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Doubly regularized Cox regression for
high-dimensional survival data with group

structures

ToNng Tong WU*T AND S1s1AN WANG

The goal of this research is to integrate group structures
to the Cox proportional hazards model with ultra high-
dimensional predictors. By doubly regularizing the partial
likelihood based on the Cox model with convex penalties,
this method is able to perform group selection and within-
group selection simultaneously. Compared with methods ig-
noring the structure information, our method yields better
variable selection and more accurate prediction. The convex-
ity of our regularized objective function makes the method
numerically stable especially when the number of predictors
far exceeds the number of the observations. A fast coordi-
nate descent algorithm is exploited to avoid matrix opera-
tions and speed up the computation. Numerical experiments
on simulated data demonstrate the good performance of our
doubly regularized method. We analyze the TCGA ovarian
cancer data with this new method.

AMS 2000 SUBJECT CLASSIFICATIONS: 62J07, 62NO1,
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1. INTRODUCTION

Ovarian cancer is the fifth leading cause of cancer deaths
among women in the United States. In the year 2010, 21,880
new cases and 13,850 deaths were estimated in the U.S.
[27]. The majority of ovarian cancers are diagnosed late as
it produces no symptoms until the tumor has widespread.
At late stages, ovarian cancer is difficult to treat and of-
ten fatal. Fortunately, the advancement of recent biotech-
nology offers the promise of precise and objective diagnos-
tics by measuring the genomic features for each patient. If
gene activities can be related to survival of ovarian cancer,
more accurate and specific cancer diagnosis will be possible,
which will lead to targeted treatment and improved survival
rate.

This paper is motivated by the analysis of the ovarian
cancer gene expression data from The Cancer Genome Atlas
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(TCGA) project. We aim to extend the current regularized
method for high-dimensional survival data to incorporate
group structures of predictors. Specifically, we would like to
incorporate the pathway information of genes, which is avail-
able in the TCGA data. A pathway is a group of genes that
are involved in the same biological process or have similar
biological functions. Those genes are co-regulated and their
expression levels are expected to be highly correlated. The
pathways structures are believed to be biologically impor-
tant to understand the complicated process of cancer occur-
rence and development [21]. As Dr. Bert Vogelstein stated
in the 101st meeting of the American Association for Cancer
Research on April 19, 2010, “virtually all of the 300 or so
known driver genes are part of a few core pathways, ... more
driver genes will be discovered . ..but most of them will be
infrequently mutated ... and most of the cancer genes will be
members of these same core pathways”. From the statistical
point of view, since the genes may perform as groups rather
than individuals, the statistical accuracy and efficiency may
be improved by intergrading the pathway information into
the analysis [36]. By analyzing the TCGA ovarian cancer
data, we aim to (1) identify important core pathways and
to identify important genes within those pathways related
to ovarian cancer survival; (2) build a predictive model for
the survival of future patients based on the identified genetic
signatures.

The Cox proportional hazards model [5] is considered in
the current paper to study the dependence of survival time T’
and predictors of high-dimensionality. For high-dimensional
problems, there are two existing approaches for dimension
reduction: feature selection and feature extraction [23]. Fea-
ture extraction methods, which project the original feature
spaces into lower dimensional spaces, may lack good scien-
tific interpretation and may provide no clue what to target
for therapy. Feature selection methods, instead, choose a
possible best subset from the original features and retain
the scientific interpretation. Here, the feature selection ap-
proach will be taken to generate simple and stable models
that are interpretable.

The variable selection problem has been studied exten-
sively for the Cox proportional hazards model, such as lasso
[18, 28, 31], adaptive lasso [39, 43], and SCAD [11]. These
methods can automatically remove unimportant variables
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by shrinking some regression coefficients to be exactly zero.
[9] and [41] extended the sure screening procedure of [12] to
Cox’s proportional hazards model. The idea is to screen out
variables with small marginal associations with survival out-
comes. However, when the predictors are grouped, e.g. genes
belong to the same pathway, these methods fail to integrate
the grouping information and still treat variables individ-
ually. The variable selection is therefore performed based
on the strength of the individual variables rather than the
strength of the groups.

Recently the variable selection problem with grouped pre-
dictors has been considered by several authors. [38] and [40]
introduced the group lasso and CAP methods that penalize
the Lo-norm (Euclidean norm) and Lo.-norm of the coeffi-
cients within each group in linear regression, respectively.
[26] applied the group lasso penalty to the Cox propor-
tional hazards model. Based on the boosting technique, [25]
and [34], respectively, developed a group additive regres-
sion model and a nonparametric pathway-based regression
model to identify groups of genomic features that are re-
lated to several clinical phenotypes including the survival
outcome. All these group variable selection methods have a
common limitation: they select variables in an “all-in-or-all-
out” fashion. In other words, when one variable in a group
is selected, all other variables in the same group are also se-
lected. Thus, these methods only conduct “group selection”
but no “within-group selection”, i.e, they do not select im-
portant variables within the identified groups. The reality,
however, may be that, for example, some genes in a pathway
may not be related to the phenotype although the pathway
as a whole is involved in the biological process.

In order to achieve sparsity within groups, [20] imposed a
bridge L.-norm penalty on coefficients within each group in
linear regression. [42] and [33] proposed a hierarchical lasso
penalty for group variable selection in linear regression and
Cox regression, respectively. When the groups are not over-
lapped, the hierarchical lasso penalty is equivalent to the
bridge L.-norm penalty with v = 0.5. One possible draw-
back of these methods is that the objective functions are
no longer convex, which may cause numerical problems in
practice.

In this article, we introduce a doubly regularized
Cox regression (DrCox) with convex penalties to achieve
both group selection and within-group selection for high-
dimensional survival data. The convexity of the doubly pe-
nalized objective function is more numerically stable com-
pared to the method of [33], especially when the number
of predictors far exceeds the sample size. In order to tackle
the high-dimensionality of the data and nondifferentiabil-
ity of the objective function, a fast computational method
based on cyclic coordinate descent [13, 36] is employed to
efficiently implement this new method.

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the doubly regularized Cox regression
based on the partial likelihood. Cyclic coordinate descent
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algorithms are derived for parameter estimation. Sections 3
and 4 report our numerical tests of the doubly regularized
Cox regression on simulated and real data. The paper is
concluded with a short summary.

2. DOUBLY REGULARIZED COX
REGRESSION

For the ease of representation, we first describe the gen-
eral framework for variable selection via regularized partial
likelihood of the Cox model. We then formulate the doubly
regularized Cox regression and derive the parameter esti-
mates via cyclic coordinate descent algorithms.

2.1 Variable selection via regularized partial
likelihood

Suppose that the p variables occur in K groups. As-
sume the kth group has p, variables, and we denote the
variables in the kth group by X () = (Xk1y ooy Xp) T
The corresponding regression coefficients for the kth group
are By = (Bk1, - - - , Brpe )T We first assume that these K
groups do not overlap, i.e., each variable belongs to only
one group. In Section 2.4, we consider the overlap case, i.e.,
variables are allowed to belong to multiple groups.

For a sample of n subjects, let T; and C; denote the sur-
vival time and the censoring time for subject i = 1,...,n.
The observed survival time is defined by ¥; = min{T;, C;}
and the censoring indicator is §; = I(T; < C;). We
denote X; () = (Xik1y--or Xikp,)T to be the pj vari-
ables in the kth group for the ith subject and X; =
(XZU)a cee XZ(K))T to be the total p variables for the ith
subject. The survival time 7; and the censoring time C; are
assumed to be conditionally independent given X ;. Further-
more, the censoring mechanism is assumed to be noninfor-
mative. The observed data can be represented by the triplets
{(Y;‘,(Si,Xi), 1= 1, ce ,n}.

We consider the following Cox proportional hazards
model [5]

K pk

B(UX) = hot) exp (30D By X )

k=1 j=1

If the failure times are continuous, it is reasonable to assume
that there are no ties in the observed times. The partial
likelihood is

K
L.(6) H eXP(Zk:1 Xz:(k)ﬂ(k)>
n = 1% )
i€D ZleRi eXP(Zk:1 Xh(k)ﬁ(k))
where D is the set of indices of observed failures, and R;

is the set of indices of the subjects who are at risk at time
Y.



Let the log-partial likelihood be ¢,,(8) = log{L,(3)}/n.
Variable selection can then be realized by minimizing the
penalized negative log-partial likelihood function

—0n(B) + PA(B),

where Py (0) is a penalty function on the coefficients 3. Pos-
sible examples of Py(3) include, but are not limited to, the
lasso penalty [31]

K pk

PAB) =AD> 1B,

k=1 j=1

group lasso penalty [38]

PAB) =AY\ DB

and the hierarchical lasso penalty [33]

K
PA(B) =AY
k=1

Pk
Z | Brj -
j=1

The lasso penalty Zszl Z?kzl |Br;| is singular at the indi-
vidual level, i.e., when individual parameter 8;; = 0. Hence,
it is able to perform selection for individual variables as
some estimates [j; are exactly zero [10, 30]. The group

lasso penalty Zszl ,/5,31 + -+ ﬁ%pk performs group se-
lection [38] as it is singular at the group level, i.e. when
ﬁ(k) = 0. The group lasso penalty is more effective than the
lasso penalty in removing unimportant groups. It is easy to
see that the group lasso penalty ||B 4|2 is no longer singu-
lar at any point if any Si; # 0. Therefore, the group lasso
penalty |8 ll2 selects a group of variables in an “all-in-
or-all-out” fashion. In other words, once one variable in a
group is selected, the whole group will be selected.

The hierarchical lasso penalty is singular at both the
group level and the individual level, and therefore it achieves
the desired sparsity at both the group level and the within-
group level. However, the hierarchical lasso penalty is not
convex, which may cause numerical instability, especially
when p > n.

2.2 Doubly regularized Cox regression

To achieve the goal of both group and within-group vari-
able selection and to overcome the non-convexity drawback,
we penalize the log-partial likelihood by a mixture of the
lasso penalty and group lasso penalty

K pk K Pk
(1) 9(B)=—ta(B)+ M DD IBrjl + A2 Y B2,
k=1 j=1 k=1 \ j=1
K K
=—L,(B) + M1 Z 1Bl + Az Z 1B ll2,
k=1 k=1

where By 1 = 3255, [Brils 1B ll2 = /2255, By» and Ay

and Ay are two nonnegative tuning constants, which control
the strength of variables selection. The larger are the tun-
ing constants, the less variables are retained in the model.
The tuning constants can be determined using k-fold cross
validation [18], generalized cross validation [11, 39], infor-
mation based criterion like AIC or BIC [17], or independent
validation set [19, 44].

Given the singularities of lasso and group lasso penal-
ties discussed in the previous section, their combination will
achieve the goal of both group and within-group selections.
It is also straightforward to verify that the objective function
(1) is convex and strictly convex when Ay > 0. Note that the
double penalties in this paper are different than the penal-
ties in elastic net [44], which uses a mixture of lasso penalty
and ridge penalty (summation of squared Euclidean norms).

This type of regularization methods with a mixture of
penalties were originally independently developed by [14, 36]
and [24] in linear regression. [37] also use the double penal-
ties in multicategory classification. These papers show that
the mixtures of penalties perform superior to lasso penalty
in linear regression and multi-class classification problem.
The new doubly regularized Cox regression method inher-
its these good properties from its predecessors for censored
data.

2.3 Cyclic coordinate descent algorithm

To tackle the high-dimensionality of the data, we exploit
a cyclic coordinate descent algorithm, which has been shown
to be computationally efficient [13, 15, 36]. The idea is to
optimize the objective function (1) by updating parameters
one by one. Variable selection is achieved as only the im-
portant parameters that can “escape” from the pressure of
penalties will get updated. The avoidance of matrix opera-
tions explains its fast computing speed and numeric stabil-
ity, especially for large systems. At the same time, coordi-
nate descent is able to handle the nondifferentiability of the
objective function.

In the nonoverlap case, where each variable belongs to
only one group, estimation of parameters and selection of
important variables can be conducted via the minimiza-
tion of (1). The negative partial likelihood —¢,,(3) is con-
vex and twice continuously differentiable, which allows us
to implement Newton’s method. Although the lasso penalty
is nondifferentiable, i.e., there is no derivative at the ori-
gin, fortunately, its directional derivatives along the forward
and backward directions are available. For the group lasso
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penalty [|B)||2, there are two situations to consider. When
B ll2 = 0 at the current value, B, ll2 = |Bx;| is a func-
tion of fBi; if we consider the component fj;. Thus, min-
imization with respect to 3;; reduces to the standard up-
date with a lasso penalty with tuning constant A; + Ao. If
1B(kyll2 > 0 at the current value, then ||, |l2 is twice dif-
ferentiable with

9 1Bl = L
OPBk; 1B )ll2

9? 1 B2
G 1Bglle = e (1 - ),
a5z 1wl = 5o (- 15 p)

If ey; is the coordinate direction along which Bj; varies,
then the forward and backward directional derivatives of By
are

de,; 9(B)
i 9B+ ter;) — 9(B)
tl0 t
0

= _%gn(ﬁ)

(A1 + Ag)(—1)!(Bri<0) if |Byll2=0
)\1(_1)1(/31w'<0) + /\zuﬁﬁzﬁ if ||/8(k)H2 > 0,

and
d—(’kjg(/g)
_ iy 908 — texj) — 9(B)
tl0 t
0

(A1 + o) (—1)!(Frs>0) i 1Bk ll2 = 0
A1 (—1)1(Bri>0) _ AQH;(% if [|Bx)ll2 > 0,

where I(-) is an indicator function equal to 1 if the condition
in the parentheses is satisfied and 0 otherwise, and

9
0Bk

=D 3 @ik~

i€D

(n(B)

K
2 icR, €XP (Zk:1 X?:(k)ﬁ(k)>xl,kj
K T
e, ©XP (Ek:l Xl7(k)16(k))

After obtaining the directional derivatives, we need to de-
cide which parameters to be updated and the direction for
updating. If both of the directional derivatives d.,,g(3)
and d_.,;g(B) are nonnegative, then the update for B; is
skipped. If either directional derivative is negative, then we
solve for the minimum along the corresponding direction. It
is impossible for both directional derivatives to be negative
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due to the convexity of g(3). After identifying the direction
to update the parameter, one can use Newton’s method to
solve for the minimum. The update at iteration m + 1 is
given by

o m 1\ (B<0)
gt = g 4 O Rk
m m Br; m
M { (=D)L (B5) + i (B}
()

_|_

where 3™ is the estimate at iteration m, I;(-) = I(||-]|2 = 0),
and Ir() = I(]| - [|2 > 0).

All parameters are recommended to be initiated at the
origin. For problems with sparse solutions, most updates are
skipped and many parameters never leave from their initial
values of 0. This is another reason why cyclic coordinate de-
scent is fast, additionally to the fact of no matrix operations
involved.

The convergence of coordinate descent to a local opti-
mizer is a straightforward extension of the results in [29]
and [32] for the nonoverlap case. For the overlap case dis-
cussed in the next section, the convergence results still hold
since in our setting one predictor is associated with only
one coefficient, which is updated separately from the rest of
coefficients.

2.4 Doubly penalized Cox regression for
overlap cases

The group structure we have considered in previous sec-
tions does not have overlaps, i.e. each variable belongs to
only one group. In practice, however, a variable can belong
to several groups. For example, one gene can be shared by
many different pathways. In this section, we extend the pro-
posed method for problems with overlaps.

To allow for overlapping, we modify the notation and
rewrite the objective function (1). The p variables are de-
noted by Xi,..., X, and their corresponding regression co-
efficients are 01, ..., 8y. Welet V, C {1,2,...,p} be the set
of indices of variables in the kth group. We consider the
following objective function designed for the overlap case:

P K
2) 9B ==tB) +M DB+ A [> 82
j=1 k

=1 JEVL

Note that predictor X; is only associated with one co-
efficient ;. It is easy to see that the objective function
(2) reduces to the objective function (1) when there is no
overlap among the p variables.

The cyclic coordinate descent algorithm can be easily
modified for the objective function (2). If we consider the
coordinate direction e; for j3;, the forward and backward
directional derivatives of 3; are



dejg(/g)

i 9B+ tes) — 9(B)
tl0 t

= —de, 0 (B) + A (—1)117<0)
+0 Y {101 (B,)

keG;
Bj
Bl 2P0
and
d*@]’g(/B)
_ i 9B —te5) —9(B)

t10 t
= —d_e,(n(B) + A1 (—1)TF>0)
+ A2 Z {(_1)I(ﬁj>0)ll(/8(k))

keG;

__ Y )
1Bl 2P}

where G; C {1,2,..., K} are the indices of groups that X
belongs to.

After determining the direction for updating, the coeffi-
cient can be updated by

g1
o0, (8™ (87 <0
=B+ _Tmen(ﬁétligigl) (P5"<0)
| 22 e (CVT 008G + I/ )
Z 0. -

3. SIMULATION STUDIES

3.1 Comparison to competing methods in
nonoverlap and overlap cases

In this section, we apply the doubly regularized Cox re-
gression (DrCox) in four simulation settings and compare it
to Cox regression with lasso penalty (lasso-Cox), Cox regres-
sion with group lasso penalty (glasso-Cox) and Cox regres-
sion with hierarchical lasso penalty (hlasso-Cox). The first
three settings are overdetermined, i.e., p < n; the fourth
setting is underdetermined, i.e., n < p. The first two exam-
ples are nonoverlap cases and the other two examples are
overlap cases. In all settings, the survival time is generated
from an exponential distribution with h(t|z) = exp(zT3).
The censoring time is generated from a uniform distribution
U(0,¢), where ¢ is chosen to achieve a 35% censoring rate.
Detailed settings of training data are provided below. In all
the simulation examples, we set the ranges of the two tun-
ing parameters wide enough to cover the cases where zero
predictor to several hundred predictors could be selected.

Example 1. We generate n = 50,100 training samples,
p = 24 variables, and K = 3 groups with 8 variables in each
group. The three groups are independent. In groups 1 and
2, variables are generated from N (0, 1) with cov(xq;, x1;) =
0.5/"=7l. In group 3, variables are generated from indepen-
dent N(0,1). The corresponding coefficients are:

B =(15,-0.8,0,0,0,1.2,0,0, 0 , 0 ).
Y
8

Example 2. We generate n = 100,200 training samples,
p = 40 variables, and K = 8 groups of different group sizes.
The group ID’s for the covariate vector are

1., 1,2,...,2,3,...,3,4,...,4,5,...,5,
N—— —_— —— Y—
6 4 6 5 4
6,....6,7,....7,8,....8.
—— Y—— —
5 4 6

We first generate Wy, ..., Wyo independently from a stan-
dard normal distribution. Then we generate Zi,...,Z3
from a standard normal distribution with cov(Zy, Zy/) =
0.5/*=*'|. Then variables are generated by Xi; = (Wi +
Z1)/V/2. The corresponding coefficients are

B =(1.2,-0.8,1.6,0,0,0,1,—0.9, —1.1, —1.3,
6 4
0,0, 0,150,000 0, 0).
N Y YT
o 5

In this example, there are three important groups, i.e., at
least one variable within the group has nonzero coefficient.
The three groups represent three situations: all variables
within the group are important (group 2), some variables
within the group are important (group 1), and very few
variables within the group are important (group 6).

Example 3. We generate n = 100,200 training samples,
p = 48 variables, and K = 8 groups with some groups being
overlapped. The group ID’s are

5

——
2,2,2,2,2
1,...,1 22222 4 . 45,...,5
S— 3737?)’373 —_—
8 — 8 8
5
5
———
6,6,6,6,6 o3
00,77 D
—— 8

5

Notice that groups 2 and 3 have two overlapped variables,
and so do groups 6 and 7. The first 24 variables X1, ..., Xo4
are generated from a standard normal distribution with
cov(X;,X;1) = 059771 and the rest Xas,..., Xsg are
also generated from a standard normal distribution with
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COV(Xj,Xj/) = 0.5“7].". Xl, e ,X24 and X25, C ,X48 are
independent. The corresponding coefficients are

5
—
1.3,0,1.5,0,-1
0 0

0,-1,0,—2,—1.1 ~~ ~~

5

5
———
1.4,0,0.8,0,1 0
0,1,0,1.6,0 ~~"
N———— 8

5

Example 4. We generate n = 100,200 training samples,
p = 148 variables, and K = 24 groups of different group
sizes. Some groups are overlapped. The 24 groups can be
divided into four blocks, each having the same group as-
signment. The group ID’s for variables in the first block are

5

2,2,2,2,2
1,...,1 =2 =222~ 4....45,...,5 6,...,6.
~—— 3,3,3,3,3 ~—~— —\— ——
8 — 8 5 8

5

The four blocks are independent with each other. Within
the four blocks, variables are generated from N(0,1) with
cov(X;, X;) = 0.5 =9l respectively. The corresponding co-
efficients are

5
—_—
1.3,0,1.5,0,—1

p= (\2/ 0,-1,0,—2,—1.1’ \(8)/’
N— ——
5
1.2,1.8,0,0,0, 0 , 0 ,
N )~
5 8 8

5

—_——N—
14,0,0.8,0,14

0,1.4,0,1.6,0°

—_——

5

0, —09,-1.1,0,0,0, 0, 0 )
~— 7~ S~
8 5 8 74

For each of the settings above, we generate an indepen-
dent validation set with 500 samples to select the optimal
tuning constants that maximize the partial likelihood by
grid search. The estimate at the optimal A\’s will be tested
on an independent testing sample with 500 observations.
Since the quality of the parameter estimates are naturally
of interest, we always re-estimate the active parameters to
offset the shrinkage for all three methods [8, 35, 36].

Table 1 reports the simulation results of 100 replicates.
The predictors are divided into three categories: X 4, which
denotes important predictors within important groups; Xz,
which denotes unimportant predictors within important
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groups; and X¢, which denotes unimportant predictors
within unimportant groups. For example, in simulation 1,
X_A = {X17X2,X6}, XB = {X37X4,X57X7,X8}, and the
rest belong to X¢. The variable selection performance is re-
ported in columns 4-6. In each block (example), the first line
is the true numbers of predictors in each of three categories.
For each method, the average numbers of selected predictors
in each of three categories over 100 replicates are reported
with the corresponding standard errors in the parenthesis.
We expect the numbers in column X 4 to be as large as pos-
sible (of course it cannot exceed the truth) and the numbers
in columns Xz and X¢ to be as small as possible.

The variable selection performances of four methods are
compared from three different aspects: (1) removing unim-
portant groups (i.e. X¢); (2) removing unimportant vari-
ables in important groups (i.e. Xg); and (3) selecting impor-
tant variables in important groups (i.e. X 4). First, glasso-
Cox, hlasso-Cox, and DrCox perform better than lasso-Cox
in all four examples in removing unimportant groups. This is
because the three methods utilize the group structure which
leads to a more efficient removal of unimportant groups
than lasso-Cox. Glasso-Cox, hlasso-Cox and DrCox perform
comparably in Example 1. Glasso-Cox removes all unimpor-
tant groups in the overdetermined settings (Examples 1-3),
but it picks up more variables in unimportant groups than
hlasso-Cox and DrCox in the underdetermined setting (Ex-
ample 4). Second, lasso-Cox is the best in terms of remov-
ing unimportant variables in important groups in all four
examples due to its flexibility of selection based on individ-
ual predictors. Glasso-Cox fails to remove the unimportant
variables in important groups because of its “all-in-or-all-
out” property. DrCox has better performance in removing
unimportant variables in important groups than hlasso-Cox
in all four examples. Third, glasso-Cox, hlasso-Cox, and Dr-
Cox have similar performance in all four examples in terms
of selecting important variables X 4. As sample size n in-
creases, better selection results are obtained. In summary,
our DrCox method has a good balance between group se-
lection and individual predictor selection. It is not only as
effective as glasso-Cox and hlasso-Cox in removing unim-
portant groups but also as comparable as the lasso-Cox in
removing unimportant variables in important groups.

To measure the prediction accuracy, we follow [31] and
calculate the model error (ME) at the optimal A; and As

ME = (8- B)"%(8 - B),

where X is the covariance matrix of the predictors. The
model error of the three methods is reported in Column 7 of
Table 1. In the first three examples (n > p), the DrCox and
hlasso-Cox have comparable model errors, which are much
smaller than the model errors of lasso-Cox and glasso-Cox.
In the fourth example (p > n), the DrCox method has the
smallest model error among all four methods. As sample
size n increases, better predictions are obtained. The last



Table 1. Simulation results for Examples 1-4 over 100 random replications. Columns 2 to 3 list the sample size n and
methods. Columns 4 to 6 report the average number of selected variables in X 4, X5, and X¢ with standard errors appearing
in parentheses. Column 7 reports the average model errors (ME) and the corresponding standard errors. The last column is
the average training time in seconds under the optimal tuning constants

n Method Xa X5 Xc ME Time
Example 1 truth 3 5 16
50 lasso-Cox 2.53 (0.05) 0.71 (0.09) 0.62 (0.09) 0.518 (0.030) 0.013
glasso-Cox 3 (0) 5 (0) 0 (0) 0.760 (0.056) 0.039
hlasso-Cox 3 (0) 3.26 (0.10) 0.04 (0.03) 0.276 (0.028) 5.710
DrCox 2.87 (0.03) 1.86 (0.13) 0.1 (0.05) 0.351 (0.029) 0.026
100 Jasso-Cox 2.95 (0.02) 1.14 (0.08) 0.75 (0.1) 0.167 (0.156) 0.083
glasso-Cox 3 (0) 5 (0) 0 (0) 0.225 (0.019) 0.163
hlasso-Cox 3 (0) 3.32 (0.10) 0.06 (0.06) 0.127 (0.008) 18.563
DrCox 2.99 (0.01) 1.71 (0.12) 0.12 (0.04) 0.122 (0.013) 0.215
Example 2 truth 8 7 25
100 Jasso-Cox 7.04 (0.11) 1.13 (0.12) 2.33 (0.24) 1.121 (0.088) 0.131
glasso-Cox 8 (0) 7 (0) 0 (0) 0.961 (0.092) 0.269
hlasso-Cox 7.99 (0.01) 3.38 (0.13) 0.64 (0.05) 0.523 (0.028) 7.931
DrCox 7.98 (0.01) 3.02 (0.2) 0.28 (0.07) 0.537 (0.048) 0.213
200 lasso-Cox 8 (0) 1.27 (0.11) 1.95 (0.17) 0.225 (0.019) 0.753
glasso-Cox 8 (0) 7 (0) 0 (0) 0.279 (0.024) 1.127
hlasso-Cox 8 (0) 3.80 (0.12) 0.65 (0.05) 0.166 (0.008) 39.421
DrCox 8 (0) 1.91 (O 5) 0.17 (0.06) 0.165 (0.016) 1.207
Example 3 truth 9 32
100 Jasso-Cox 8.81 (0.04) 3.07 (0 13) 2.25 (0.21) 1.392 (0.104) 0.145
glasso-Cox 8.95 (0.04) 6.95 (0.04) 0 (0) 2.166 (0.213) 0.371
hlasso-Cox 9 (0) 4.02 (0.12) 0.63 (0.09) 1.117 (0.063) 9.794
DrCox 8.96 (0.03) 3.64 (0.16) 0.59 (0.12) 1.147(0.106) 0.195
200 lasso-Cox 9 (0) 3.24 (0.13) 1.08 (0.12) 0.330 (0.034) 0.582
glasso-Cox 9 (0) 7 (0) 0 (0) 0.435 (0.044) 1.63
hlasso-Cox 9 (0) 3.97 (0.12) 0.54 (0.05) 0.344 (0.025) 78.903
DrCox 9 (0) 3.82 (0.15) 0.46 (0.08) 0.316 (0.034) 0.745
Example 4 truth 13 13 122
100 lasso-Cox 11.61 (0.15) 2.86 (0.14) 4.62 (0.31) 4.565 (0.385) 0.375
glasso-Cox 11.1 (0.28) 11.07 (0.29) 1.62 (0.32) 9.472 (0.721) 0.876
hlasso-Cox 12.79 (0.06) 7.14 (0.17) 0.40 (0.12) 3.68 (0.22) 13.607
DrCox 12.59 (0.09) 4.76 (0.22) 3.22 (0.29) 2.772 (0.250) 0.466
200 lasso-Cox 12. 98 (0.01) 3.4 (0.13) 3.1 (0.27) 0.753 (0.079) 0.467
glasso-Cox 3 (0) 13 (0) 0.97 (0.26) 1.154 (0.100) 1.118
hlasso-Cox 3 (0) 9.67 (0.16) 1.47 (0.25) 0.661 (0.031) 150.551
DrCox 13 (0) 4.38 (0.22) 1.23 (0.15) 0.615 (0.064) 1.16

column of Table 1 reports the computing time in seconds on
a personal computer at the optimal value of A\; and A\s. Note
that Lasso-Cox, glasso-Cox, and DrCox are implemented in
Fortran 90, while hlasso-Cox is implemented in R.

To better understand the effects of tuning constants on
our DrCox method, the average negative log-partial likeli-
hood —¢,,(3) of the independent validation set and the aver-
age number of nonzero predictors based on 100 replicates are
plotted over the grid of A; and A in Figure 1. The optimal
(A1, A2) = (0.11,0.18) is achieved at the minimum of aver-
age —{,,(3), which leads to an average total number of 5.01
nonzero predictors. The occurrence of a unique minimum is
a consequence of the convexity of the objective function.

3.2 Large groups vs. large numbers of
groups

We focus on ultra-high-dimensional settings in this sec-
tion. Two situations are considered: one has a large number
of predictors in one group (Examples 5-6), and the other
has a large number of groups (Example 7).

Example 5. We generate n = 100 training samples, p =
1,000 variables, and K = 3 groups with 8 wvariables in
the first two groups. The three groups are independent. In
groups 1 and 2, variables are generated from N (0, 1) with
cov(zys, 1) = 0.51°771. In group 3, variables are generated
from independent N(0,1). The corresponding coefficients
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Figure 1. Upper panel: 3D-plot of average —{,,(3) versus Ay
and Ay for DrCox in Example 1. Lower panel: 3D-plot of
average number of nonzero predictors versus \y and Ao for
DrCox in Example 1.

are:

B =(1.5,-0.8,0,0,0,1.2,0,0, 0 , 0 ).
—~—
984

8 8

Example 6. We use the same setting as Example 5, except
p = 5,000. The corresponding coefficients are:

B =(1.5,-0.8,0,0,0,1.2,0,0, 0 , 0 ).
4984

8 8

Example 7. n = 100, p = 1,000 and K = 100. Every 10
predictors form one group. The corresponding coefficients
are:

8= (1.5,-0.8,0,0,0,1.2,0,0,0,0, 0 ,..., 0 )"
~— ~—
10 10 10

The results are reported in Table 2. For large p or K, the
lasso method works much worse than the other methods for

182 T. T. Wu and S. Wang

small sample sizes (n = 100) in selecting the true predic-
tors X 4. The group lasso methods select all the predictors
in important groups. Our method selects almost all impor-
tant predictors, while eliminating unimportant predictors
X and X¢. The hierarchical lasso method does not work
in ultra-high-dimensional settings due to the computational
speed and numerical instability.

3.3 Misspecification of groups

Unlike elastic net [44], in which no grouping information
is required, our method needs to specify the groups. It is
interesting to investigate the effects of misspecification of
groups. We consider the following two examples. In the first
example, the overlap groups are collapsed and the number
of groups are wrong. In the second example, the overlapping
predictors are put in one group.

Example 8. Suppose the data are generated in the same
way as Example 3 with n 100 and p = 48. However,
the grouping information is misspecified. Instead of K = 8§,
the number of groups is misspecified as 6. The overlapping
groups of 3 and 4 are considered as one group with 8 pre-
dictors, and so are groups 6 and 7. The misspecified group
ID’s are

2,2,2,2,2
1,...,1 295 3,...,3 4,....4
N—— 2,2,2,2,2 ~—~ ~——
—_—
8 ¥ 8 8
5,5,5,5,5
2 6,....,6.
9,5,5,5,5 ~—~—

8
8

Example 9. The setting is the same as Example 8, except
the grouping information is misspecified as:

5

2,2,2,2,2

1,...,1 2255 4,...,4 5,...,5
——— 3,3,3 ~—— ———r

8 S~ 8 8

3

3

—~

6.6.0

8,...,8.
T T, T, 2o
N——r 8

5

The results are reported in Table 3. It is easy to see that
the lasso method is not affected by the mis-grouping, as ex-
pected. The group lasso method selects all the misspecified
predictors and is affected most. The DrCox method and hi-
erarchical method are quite robust and not too sensitive to
the misspecification.

4. TCGA OVARIAN CANCER DATA
ANALYSIS

As mentioned in the beginning, this research was mo-
tivated by the ovarian cancer study from The Can-



Table 2. Simulation results for Examples 5—7 over 100 random replications for n = 100. Column 2 lists the number of
predictors p and the number of groups K. Columns 4 to 6 report the average number of selected variables in X 4, X, and
Xc with standard errors appearing in parentheses. Column 7 reports the average model errors (ME) and the corresponding

standard errors. The last column is the average training time in seconds under the optimal tuning constants

(p, K) Method X4 X5 Xec ME Time
Example 5 (1000, 3) truth 3 5 992
lasso-Cox 2.02 (0.03) 0.14 (0.04) 0.18 (0.06) 0.596 (0.024) 0.331
glasso-Cox 3 (0) 5 (0) 0 (0) 0.247 (0.023) 0.994
hlasso-Cox NA
DrCox 2.99 (0.01) 2.51 (0.15) 0 (0) 0.155 (0.016) 0.734
Example 6 (5000, 3) truth 3 5 4992
lasso-Cox 1.93 (0.03) 0.12 (0.04) 0.32 (0.07) 0.750 (0.038) 2.225
glasso-Cox 3 (0) 5 (0) 0 (0) 0.384 (0.071) 6.78
hlasso-Cox NA
DrCox 2.92 (0.03) 2.81 (0.15) 0.2 (0.1) 0.236 (0.039) 5.245
Example 7 (1000, 100) truth 3 7 990
lasso-Cox 2.06 (0.03) 0.15 (0.04) 0.35 (0.1) 0.595 (0.024) 0.334
glasso-Cox 3 (0) 7 (0) 0 (0) 0.337 (0.029) 0.977
hlasso-Cox NA
DrCox 2.98 (0.01) 2.88 (0.18) 0.06 (0.03) 0.169 (0.016) 0.707

Table 3. Simulation results for Examples 8-9 over 100 random replications for n = 100. Columns 3 to 5 report the average
number of selected variables in X 4, X, and X¢ with standard errors appearing in parentheses. Column 6 reports the average
model errors (ME) and the corresponding standard errors. The last column is the average training time in seconds under the
optimal tuning constants

Method Xa X5 Xe ME Time
Example 8 truth 9 32

lasso-Cox 8.77 (0.05) 3.28 (0.13) 2.71 (0.22) 1.645 (0.135) 0.041

glasso-Cox 9 (0) 7 (0) 0 (0) 2.011 (0.200) 0.097

hlasso-Cox 9 (0) 4.05 (0.18) 0.75 (0.06) 1.516 (0.147) 10.214

DrCox 8.95 (0.02) 4.26 (0.16) 0.28 (0.07) 1.284 (0.127) 0.069
Example 9 truth 9 32

lasso-Cox 8.77 (0.05) 3.28 (0.13) 2.71 (0.22) 1.645 (0.135) 0.041

glasso-Cox 8.86 (0.07) 6.9 (0.05) 0.99 (0.27) 2.399 (0.233) 0.094

hlasso-Cox 9 (0) 3.59 (0.13) 0.58 (0.05) 1.434 (0.122) 15.675

DrCox 8.94 (0.02) 4.07 (0.15) 0.76 (0.13) 1.314 (0.128) 0.061

cer Genome Atlas (TCGA) project. The gene expres-
sion data of ovarian cancer are publicly available at
http://cancergenome.nih.gov. This study is expected to
produce high-quality, large-sample, and well-curated data.
Up to the date of September 11, 2010, 503 samples have
been collected. The 134 independent samples described in
the paper of [3] are used as a test set.

Our analysis is based on 1,863 genes from 15 core path-
ways suggested by [21], which are apoptosis, cell adhe-
sion molecules, cell cycle, base excision repair, nucleotide
excision repair, mismatch repair, non-homologous end-
joining, Hedgehog signaling pathway, mTOR signaling path-
way, Jak-STAT signaling pathway, Notch signaling path-
way, Phosphatidylinositol signaling system, MAPK signal-
ing pathway, TGF-beta signaling pathway, and Wnt signal-
ing pathway.

We apply our doubly penalized Cox regression method to

the TCGA data. The whole dataset is randomly split into
one training set and one validation set with equal size. The
training set was used for model fitting, and the validation
set is used for tuning constants selection. Under the optimal
tuning constants, 4 pathways and 36 genes are selected from
the pool of 1,863 genes in the 15 core pathways. The selected
pathways are: Apoptosis (5 out of 163 genes are selected),
cell cycle (11 out of 238 genes are selected), MAPK signaling
pathway (18 out of 481 genes are selected) and Wnt signaling
pathway (11 out of 259 genes are selected). The detailed gene
list is available upon request.

The identified pathways are biologically meaningful and
consistent with the existing scientific findings. Apoptosis
pathway is well-known to be related to the development of
cancer and its activation is a key mechanism by which cy-
totoxic drugs kill tumor cells [6]. [7] reported the prognostic
impact of apoptosis pathway in ovarian cancer. The MAPK
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Figure 2. Ovarian cancer survival curves (Kaplan-Meier) for
the high and low risk groups of the 134 independent testing
samples. The p-value of the log rank test is 0.01.

signal transduction cascade is dysregulated in a majority of
human tumors [2]. It is expected to play an important role
in molecular diagnostics and molecular therapeutics for low-
grade ovarian cancer [1]. [22] identified upregulated genes
involved in the MAPK signaling pathway in ovarian cancer
tissues. Wnt signaling pathway is best known for its role
in tumorigenesis. [16] demonstrated the difference in Wnt
signaling pathway between normal ovarian and cancer cell
lines and between benign tissue and ovarian cancer. They
also pointed out that those differences implicate that Wnt
signaling leads to ovarian cancer development despite the
fact that gene mutations are uncommon.

In order to predict the survival for subjects in the inde-
pendent ovarian cancer dataset using the model with the
selected 4 pathways, we first calculate the Breslow estimate
[4] of the cumulative baseline hazard. The risk score X3
is computed to find the 50% survival probability at three
years for the subjects in the TCGA training set, which is
used as the threshold for the high and low risk groups. The
risk scores for the subjects in the dataset of [3] are then
computed using B obtained from the TCGA training set
and subjects are assigned into the high and low risk groups
by comparing with the threshold. Out of the 134 subjects
in [3], 48 are in the high risk group, and 86 are in the low
risk group. The Kaplan-Meier curves (Fig. 2) of these two
groups are well separated with a p-value of the log-rank test
equals to 0.01.

As a comparison, we also apply lasso, group lasso and hi-
erarchical lasso methods to the TCGA ovarian cancer data.
The hierarchical lasso fails to fit the model using the ex-
isting R code because of the high dimensionality. The lasso
method only identifies one gene and failed to predict on the
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independent test set. One possible explanation is that the
signal-to-noise ratio in the TCGA ovarian cancer data might
be relatively low. The lasso method selects genes based on
their individual strength, and hence failed to identify im-
portant genes whose individual effects are weak. The group
lasso method picks up no genes. We think this may be caused
by the “all-in-all-out” selection nature of the group lasso
method. The 15 pathways in TCGA ovarian cancer data
have too many overlaps. When the group lasso method picks
up one gene, it has to pick up all the other genes in that
pathway and this may result in picking up too many unim-
portant genes and reduce the prediction ability. The doubly
penalized method takes a good balance of individual selec-
tion and group selection, therefore it produces good selection
results.

5. CONCLUSION

In this paper, we impose convex penalties for both group
selection and within group selection on the Cox regression
model for high-dimensional survival data. This doubly regu-
larized method not only keeps the advantage of group lasso
in effectively removing unimportant groups, but also main-
tains the flexibility of selecting important variables within
the identified groups. To tackle the high-dimensionality
and nondifferentiability problems in optimization, we de-
velop efficient coordinate descent algorithms for nonoverlap
and overlap cases, respectively. This new method has been
demonstrated to perform well in several simulation settings.
We analyze the motivating TCGA ovarian cancer data us-
ing the new method to predict the patients’ survivals. The
gene-pathway signature is tested on an independent ovar-
ian cancer dataset and well separates the high and low risk
groups.

Our method does not distinguish the contribution of one
predictor from overlapping groups. Specifically, one predic-
tor X; is associated with only one coefficient §;. Therefore,
there is no identifiability problem for predictors in overlap-
ping groups. Another advantage of this setting is that the
existing convergence results [29, 32] can be directly extended
to our method. Of course, one can always argue that it is
interesting to determine the contribution of one predictor
from different groups. However, identifiability and unique-
ness of estimation might be problems in that case.

One reviewer raised two interesting questions about
grouping. The first question is how to define a “group”.
Some people might define “groups” by correlation and con-
sider predictors correlated with each other from one group.
Our definition in this paper is based on both correlation and
coeflicients, as well as their location. For example, in Exam-
ple 1, although the last 8 predictors are independent, they
have the same 0 coefficients so we define them to belong to
one group. Similarly in Example 3, the first 24 predictors are
generated from one normal distribution, but groups 1 and
4 are located in different places and the predictors within
each group share the same 0 coefficients. By our definition,



they belong to different groups. However, we are not worried
about the definition of groups in real data applications as the
definition is usually clear and has no ambiguity in real life.
Another interesting question raised by the reviewer is the
effects of misspecification of groups. Different than elastic
net [44], in which no grouping information is required, our
method needs the prior information of grouping. The group-
ing information also needs to be accurate. The two simula-
tion examples in Section 3.3 show that the lasso method is
not affected by mis-grouping, as expected, and the group
lasso method selects all the misspecified predictors. The ef-
fects of misspecification on DrCox are very moderate.
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