
Statistics and Its Interface Volume 6 (2013) 167–173

A cocktail algorithm for solving the elastic net
penalized Cox’s regression in high dimensions

Yi Yang
∗
and Hui Zou

†,‡

We introduce a cocktail algorithm, a good mixture of
coordinate decent, the majorization-minimization principle
and the strong rule, for computing the solution paths of
the elastic net penalized Cox’s proportional hazards model.
The cocktail algorithm enjoys a proven convergence prop-
erty. We have implemented the cocktail algorithm in an R
package fastcox. Numerical examples show that cocktail
is comparable to coxnet [11] in speed and often delivers
better quality solutions.

Keywords and phrases: Cox’s model, Coordinate de-
scent, Elastic Net, MM principle, Strong rule.

1. INTRODUCTION

Cox’s proportional hazards model [2] is a standard sta-
tistical model for studying the relation between survival
time and a set of covariates. Consider the standard sur-
vival data of the form (yi,xi, di)

n
i=1, where yi is the sur-

vival time, 1 − di is the censoring indicator (di = 1 indi-
cates no censoring and di = 0 indicates right censoring) and
xi = (xi1, . . . , xip)

ᵀ represents the p-dimension covariates.
For the sake of simplicity, assume there are no tied fail-
ure times and the censoring is non-informative. Denote by
t1 < t2 < · · · < tS the distinct failure times and let Rs be
the risk set at time ts−0. Cox’s proportional hazards model
assumes that the hazard function at time t given predictor
values x is h(t|x) = h0(t) exp(x

ᵀβ∗) where h0(t) represents
the baseline hazard function. Statistical inference of Cox’s
model is through the partial likelihood function:

L(β) =

S∏
s=1

exp(xᵀ
is
β)∑

i∈Rs
exp(xᵀ

i β)
,

where is is the index of the failure at time ts. The usual
Cox’s estimator of β is obtained by maximizing the partial
likelihood.

With the advances in modern technology, high-
dimensional data frequently appear in fields such as medi-
cal and biological sciences, finances and economics, etc. The

∗Ph.D candidate.
†Corresponding author.
‡Associate Professor. The authors thank the editor and referees for
their helpful comments.

maximum partial likelihood estimator does not work well
in the presence of high-dimensional covariates. To combat
the high-dimensionality, sparse penalized Cox’s models have
been considered in the literature. Let Pλ(β) be a penalty
function that is non-differentiable at zero. Consider the pe-
nalized partial likelihood estimator

β̂ = argmin
β

1

n

[
S∑

s=1

−xᵀ
is
β + log

(∑
i∈Rs

exp(xᵀ
i β)

)]
+Pλ(β).

For example, Tibshirani [13] used the lasso penalty [12],
Pλ(β) = λ

∑p
i=j |βj |, to fit a lasso penalized Cox’s regression

model.
Zou and Hastie [19] proposed the elastic net penalty as

an improved variant of the lasso for high-dimensional data.
The elastic net penalty is defined as

Pλ,α(β) =

p∑
j=1

λ

(
α|βj |+

1

2
(1− α)β2

j

)
,

with λ > 0 and 0 < α ≤ 1. The �1 part of the elastic net is
responsible for achieving sparsity. The lasso can be viewed
as a special case of the elastic net with α = 1. By using its
quadratic part, the elastic net improves upon the lasso in
two aspects. First, it can better handle the correlated covari-
ates which are very common in high-dimensional data. Sec-
ond, the solution paths are more stable due to the quadratic
regularization and hence it leads to improved prediction.
Park and Hastie [10] developed a predictor-corrector algo-
rithm for computing the elastic net penalized Cox’s model,
see the glmpath package available from the Comprehensive
R Archive Network (CRAN) at http://cran.r-project.
org/package=glmpath.

Goeman [7] discussed a gradient descent algorithm for
solving the �1 penalized Cox’s model and implemented
his algorithm in an R package penalized, available from
CRAN at http://cran.r-project.org/web/packages/

penalized. Simon et al. [11] recently developed coxnet for
computing the elastic net penalized Cox model. Their func-
tion is included in the glmnet package, available from CRAN
at http://cran.r-project.org/package=glmnet. By nu-
merical examples, Simon et al. [11] showed that coxnet is
much faster than coxpath and penalized.

It is important to note that coxnet uses some heuristic
arguments to approximate the Hessian matrix of the log-
partial likelihood in order to boost computation speed. As

http://www.intlpress.com/SII/
http://cran.r-project.org/package=glmpath
http://cran.r-project.org/package=glmpath
http://cran.r-project.org/web/packages/penalized
http://cran.r-project.org/web/packages/penalized
http://cran.r-project.org/package=glmnet

a result, it is unclear whether coxnet always converges to
the right solution, although Simon et al. [11] reported that
they did not encounter any convergence problem. In this pa-
per, we introduce a new principled fast algorithm for com-
puting the elastic net penalized Cox model. Our algorithm
combines the strengths of three optimization ideas: coordi-
nate descent, the majorization-minimization principle and
the strong rule. It is thus named a cocktail algorithm. We
show that the cocktail algorithm always converges to the
right solution. We build an R package fastcox to imple-
ment the cocktail algorithm and we show that cocktail is
comparable to coxnet in speed and often gives higher qual-
ity solutions.

In section 2 we show how to combine the majorization-
minimization principle and coordinate descent into a new
coordinate-majorization-descent algorithm (CMD). In sec-
tion 3 we further show how to integrate the strong rule and
the CMD algorithm, which leads to the final cocktail algo-
rithm for computing the solution paths of the elastic net pe-
nalized Cox’s regression. Numerical examples are presented
in section 4.

2. COORDINATE MAJORIZATION
DESCENT

2.1 Derivation

In this section we derive the coordinate-majorization-
descent (CMD) algorithm to minimize the following objec-
tive function

(1) G(β) = �(β) +

p∑
j=1

λ

[
αwj |βj |+

1

2
(1− α)β2

j

]
,

where

�(β) = n−1
S∑

s=1

−xᵀ
is
β + log

(∑
i∈Rs

exp(xᵀ
i β)

)
.

Note that including the non-negative weights wjs allows for
more flexible estimation. If we want to always include xj in
the final model then we typically do not impose a sparse
penalty on βj , which can be easily done by setting wj = 0.
Often, the adaptively weighted lasso [18] is preferred over
the lasso for variable selection.

We begin with the observation that �(β) is a smooth con-
vex function of β and the penalty function is convex and
separable. This observation suggests that we can try the
coordinate descent algorithm for minimizing the objective
function in (1) [15]. Recently, coordinate descent has been
successfully used to solve the lasso-type penalized models
[4, 5, 16]. Define the objective function for fixed λ and α
and βk where k �= j to be

g(βj) = �(βj |βk = β̃k, k �= j)(2)

+ λ

[
αwj |βj |+

1

2
(1− α)β2

j

]
,

the coordinate descent algorithm proceeds as follows:

• Initialize β̃.
• Cyclic coordinate descent: for j = 1, . . . , p, update the

estimator by

β̃j ← argmin
βj

g(βj).

• Repeat the coordinate descent cycle till convergence.

Coordinate descent is efficient for the �1-penalized least
squares because each coordinate descent update can be
computed by a simple soft-thresholding rule. However, the
univariate minimization problem in (2) does not have a
simple closed-form solution. The same computational dif-
ficulty appears in many applications of the Expectation-
Maximization algorithm where the maximization step does
not have a simple computational form. To alleviate such dif-
ficulty, Dempster, Laird and Rubin [3] proposed to increase
the objective function rather than maximize it at each maxi-
mization step, which results in the generalized Expectation-
Maximization algorithm. We borrow the same idea to over-
come the computational difficulty in (2). Our solution makes
use of the majorization-minimization/maximization (MM)
principle. For some good review papers on the MM princi-
ple, the readers are referred to Lange, Hunter and Yang [9],
Hunter and Lange [8] and Wu and Lange [17].

Instead of minimizing (2), we propose to find an update
of β̃j such that the univariate function in (2) is decreased. It
turns out that such an update can be computed by a soft-
thresholding rule. To write the updating formula we need
some additional notation. Define

Dj =

S∑
s=1

1

4n

(
max
i∈Rs

(xij)− min
i∈Rs

(xij)

)
2,

for j = 1, 2, . . . , p, and let �′j(β) denote the partial derivative
of the negative log partial likelihood with respect to βj . We
have

�′j(β) = n−1
S∑

s=1

[
−xis,j +

∑
i∈Rs

xi,j exp(x
ᵀ
i β)∑

i∈Rs
exp(xᵀ

i β)

]
,

for j = 1, 2, . . . , p. We approximate (2) by a penalized
quadratic function defined as

q(βj |β̃) = �(β̃) + �′j(β̃)(βj − β̃j) +
Dj

2
(βj − β̃j)

2(3)

+ λ

[
αwj |βj |+

1

2
(1− α)β2

j

]
.

The proposed update is the minimizer of (3)

β̃new
j =

S(Dj β̃j − �′j(β̃), λαwj)

Dj + λ(1− α)
,

where S(z, t) = (|z| − t)+sign(z) is the soft-thresholding
operator.

168 Y. Yang and H. Zou

Algorithm 1 CMD for the elastic net penalized Cox’s re-
gression

1. Initialize β̃.

2. For j = 1, . . . , p,

β̃new
j =

S(Dj β̃j − �′j(β̃), λαwj)

Dj + λ(1− α)
.

3. Update β̃ = β̃
new

.

4. Repeat steps 2–3 till convergence of β̃.

With the help of the MM principle, we can use an itera-
tive soft-thresholding procedure, see Algorithm 1, for solving
the elastic net penalized Cox’s regression, which is much like
the iterative soft-thresholding procedure for the elastic net
penalized least squares problem.

2.2 The descent property of CMD

We now prove the descent property of Algorithm 1 which
can be seen from the following two lemmas.

Lemma 1. β̃new
j =

S(Dj β̃j−�′j(β̃),λαwj)

Dj+λ(1−α) minimizes q(βj |β̃)
defined in (3).

Lemma 2. �′′j ≤ Dj for all β ∈ R
p.

Lemma 1 basically shows the soft-thresholding solution
to the univariate lasso regression. We only prove Lemma 2.

Proof of lemma 2. We first compute

�′′j =
1

n

S∑
s=1

[∑
i∈Rs

x2
i,j exp(x

ᵀ
iβ)∑

i∈Rs
exp(xᵀ

iβ)
−

(∑
i∈Rs

xi,j exp(x
ᵀ
iβ)∑

i∈Rs
exp(xᵀ

iβ)

)2]
.

Inside [· · ·] can be regarded as the variance of a discrete
random variable Z whose distribution is P (Z = xi,j) =

exp(xᵀ
i β)

∑
i∈Rs

exp(xᵀ
i β)

. The variance is maximized when Z has a

two-point distribution on maxi∈Rs(xij), mini∈Rs(xij) with
equal probability.

From Lemmas 1 and 2 we have the following inequalities

q(β̃new
j |β̃) ≤ q(β̃j |β̃),

g(βj) ≤ q(βj |β̃) ∀βj ∈ R.

Therefore, we can conclude

g(β̃new
j) ≤ q(β̃new

j |β̃) ≤ q(βj |β̃) = g(βj),

which justifies the descent property of the CMD algorithm.

2.3 Solution path implementation

For each given α, we use the CMD algorithm to compute
the solutions of the elastic net penalized Cox’s regression
model at a grid of decreasing λ values. The default number

is 100. We use the commonly used warm-start and active
set tricks, as done in glmnet.

To use warm-start we first need to find the largest λ
value, denoted by λmax, that is defined as the smallest λ
that shrinks all βjs to zero. By the KKT conditions it is
easy to show for wj �= 0

λmax = n−1α−1 max
j

{
1

|wj |

∣∣∣∣∣
S∑

s=1

(−xis,j +

∑
i∈Rs

xi,j

|Rs|
)

∣∣∣∣∣
}
.

For the ordinary n ≥ p data we let λmin = 0.0001λmax.
When p > n we let λmin = 0.01λmax.We choose a grid of 100
points uniformly in the log scale on (λmin, λmax). Let λ[1] =
λmax and λ[100] = λmin. Warm-start takes the solution at
the k-th grid point λ[k] as the initial value for computing
the solution at λ[k + 1].

The active set is defined as the collection of variables
whose current coefficient estimates are nonzeros. After a
complete cycle through all p coefficients, we only repeat the
coordinate descent on the active set till convergence. Then
we run another complete cycle to check whether the active
set is changed. If the active set remains unchanged, the al-
gorithm is done, otherwise the process is repeated.

3. CMD WITH THE STRONG RULE

Tibshirani et al. [14] recently introduced the strong rule
for improving the computational speed of glmnet. To imple-
ment CMD in the fastcox package, we have also used the
strong rule on top of the CMD algorithm. Suppose that we
have already computed the solution β̂[λk] at λ = λk, before

computing the solution at λk+1, we first compute �′j(β̂[λk])
for j = 1, 2, . . . , p. The strong rule claims that the variables
that satisfy the condition∣∣∣�′j(β̂[λk])

∣∣∣ ≥ α(2λk+1 − λk)wj

are very likely to have nonzero coefficients at λk+1. Let V
be the collection of such variables and write V c as its com-
plement. If the strong rule guesses correctly, we only need
to focus on solving β̂V by calling Algorithm 1 on a reduced
dataset (yi,xiV , di)

n
i=1, where xiV = (· · ·xi,j · · ·) and j is

an index in the set V . Suppose that β̂V is computed and
the next step is to check whether the strong rule indeed
guesses correctly. For that we just need to check whether
β = (β̂V ,0) satisfies the KKT condition at λ = λk+1. In
other words, if for each j ∈ V c the following KKT condition
holds: ∣∣∣�′j (β = (β̂V ,0)

)∣∣∣ ≤ αλk+1wj .

Then β = (β̂V ,0) is the solution at λ = λk+1. Otherwise,
we update V by V = V

⋃
U where

U = {j : j ∈ V c and
∣∣∣�′j (β = (β̂V ,0)

)∣∣∣ > αλk+1wj}.

A cocktail algorithm for solving the elastic net penalized Cox’s regression in high dimensions 169

Algorithm 2 The CMD algorithm with the strong rule for
the solution at λk+1

1. Initialize β̃ = β̂[λk].

2. Screen p variables using the strong rule, create an initial
survival set V such that for j ∈ V∣∣∣�′j(β̂[λk])

∣∣∣ ≥ α(2λk+1 − λk)wj .

3. Call Algorithm 1 on a reduced dataset (yi,xiV , di)
n
i=1 to

solve β̂V .

4. Compute a set U as the part of V c that failed KKT check:

U = {j : j ∈ V c and
∣∣∣�′j (

β = (β̂V ,0)
)∣∣∣ > αλk+1wj}.

5. If U = ∅ then stop the loop and return β̂ = (β̂V ,0). Oth-
erwise update V = V

⋃
U and go to step 3.

Note that the V set can only grow larger after each update
and hence the strong rule iteration will always stop after a
finite number of updates, which means the strong rule will
eventually guess correctly.

For penalized least squares and logistic regression, the
strong rule has a magic property in that it almost always
guesses correctly and we rarely need to actually update V
by adding U . See Tibshirani et al. [14] for more detailed dis-
cussion. We have observed that this incredible phenomenon
continues to hold for the penalized Cox regression model.
Algorithm 2 shows how we use the strong rule on top of the
CMD algorithm. Algorithm 2 is indeed the pseudocode of
cocktail.

4. NUMERICAL STUDIES

We have implemented the CMD algorithm with the
strong rule in a publicly available R package fastcox. Si-
mon et al. [11] have showed that coxnet is much faster than
coxpath and penalized. Hence we only compare cocktail
with coxnet which is a part of R package glmnet 1.7.1.
All computations were carried out on an 2.4GHz Intel
Core i5 processor. In coxnet, the convergence criterion is
maxjDj(β̃

old
j − β̃new

j)2 < ε2. We used the same convergence

criterion in cocktail and ε = 10−5 in all examples pre-
sented in this section.

4.1 Timing comparison

We considered the simulation model by Simon et al. [11].
We generated data with n observations and p predictors
from the following model

Y true = exp

⎛
⎝ p∑

j=1

Xjβj + k ·N(0, 1)

⎞
⎠ ,

where Y true is the “true” survival time and the correlation
between predictors Xj and Xj′ is ρ, with ρ ranges from zero

Table 1. Timings (in seconds) for coxnet and cocktail.
Total time for the same λ sequence of 100 values, averaged

over 20 independent runs

n = 100, p = 5, 000

ρ 0 0.1 0.2 0.5 0.8 0.95

α = 0.1

coxnet 23.64 21.74 23.80 25.93 16.89 15.17
cocktail 11.35 9.91 12.78 18.89 26.97 30.44

α = 0.2

coxnet 21.29 22.83 21.05 24.42 14.67 13.07
cocktail 9.41 12.15 11.05 19.52 20.73 27.77

α = 0.5

coxnet 18.11 17.12 17.24 16.94 13.19 10.15
cocktail 11.98 13.52 13.61 17.66 23.08 18.42

α = 0.8

coxnet 10.42 10.86 10.59 13.26 11.16 16.61
cocktail 13.14 15.48 15.88 22.27 25.96 24.55

α = 1

coxnet 9.55 9.27 9.56 10.73 11.06 17.95
cocktail 35.06 31.19 28.75 31.77 35.19 44.40

to 0.95, and βj = (−1)j exp(−(2j− 1)/20), k is chosen such
that the signal-to-noise ratio is 3.0. Likewise, censoring times
are generated by C = exp(k ·N(0, 1)). The recorded survival
time is Y = min(Y true, C). The observation is censored if
C < Y true.

In Table 1, n = 100, p = 5, 000, for each α in
(0.1, 0.2, 0.5, 0.8, 1), we computed the solution paths of the
penalized Cox’s model for the same sequence of λ values
using coxnet and cocktail. We repeated the process 20
times on 3 independent data sets and reported the average
running time. We also performed a similar timing compar-
ison for n = 200, p = 10, 000 in Table 2. We see that
cocktail has better speed performance with small α and
low correlation data while coxnet is faster for large α and
high correlation data. When cocktail is the winner, it can
be 2 times faster than coxnet and vice versa. Thus, it is fair
to say that both packages are comparable in speed.

4.2 Quality comparison

We show that with the same convergence criterion,
cocktail can provide a more accurate solution than coxnet

does. We test the accuracy of solutions by checking their
KKT conditions. Theoretically, β is the solution to (1) if
and only if the following conditions hold

�′j (β) + λ(1− α)βj + αλwj · sgn(βj) = 0 if βj �= 0,

|�′j (β) | ≤ αλwj if βj = 0,

where j = 1, 2, . . . , p. Numerically, we declare βj passes the
KKT condition check if

|�′j (β) + λ(1− α)βj + αλwj · sgn(βj)| ≤ ε if βj �= 0,

|�′j (β) | ≤ αλwj + ε if βj = 0,

170 Y. Yang and H. Zou

Table 2. Timings (in seconds) for coxnet and cocktail.
Total time for the same λ sequence of 100 values, averaged

over 20 independent runs

n = 200, p = 10, 000

Correlation 0 0.1 0.2 0.5 0.8 0.95

α = 0.1

coxnet 96.5 70.9 79.7 113.6 77.9 42.7
cocktail 45.6 45.0 51.1 71.7 90.9 138.0

α = 0.2

coxnet 94.1 89.0 114.5 77.4 44.6 49.2
cocktail 35.7 43.5 64.8 62.6 69.3 124.3

α = 0.5

coxnet 52.6 70.4 65.3 62.5 49.3 52.1
cocktail 45.2 59.9 51.9 78.0 102.4 133.6

α = 0.8

coxnet 38.9 41.3 35.8 39.8 32.1 57.8
cocktail 54.1 66.6 74.4 69.2 76.0 76.0

α = 1

coxnet 39.5 40.4 42.8 52.9 30.3 48.5
cocktail 150.2 135.2 127.8 224.6 145.9 164.6

for a small ε > 0. For the solutions computed in section
4.1, we calculated the average number of coefficients that
violated the KKT condition check at each λ value. Then
this number was averaged over the 100 values of λs. This
process was repeated 3 times on 3 independent datasets. As
shown in Table 3 and Table 4, cocktail has much smaller
violation counts than coxnet in most cases. Only for α = 1,
which corresponds to the lasso case, coxnet is slightly better
than cocktail, but the KKT violation counts are very small
in this case. Overall, it is clear that cocktail is numerically
more accurate than coxnet.

4.3 Real data analysis

In this section we use the lung cancer data from Beer
et al. [1] to examine timings and accuracies of coxnet

and cocktail. The data is from a microarray experi-
ment investigating survival of cancer patients with lung
adenocarcinomas. The data set contains expression data
for 86 patients with 7,129 probe sets. We chose α from
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) and computed the
solution paths of the penalized Cox’s model for the same
λ sequence using coxnet and cocktail. The process was
repeated 20 times. For space consideration we only report
the timing and accuracy results of α = 0.1, 0.2, 0.3, 0.5, 0.8, 1
in Table 5. One can see that the two algorithms are com-
parable in terms of the running time: cocktail has better
speed performance with small α while coxnet is faster with
large α. In terms of solution quality which is measured by the
average number of coefficients that violated the KKT condi-
tion check, cocktail is always the winner. This is consistent
with the simulation results.

In Figure 1 we also plot the solution paths of the tuned
elastic net penalized Cox’s model for the lung cancer data.

Table 3. Reported numbers are the average number of
coefficients among 5,000 coefficients that violated the KKT
condition check (rounded down to the next smaller integer)

using coxnet and cocktail. Results are averaged over the λ
sequence of 100 values and averaged over 20 independent

runs

n = 100, p = 5, 000

ρ 0 0.1 0.2 0.5 0.8 0.95

α = 0.1

coxnet 556 497 517 434 285 153
cocktail 6 11 19 59 136 116

α = 0.2

coxnet 313 325 292 233 185 98
cocktail 6 5 12 72 90 76

α = 0.5

coxnet 146 141 124 102 88 54
cocktail 5 6 9 25 51 40

α = 0.8

coxnet 50 50 36 23 41 32
cocktail 5 6 7 13 28 28

α = 1

coxnet 5 2 4 7 20 24
cocktail 7 6 6 12 20 24

Table 4. Reported numbers are the average number of
coefficients among 10000 coefficients that violated the KKT
condition check (rounded down to the next smaller integer)

using coxnet and cocktail. Results are averaged over the λ
sequence of 100 values and averaged over 20 independent

runs

n = 200, p = 10, 000

ρ 0 0.1 0.2 0.5 0.8 0.95

α = 0.1

coxnet 921 729 731 669 573 197
cocktail 12 14 107 136 227 140

α = 0.2

coxnet 471 527 545 404 247 129
cocktail 7 12 61 95 93 95

α = 0.5

coxnet 203 251 184 123 170 80
cocktail 3 11 20 66 88 62

α = 0.8

coxnet 90 69 42 60 82 47
cocktail 10 14 13 29 48 38

α = 1

coxnet 1 2 3 24 38 37
cocktail 9 12 13 30 44 42

One can see that the two solution path plots are virtually
identical. We did a 2-dimension search using 5-fold cross-
validation to find the best pair of (α, λ) that incurs maxi-
mal log partial likelihood. The fitted penalized Cox model
selected 39 genes. It took cocktail 4.1 seconds to complete
the solution path calculation, while it took coxnet 5.3 sec-

A cocktail algorithm for solving the elastic net penalized Cox’s regression in high dimensions 171

Table 5. Timings (in seconds) and KKT check for coxnet

and cocktail for the lung cancer data from Beer et al. [1].
Reported values for KKT check are the average number of
coefficients among 7,129 coefficients that violated the KKT
conditions (rounded down to the next smaller integer) using
coxnet and cocktail. Total time for the same λ sequence,

averaged over 20 runs

Lung cancer (n = 86, p = 7, 129)

α 0.1 0.2 0.3 0.5 0.8 1

Timings

coxnet 6.30 5.33 5.31 4.57 4.42 5.49
cocktail 4.14 3.60 4.10 4.30 5.58 7.77

KKT Check

coxnet 42 20 10 1 0 0
cocktail 0 1 1 0 0 0

onds to get the results.

5. DISCUSSION

By combining the strengths of the MM principle, cyclic
coordinate descent and the strong rule, we have derived a
fast cocktail algorithm for solving the elastic net penalized
Cox’s model. Our algorithm is comparable in speed to the
fastest software for solving the elastic net penalized Cox’s
model in the literature.

It is attempting to directly apply the Newton-Raphson
algorithm to solve the penalized Cox’s model, as done for
the penalized logistic regression model in Friedman, Hastie
and Tibshirani [4]. The difficulty is, as pointed out in Si-
mon et al. [11], the computation of the Hessian matrix of
the log partial likelihood is very expensive in the Newton-
Raphson loop. To avoid the difficulty Simon et al. [11] only
computed the diagonals of the Hessian matrix with respect
to xᵀβ and pretended the Hessian matrix is a diagonal
matrix. However, it is unclear whether their treatment al-
ways guarantees coxnet to converge to the right solution.
It is important to point out that even when we compute
the exact Hessian matrix in each Newton-Raphson itera-
tion, the Newton-Raphson update does not always guar-
antee convergence. A more careful Newton-Raphson algo-
rithm involves step-size adjustment by techniques such as
trust-region methods Genkin, Lewis and Madigan [6]. Such
issues do not exist in the cocktail algorithm. Thanks to the
MM principle, the cocktail algorithm has a proven conver-
gence property. The R package fastcox that implements
our cocktail algorithm is available on CRAN and http://

code.google.com/p/fastcox/.

Received 14 December 2011

REFERENCES
[1] Beer, D. G., Kardia, S. L. R., Huang, C. C., Giordano, T. J.,

Levin, A. M., Misek, D. E., Lin, L., Chen, G., Gharib, T. G.,

Figure 1. Solution paths and timings of the elastic net
penalized Cox’s model on the lung cancer data from Beer

et al. [1] with 86 observations and 7,129 predictors. The top
panel shows the solution paths computed by coxnet in 5.308
seconds; the bottom panel shows the solution paths computed
by cocktail in 4.100 seconds. The optimal (α, log(λ)) pair
is (0.3,−1.51). The elastic net penalized Cox’s model, which

is indicated by the vertical dotted line, selects 39 genes.

Thomas, D. G. et al. (2002). Gene-expression profiles predict sur-
vival of patients with lung adenocarcinoma. Nature Medicine 8
816–824.

[2] Cox, D. (1972). Regression models and life tables (with discus-
sion). Journal of the Royal Statistical Society, Series B 74 187–
220. MR0341758

[3] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maxi-
mum likelihood form incomplete data via the EM algorithm (with
discussion). Journal of the Royal Statistical Society, Series B 39
1–38. MR0501537

[4] Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regular-
ized paths for generalized linear models via coordinate descent.
Journal of Statistical Software 33 1–22.

[5] Friedman, J., Hastie, T., Hoefling, H. and Tibshirani, R.

(2007). Pathwise coordinate optimization. The Annals of Applied
Statistics 2(1) 302–322. MR2415737

[6] Genkin, A., Lewis, D. and Madigan, D. (2007). Large-scale
bayesian logistic regression for text categorization. Technometrics
49(3) 291–304. MR2408634

172 Y. Yang and H. Zou

http://code.google.com/p/fastcox/
http://code.google.com/p/fastcox/
http://www.ams.org/mathscinet-getitem?mr=0341758
http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=2415737
http://www.ams.org/mathscinet-getitem?mr=2408634

[7] Goeman, J. J. (2010). L1 penalized estimation in the cox propor-
tional hazards model. Biometrical Journal 52 70–84. MR2756594

[8] Hunter, D. R. and Lange, K. (2004). A tutorial on MM algo-
rithms. The American Statistician 58 30–37. MR2055509

[9] Lange, K., Hunter, D. and Yang, I. (2000). Optimization trans-
fer using surrogate objective functions (with discussion). Journal
of Computational and Graphical Statistics 9 1–20. MR1819865

[10] Park, M. Y. and Hastie, T. (2007). L1-regularization path al-
gorithm for generalized linear models. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology) 69 659–677.
MR2370074

[11] Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011).
Regularization paths for Cox’s proportional Hazards model via
coordinate descent. Journal of Statistical Software 39 1–13.

[12] Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B 58 267–
288. MR1379242

[13] Tibshirani, R. (1997). The lasso method for variable selection in
the Cox model. Statistics in Medicine 16 385–395.

[14] Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N.,
Taylor, J. and Tibshirani, R. J. (2010). Strong rules for dis-
carding predictors in lasso-type problems. Journal of the Royal
Statistical Society: Series B (Statistical Methodology).

[15] Tseng, P. (2001). Convergence of block coordinate descent
method for nondifferentiable maximization. Journal of Optimiza-
tion Theory and Applications 109(3) 474–494. MR1835069

[16] Wu, T. T. and Lange, K. (2008). Coordinate descent algorithms

for lasso penalized regression. The Annals of Applied Statistics 2
224–244. MR2415601

[17] Wu, T. T. and Lange, K. (2010). The MM alternative to EM.
Statistical Science 25 492–505. MR2807766

[18] Zou, H. (2006). The adaptive lasso and its oracle properties.
Journal of the American Statistical Association 101 1418–1429.
MR2279469

[19] Zou, H. and Hastie, T. (2005). Regularization and variable selec-
tion via the elastic net. Journal of the Royal Statistical Society,
Series B 67 301–320. MR2137327

Yi Yang
School of Statistics
University of Minnesota
Minneapolis, MN 55455
USA
E-mail address: yiyang@umn.edu

Hui Zou
School of Statistics
University of Minnesota
Minneapolis, MN 55455
USA
E-mail address: zouxx019@umn.edu

A cocktail algorithm for solving the elastic net penalized Cox’s regression in high dimensions 173

http://www.ams.org/mathscinet-getitem?mr=2756594
http://www.ams.org/mathscinet-getitem?mr=2055509
http://www.ams.org/mathscinet-getitem?mr=1819865
http://www.ams.org/mathscinet-getitem?mr=2370074
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=1835069
http://www.ams.org/mathscinet-getitem?mr=2415601
http://www.ams.org/mathscinet-getitem?mr=2807766
http://www.ams.org/mathscinet-getitem?mr=2279469
http://www.ams.org/mathscinet-getitem?mr=2137327
mailto:yiyang@umn.edu
mailto:zouxx019@umn.edu

	Introduction
	Coordinate majorization descent
	Derivation
	The descent property of CMD
	Solution path implementation

	CMD with the strong rule
	Numerical studies
	Timing comparison
	Quality comparison
	Real data analysis

	Discussion
	References
	Authors' addresses

