + ε̃ij ,

where xi(t) is from the standard Brownian motion on t ∈
[0, 1] and εi is the standard normal random error that is
independent of xi(t). The rest of the setups are the same
as in Example 5.1 and tuning parameters are also decided
in the same way. It is well known in multivariate dimension
reduction, the SIR-based method have poor performance on
the non-monotonic trends in the dependence of y on x [20].
Compared with Example 5.1, Example 5.2 is based on a

more complex regression surface in which no simple mono-
tonic function exists. In this sense, the functional parame-
ters β1 and β2 in Example 5.2 are harder to estimate than
in Example 5.1.

Table 2 reports the average RMSE and R2(β) over 2,000
simulations. Similarly as in Example 5.1, we observe that
MDCANCOR and RFSIR have very close performance and
are better than the rest of the methods.

For both Examples 5.1 and 5.2, results in Tables 1 and
2 show almost no difference in the results for Model A and
Model B. This phenomenon indicates the impact of mea-
surement error is minor in these examples and it agrees with
the theory of Zhang and Chen [29]. From Tables 1 and 2,
we also observe that MDCANCOR and RFSIR have simi-
lar performance and are better than other methods, among
which FIR and WS are close and leave FSIR behind. Such
patterns were also observed previously in Ferré and Villa [9]
and Wang et al. [25].

Table 3 reports the frequencies of the EDR space dimen-
sionality selected by the MBIC and the trace criterion R(q)
[8] in Examples 5.1 and 5.2. In both examples, it is seen that
MBIC gives a higher frequency than the trace criterion in
selecting the correct dimensionality K = 2. And both cri-
teria perform better in Example 5.1 than in Example 5.2,
which is likely because it is easier for SIR-based methods
to identify models in Example 5.1. Further, the selection
results under Model A and Model B are similar, which
again shows that the impact of measurement error is quite
minor.

5.2 Real data examples

In this subsection, we compare MDCANCOR with FSIR,
FIR, WS and RFSIR on two real data examples, Tornado
data and South Dakota data.

Tornado Data. The Tornado data, previously analyzed
by Báıllo and Grané [3], are from the U.S. National Cli-
matic Data Center website (www.ncdc.noaa.gov). The re-
sponse variable yi is the logarithm of the total number of
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Table 3. Frequencies of selected model dimension by modified BIC and trace criterion R(q) for Example 5.1 and Example 5.2
for the training sample

Method K = 0 K = 1 K = 2 K = 3 K = 4 K = 5

Example 5.1 Model A MBIC 0 258 1739 3 0 0
R(q) 0 3 1142 855 0 0

Model B MBIC 0 264 1726 10 0 0
R(q) 0 2 1133 865 0 0

Example 5.2 Model A MBIC 0 208 1262 471 57 2
R(q) 1 129 1086 751 21 12

Model B MBIC 0 189 1254 535 22 0
R(q) 0 107 1059 790 44 0

Table 4. RMSE for (a) Tornados data and (b) South Dakota data

FSIR FIR WS RFSIR MDCANCOR

(a) 0.5486 0.6994 0.7007 0.5121 0.4908
(b) 0.1829 0.1784 0.1856 0.1736 0.1702

tornados in each U.S. state (i = 1, . . . , 48) during the pe-
riod of 2000-2005. The predictor variable xi is the monthly
average temperature (in Fahrenheit) in state i in the same
period of time, which contains 72 discrete observations. This
is of interest, for instance, when assessing the possible con-
sequence of an overall temperature increase due to climate
change.

South Dakota data. This data set contains daily max-
imum temperatures (in Fahrenheit) and the total precipi-
tation over the course of the year 2000 at n = 80 weather
stations from South Dakota. The response variable yi is the
logarithm of the total precipitation in each of the stations
during the same year, and the predictor xi is measured by
the 365 daily maximum temperatures. The aim is to predict
the logarithm of the total precipitation yi given the discrete
observations xi(tj).

In both examples, we choose the tuning parameters in
the same way as in simulation studies, except that we use a
smaller number of slices H = 4 because of the small sample
size. For all methods, we use the modified BIC (16) to select
the dimensionality of the EDR space.

In Table 4, we summarized the RMSE via a cross-
validation procedure, i.e.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷ
(−i)
i )2,

where ŷ
(−i)
i is the predicted value based on (n− 1) observa-

tions with the observation (xi, yi) omitted.
We select the tuning parameters by the 10-fold cross-

validation for both of the real data analysis as in the
simulation studies. For both examples, Table 4 shows that
our MDCANCOR method performs the best with the
smallest RMSE while RFSIR seems a close competitor.

Meanwhile, the WS method is seen to give the largest
RMSE in both examples. This likely due to the fact that
the WS method results in a lower dimensionality K when
the modified BIC is applied.

6. CONCLUSION

In this paper, we propose MDCANCOR for dimension re-
duction in functional regression. Our method uses a spline
representation of the transformed response and then esti-
mates the EDR space using the canonical correlation anal-
ysis between the functional predictor and the multivariate
vectors constructed by the spline basis functions. Canonical
directions estimated by MDCANCOR are shown to be con-
sistent estimates of the EDR directions under the linearity
condition (a1).

From Wang et al. [25], we know that MDCANCOR and
RFSIR are estimating the same quantities and are consistent
for functional directions in the EDR space under the linear
condition (a1). However, the directions estimated by MD-
CANCOR are more directly interpretable outside the con-
text of the EDR space. Compared with RFSIR, MDCAN-
COR is not only applicable to independent random sam-
ples. With some modified technical assumptions, it can also
be extended to data with autoregressive Hilbertian func-
tional predictor. Simulations show that MDCANCOR has a
close performance with RFSIR and outperforms other exist-
ing dimension reduction methods for functional regression.
Furthermore, we propose a new method to determine the
dimension of the EDR space.

Regularization is essential to functional dimension reduc-
tion methods as the functional variable is infinitely dimen-
sional. We have adopted a penalty of the bilinear form in (5),
however, our theory should hold also for other regularization
functionals satisfying the assumption (a3). For example, we
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may use a penalty term similar to the one used in Ridge-
PDA [14], which will lead the roughness penalty terms in
(5) to 〈(Γ + λI)β, β〉 = var(bTπ(y)) = 1.

MDCANCOR achieves dimension reduction from a per-
spective different from SIR-based methods, such as FSIR,
WS, FIR and RFSIR, and may lead to some flexible exten-
sions. One direction is in robustifying the method. As MD-
CANCOR is based on the classical estimates of the first and
second linear operator of the data, it can be sensitive to out-
liers. In the multivariate case, WCANCOR [30] is proposed
as a robust version of CANCOR by downweighing the outly-
ing observations. It is quite natural to achieve a robust func-
tional dimension reduction method by extending MDCAN-
COR in a similar way. On the other hand, robustification
of the SIR-based functional dimension reduction methods is
not as straightforward as finding the weights can be very
difficult. A second direction to extend MDCANCOR is to
consider functional regression with multivariate responses,
i.e. y ∈ Rp. FSIR and RFSIR can be extended in theory
to multivariate response without modification but are faced
with the curse of dimensionality in practice. For example, if
one slices each response variable into a fixed number of slices
h, then the total number of slices hp increases exponentially,
and therefore a great amount of data will be required to fill
in each slice when the dimension p is high. Such challenges
will not occur in extending our MDCANCOR method, as
canonical correlation analysis is originally designed for han-
dling multivariate responses, and we may actually achieve
simultaneous dimension reduction on the response side by
finding a linear combination of the multivariate responses
as a scalar surrogate. We will investigate these extensions in
our future research.

APPENDIX A. PROOF OF THEOREMS

A.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is similar to Theorem 2 of [9].
To prove Theorem 3.1, we need Theorem 1 in Leurgans et al.
[19]. We present it as a lemma in the following. Let Γe =
E(E(x|y)⊗ E(x|y)) be the covariance operator E(x|y) and
Γ̂e = CTΠ/n(ΠTΠ/n)−1ΠTC/n, where C and Π are defined
in subsection 2.2.

Lemma A.1. Let

δn = max{‖Γ̂− Γ‖; ‖Γ̂e − Γe‖}.

If the sequence κn satisfies
√
nκn → +∞, we have

κ−1
n δn

p→ 0.

Next, we will give the proof of Theorem 3.1.

Proof. (i) Existence. For α ∈ (0, 1), we can easily get Qα =
(1− α)〈Γ., .〉+ αQ1. Furthermore, by the positiveness of Γ,
we have α−1Qα(u, u) = (α−1− 1)〈Γu, u〉+Q1 > ρ1 for all u

satisfying ‖u‖ = 1. Then, by the Assumption (a3) we have√
nρα > α

√
nρ1 and

(19)
√
nρα → +∞.

For notational convenience, we define 
n
1 = Γ̂ − Γ. By

Lemma A.1, we have limn→+∞ P ({ω ∈ Ξ : ‖
n
1‖ ≤

ρα/2}) = 1, where Ξ denotes the probability space on which
x and y are defined. Then, since

{ω ∈ Ξ : ‖
n
1‖ ≤ ρα/2}

⊂ {ω : ∀ϑ ∈ S, ‖ϑ‖ = 1, Q̂α(ϑ, ϑ) ≥ ρα/2 > 0},

we get limn→+∞ P ({ω : ∀ϑ ∈ S, ‖ϑ‖ = 1, Q̂α(ϑ, ϑ) ≥
ρα/2}) = 1, where Q̂α(ϑ, ϑ) = 〈Γ̂ϑ, ϑ〉+ αPENm(ϑ).

Denote B as the weak closure of B = {(b, ϑ), ϑ ∈ S,
b ∈ R

χn+l−1 : Q̂α(ϑ, ϑ) = 1, n−1bT
∑n

i=1(π
c(yi))

Tπc(yi) ×
b = 1}, and let ζ be the function defined on B by
ζ(b, ϑ) = n−1

∑n
i=1〈xi, ϑ〉bTπ(yi). Let ζ̃ be a uniformly

continuous function defined on B for the weak topology,
which is the extension of the function ζ. Finally, provided
that Q̂α(ϑ, ϑ) ≥ ρα/2, ζ̃ reaches its maximum on weak
compact B, which concludes the proof of the existence of
(b̂j , β̂j)j=1,...,K .

(ii) Consistency. In the following, we consider ω̃ ∈ Ξ such
that ω̃ ∈ {ω ∈ Ξ: under orthogonal constraints, γ̂α(b, β)
has maximum on R

χn+l−1 × S and reaches it}. Let λn
j

be these maximum (i.e. λn
j = γ̂α(b̂j , β̂j), under orthogo-

nal constraints) and λα
j be the jth maximum of γα(b, β) on

R
χn+l−1×S, and the corresponding maximizers be (bα

j , β
α
j ).

Here, λα
j is well defined according to assumption (a3).

We first show γ0(b̂j , β̂j)
p→ λj for j = 1, . . . ,K. For given

b and β, we have

(20)
γα(b, β)

γ0(b, β)
=

〈Γβ, β〉
〈Γβ, β〉+ αPENm(β)

≤ 1,

because Γ and PENm(.) are non-negative definite. Thus
λα
j = γα(b

α
j , β

α
j ) ≤ γ0(b

α
j , β

α
j ) ≤ λj . It follows from the

equality in expression (20) that, for any fixed b and β,
γα(b, β) → γ0(b, β) as α → 0, and so we have λj ≥ λα

j ≥
γα(b

0
j , β

0
j ) → γ0(b

0
j , β

0
j ) = λj . So we obtain

(21) λα
j → λj .

Furthermore, by the law of large numbers, it is easy

to show that sup(b∈�χn+l−1,β∈S) |γ̂α(b, β) − γα(b, β)|
p→ 0.

Then under orthogonal constrains (10), we can show that

(22) |λn
j − λα

j |
p→ 0.

Finally, by combining (21) and (22), we can get that

(23) λn
j

p→ λj .
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From (23), we then have

λj ≥ γ0(b̂j , β̂j) ≥ γα(b̂j , β̂j)
p→ γ̂α(b̂j , β̂j) = λn

j
p→ λj ,

which leads to

(24) γ0(b̂j , β̂j)
p→ λj = γ0(b

0
j , β

0
j ).

Second, we assume without loss of generality (multiply-

ing βj , β̂j and bj by suitable constants if necessary) that

〈Γβj , βj〉 = 〈Γβ̂j , βj〉 = bT
j var(π(y))bj = 1. It is appar-

ent that this rescaling will not affect any of the corre-
lations in this theorem. Now decompose β̂j = βj + β̃j ,

where 〈Γβj , β̃j〉 = 0 and similarly b̂j = bj + b̃j , where

bT
j var(π(y))b̃j = 0.

Next, we will show ς2j = 〈Γβ̃j , β̃j〉 → 0. First, because

Q̂α(β̂j) = 1 and αPENm(β̂j) ≥ 0, we have 〈Γ̂β̂j , β̂j〉 =

Q̂α(β̂j)− αPENm(β̂j) ≤ 1. Second, we have

(25) 〈Γβ̂j , β̂j〉 = 〈Γβj , βj〉+ 〈Γβ̃j , β̃j〉 = 1 + 〈Γβ̃j , β̃j〉 ≥ 1.

Then it follows that 1 ≥ 〈Γ̂β̂j , β̂j〉
p→ 〈Γβ̂j , β̂j〉 ≥ 1, i.e.

〈Γβ̂j , β̂j〉 = 1. Hence, it is obvious that ς2j → 0.

Consequently, the convergence in Γ-norm follows from
cor2(〈x, β̂j〉, 〈x, βj〉) = 〈Γβj , β̂j〉2/(〈Γβ̂j , β̂j〉〈Γβj , βj〉) =
(1 + ς2j )

−1 → 1. And this completes the proof of Theo-
rem 3.1.

A.2 Proof of Theorem 3.2

Proof. To prove Theorem 3.2, we recall first that the esti-
mator ζ̂(v) of ζ(v) is obtained by spline smoothing of x(t)
with design points yi’s, i = 1, . . . , n. By the equivalent ker-
nel method for least squares spline regression [15], similar
to a Naradaya-Watson estimator, we define the estimator
ζ̂(v) as the ratio of two estimators, the numerator ĥ be-

ing an estimate of h = ζ(v)f and the denominator f̂(y)
being a spline estimate of the marginal density of y. To pre-
vent the sensitivity to small values of f , we threshold f by
a sequence {en} converging to zero. Let fen = max(f, en)

and f̂en = max(f̂ , en). We define ζ̂n(v) = ĥ/f̂en , and it re-

tains the same asymptotic properties as ζ̂(v) following the
results in [6]. For simplicity, in this proof, we still denote

Γ̂e =
1
n

∑n
i=1 ζ̂n(yi)⊗ ζ̂n(yi).

Let ζn(y) = h(y)/fen(y), Γ̄e =
1
n

∑n
i=1 ζn(yi)⊗ζn(yi) and

Γ̃e =
1
n

∑n
i=1 ζ(yi)⊗ ζ(yi). Then

(26) Γ̂e − Γe = (Γ̂e − Γ̄e) + (Γ̄e − Γ̃e) + (Γ̃e − Γe).

By the weak law of large numbers, we know that the last
term in (26) satisfies

(27) Γ̃e − Γe = Op

(
1√
n

)
.

Through the same deduction as in Ferré and Yao [8], we can
get

(28) Γ̂e − Γ̄e = op

(
1√
n

)
, and Γ̄e − Γ̃e = op

(
1√
n

)
.

Then, combining (26), (27) and (28), we have Γ̂e − Γe =
Op(

1√
n
) and the proof is complete.
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