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The tree structure of graphs for various graphical
models

Xiaofei Wang and Jianhua Guo
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After proper decompositions or separations, there is a
common characteristic of the secondary structures for vari-
ous graphical models. In this paper, we show that the junc-
tion tree captures this common characteristic. To general-
ize all potential occurrences in different graphical models,
we define junction trees on general set classes and show
several equivalent properties of junction trees. For mixed
graphical models and hierarchical models, we investigate
in detail the M-decomposition of marked graphs and the
H-decomposition of interaction graphs, and point out the
junction tree structures of marked graphs and interaction
graphs. Moreover, properties of separation trees and d-
separation trees are discussed for undirected and directed
graphs, respectively. Both separation and d-separation trees
are closely associated with junction trees. Finally, we pro-
pose two algorithms for constructing junction tree structures
for mixed graphical models and hierarchical models.
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1. INTRODUCTION

In statistical studies there are many kinds of data struc-
tures, and most of which can be represented as graphs. Ex-
amples include directed acyclic graphs in Bayesian networks
[21, 12, 4], interaction graphs in hierarchical models [1] and
marked graphs in conditional Gaussian models [13]. Those
models, where conditional independence relations among
variables are presented as graphs, are called graphical mod-
els [11]. The graphical model, which has its origin in several
scientific areas such as statistical physics [7] and genetics
[28], is a major application of graph theories to data repre-
sentation in statistics.

In our work, we investigate the structures of graphs for
various graphical models of high dimensions and sparse re-
lations among variables. These experiences [16, 26] lead us
to a conclusion that, after proper decompositions or separa-
tions, there should be a common characteristic for the sec-
ondary structures of those graphs. The junction tree cap-
tures this common characteristic, and holds natural tree
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properties beyond general graph structures. By using the
junction tree structure, there exist efficient algorithms for
probabilistic propagation computations [12, 18]. Structure
learnings [30, 31] for Bayesian networks and estimates [32]
on undirected graphical models of high dimensional vari-
ables can also exploit tree structures.

The junction tree is closely related to the notion of clique
trees in chordal graphs, which model the sparsity structure
of the Cholesky factor of a sparse positive definite matrix
[22]. The clique trees [6, 24], which consist of all the cliques
that are basic blocks of vertices in chordal graphs, are also
junction trees. In the present paper, our results on junction
trees are not limited to chordal graphs; they apply to various
graphs used in graphical models such as general undirected
graphs in Markov random field, interaction graphs in hier-
achical models and marked graphs in conditional Gaussian
models.

The junction tree structure demonstrates the conditional
independence relations among blocks of variables within the
framework of graphical models. For different models and
graphs, the descriptions of basic blocks are different, but
the secondary junction tree structure can be always found.
To generalize all potential occurrences in different graphical
models, we present and study junction trees in an abstract
setting. We consider four equivalent properties of junction
trees under families of subsets, which are the junction prop-
erty, the induced-subtree property, the running-intersection
property, and the maximum-weight spanning tree property.
The corresponding results for clique trees in chordal graphs
also exist [3], but we keep our framework as general as pos-
sible.

For mixed graphical models, after considering M-
decompositions with statistical meanings, we study in de-
tail basic blocks of vertices in marked graphs. Furthermore,
we point out the existence of the junction tree structures
for marked graphs. Similar results for interaction graphs
are also given, and corresponding corollaries for general
undirected graphs and chordal graphs are shown. For more
general considering on tree structures, not limited to basic
blocks, we study separation trees for undirected graphs and
d-separation trees for directed acyclic graphs.

To give a specific method for the tree construction of
mixed graphical models, we discuss the relationship between
the M-decomposition of marked graphs and the decomposi-
tion of star graphs, and show that basic blocks of marked
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Figure 1. A secondary tree of
{{1, 2, 3, 4}, {1, 4, 6, 7}, {1, 4, 5}, {4, 6, 7, 8}}.

graphs can be obtained from star graphs. By using this
transformation, we propose an algorithm for constructing
junction trees for marked graphs. Moreover, for hierarchical
models, we apply a revised edition of Leimer’s decomposi-
tion algorithm [15] to interaction graphs for constructing
junction trees for interaction graphs.

2. PRELIMINARIES

A family UV is a collection of some subsets of a finite
vertex set V . Every such subset of V is called an element
in UV . Assume that V is the union of all the elements, i.e.,
V =

⋃
U∈UV

U . If one element does not contain another, we
say that UV is reduced. Let T = (UV , ET ) be a tree, of which
every node is an element in UV , and every edge (Ui, Uj) ∈ ET
associated with an intersection set S = Ui

⋂
Uj , which we

call an obstructor, connects nodes Ui and Uj in T . We call
T a secondary tree of UV . Removing an obstructor S from
the tree T splits T into two subtrees T1 and T2 with node
sets U1 and U2, respectively. Let Vi =

⋃
U∈Ui

U be the union
of the nodes in the subtree Ti for i = 1 and 2. The term
“node” is used for a secondary tree to distinguish the term
“vertex” for a graph. The node and obstructor of T are
displayed as an ellipse and a rectangle, respectively. For ex-
ample, consider a finite vertex set V = {1, 2, 3, 4, 5, 6, 7, 8},
and assume that the family UV consists of four ele-
ments {1, 2, 3, 4}, {1, 4, 6, 7}, {1, 4, 5} and {4, 6, 7, 8}. A sec-
ondary tree T = (UV , ET ) is shown in Figure 1. Its three
edges are ({1, 2, 3, 4}, {1, 4, 6, 7}), ({1, 4, 6, 7}, {1, 4, 5}), and
({1, 4, 6, 7}, {4, 6, 7, 8}) and the three corresponding obstruc-
tors are {1, 4}, {1, 4} and {4, 6, 7}.

Here, we choose the symbol T = (UV , ET ) to denote the
tree structure. And it is well known that the pair (V,UV )
forms a hypergraph and every element U ∈ UV is called as
a hyperedge. Since U represents a node of secondary tree
in this paper and is completely irrelative to the meaning of
edges, we avoid using the terminology of hypergraph com-
munity even though most of the results below can be rewrit-
ten in the language of hypergraphs.

Without loss of generality, we assume that the family UV

is reduced and any obstructor for a secondary tree T is a
non-empty set.

Definition 2.1. A secondary tree T of UV has the junction
property if the set U ∩U ′ is contained in every node on the
path connecting U and U ′ in the tree T for every pair of
distinct elements U,U ′ ∈ UV . And T is called a junction
tree of UV .

For any given family UV , T jp
UV

denotes the set of all the
secondary trees T = (UV , ET ) that have the junction prop-
erty. Then every T ∈ T jp

UV
is a junction tree of UV . The collec-

tion MT of all the obstructors in a junction tree T is called
a multiset. A multiset may contain two obstructors, formed
by different edges in a junction tree, but with the same ver-
tices. For instance, the secondary tree T of UV in Figure 1 is
a junction tree, and the edge ({1, 2, 3, 4}, {1, 4, 6, 7}) forms
the obstructor {1, 4}, which is the same as one formed by
the edge ({1, 4, 5}, {1, 4, 6, 7}).

We use UV (v) ⊆ UV for the set of elements in UV con-
taining the vertex v.

Definition 2.2. A secondary tree T of UV has the induced-
subtree property if the set UV (v) induces a subtree of T for
any vertex v ∈ V .

For example, the secondary tree T of UV in Figure 1 has
the induced-subtree property. Let T ist

UV
denote the set of all

the secondary trees T = (UV , ET ) that have the induced-
subtree property.

Definition 2.3. A subset sequence {U1, . . . , Um} of V has
the running intersection property (RIP) if there exists some

1 ≤ i ≤ j − 1 such that Uj

⋂
(
⋃j−1

k=1 Uk) ⊆ Ui for all 2 ≤
j ≤ m. And the set {Sj |Sj = Uj

⋂
(
⋃j−1

k=1 Uk), 2 ≤ j ≤ m} is
called a S-system of the RIP sequence {U1, . . . , Um}.

For any fixed RIP sequence of a family UV , we can con-
struct a secondary tree Trip of UV by making each element
Uj adjacent to a “parent” element Ui, which is identified

by “Uj

⋂
(
⋃j−1

k=1 Uk) ⊆ Ui”. Thus the multiset MTrip of Trip

is consistent with the S-system of the RIP sequence of UV .
For instance, the secondary tree T of UV in Figure 1 can be
constructed from the RIP sequence {U1 = {1, 2, 3, 4}, U2 =
{1, 4, 6, 7}, U3 = {1, 4, 5}, U4 = {4, 6, 7, 8}}. Let T rip

UV
be the

set of all the secondary trees T = (UV , ET ), which can be
constructed from an RIP sequence of UV .

The following lemma given by Leimer [15] characterizes
the properties of RIP sequences.

Lemma 2.1. Let {U1, . . . , Um} be an RIP sequence, then:

(1) let t, 1 ≤ t ≤ m, be fixed. If there is an s �= t, s minimal,
such that Ut ⊆ Us, then:

(i) {U1, . . . , Ut−1, Ut+1, . . . , Um} is an RIP sequence
if s < t;

(ii) {U1, . . . , Ut−1, Us, Ut+1, . . . , Us−1, Us+1, . . . , Um}
is an RIP sequence if s > t.
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(2) for a permutation σ : {1, . . . ,m} → {1, . . . ,m},
if {Uσ(1), . . . , Uσ(m)} is also an RIP sequence, then
{U1, . . . , Um} and {Uσ(1), . . . , Uσ(m)} have the same S-
system.

(3) for any t, there exists a permutation σ : {1, . . . ,m} →
{1, . . . ,m} such that σ(1) = t and {Uσ(1), . . . , Uσ(m)}
is also an RIP sequence.

For any family UV , there is a weighted secondary intersec-
tion graph WUV

, which is defined as follows. The vertex set
ofWUV

is the family UV . The edge set ofWUV
is the set of all

the pairwise distinct elements in UV , whose intersection is
nonempty. Furthermore, every such edge (U,U ′) is assigned
a weight given by |U

⋂
U ′|. Let T mst

UV
denote the set of all the

maximum-weight spanning secondary trees T = (UV , ET ) of
WUV

. A secondary tree T of UV has the maximum-weight
spanning tree property if T ∈ T mst

UV
. It is well known that

T = (UV , ET ) is a maximum-weight spanning tree if and only
if every pair of elements U,U ′ ∈ UV for which (U,U ′) �∈ ET ,
the weight of every edge on the path joining U and U ′ in T
is no smaller than |U

⋂
U ′|. For example, the secondary tree

T of UV in Figure 1 is a maximum-weight spanning tree of
WUV

.
The notion and properties of junction trees are studied

in different scientific areas such as a relational database and
graph theory. In the database community, acyclic database
schemes [2] have many properties equivalent to the junction
property. In the graph community, clique trees [3] of chordal
graphs have the four properties mentioned above. However,
in the following section, we will point out that the equiva-
lence of those properties always hold and are not limited to
chordal graphs.

3. CHARACTERIZATIONS OF JUNCTION
TREES

In this section, we point out the four equivalent proper-
ties of junction trees, and show an invariance property of
multisets.

Theorem 3.1. For any given UV , we have T jp
UV

= T ist
UV

=

T rip
UV

. Furthermore, if T jp
UV

�= ∅, then T jp
UV

= T ist
UV

= T rip
UV

=
T mst
UV

.

Proof. If we see the elements in UV as prime blocks of gen-
eral undirected graphs, the proof here is similar as that of
[25].

The condition that T jp
UV

�= ∅ for the theorem above is nec-
essary. For example, let us consider the weighted secondary
intersection graph WUV

in Figure 2. It is easy to verify that
any maximal-weight spanning tree of UV may not be a junc-
tion tree, though the weighted secondary intersecting graph
WUV

and its maximum-weight spanning trees always exist.
For acyclic hypergraphs, the relationship between the

junction property and the running intersection property
is discussed in [2] and the maximum-weight spanning tree

Figure 2. An example of weighted secondary intersection
graphs WUV , in which UV = {{1, 2, 4}, {2, 3, 4}, {1, 3, 4}}

and every edge is assigned the weight 2.

property is studied in [9] and [20]. Acyclic hypergraphs are
closely related to hypertrees, and many fundamental facts
about relations of acyclic hypergarphs to hypertrees are dis-
cussed in detail in [23].

The following theorem, which is also mentioned in [29],
demonstrates an invariant property of the multiset.

Theorem 3.2. For any given UV and T1, T2 ∈ T jp
UV

, we
have MT1 = MT2 .

Proof. For any T ∈ T jp
UV

, T ∈ T rip
UV

and MT is a S-system of
some RIP sequence of UV from Theorem 3.1. Thus we have
MT1 = MT2 by Lemma 2.1 (2).

Under multivalued dependencies in relational databases,
the result of Theorem 3.2 can be implied by Corollary 8.6
in [2]. Figure 3 shows that two different junction trees of UV

have the same multiset.

4. THE TREE STRUCTURE OF GRAPHS
FOR VARIOUS GRAPHICAL MODELS

This section discusses the secondary structure of graphs
for various graphical models from the viewpoint of junction
trees. Without loss of generality, we assume that graphs are
connected. Let G = (V,E) be a undirected graph, where V
is the set of vertices and E the set of undirected edges. A
set of distinct vertices [x0, x1, . . . , xk] is called as a path L
in G between x0 and xk if (xi−1, xi) ∈ E for all i = 1, . . . , k.
For G = (V,E), a vertex subset S is called a separator for
two disjoint vertex subsets A,B if every path in G between
some x ∈ A and y ∈ B contains a vertex in S. We also say
that S separates A and B in G. The separations in graphs
under statistical models always mean conditional indepen-
dence relations among variables.

Given two vertices u, v ∈ V , S is a uv-separator if S
separates u and v in G and S is a minimal uv-separator if
no proper subset of S separates u and v in G. Furthermore,
S is a relative minimal separator of G if there exist two
vertices u and v in G such that S is a minimal uv-separator.
A clique is a maximal complete vertex set. A chord of a
path is an edge joining two nonconsecutive vertices on the
path. A graph is chordal (or triangulated, or decomposable)
if every cycle with length greater than three has a chord.
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Figure 3. Two junction trees with the same multiset.

Figure 4. A graph with four prime blocks.

If V = A
⋃

B
⋃
S and A

⋂
B = ∅, A

⋂
S = ∅, B

⋂
S = ∅,

we call (A,B, S) as a partition of V . For a graph G = (V,E),
a partition (A,B, S) of V is a decomposition of G if A,B are
separated by S in G, and S is complete. The decomposition
of graphs for graphical models shows that a complex system
is built by combining simpler parts; estimates and tests on
the whole models can be decomposed into those on sub-
models.

A subgraph is prime if there is no decomposition of it.
An induced subgraph G(U) is called a prime block of G
if G(U) is prime and G(X) is not prime for all X with
U � X ⊆ V . For convenience, if G(U) is a prime block
of G, then we also call U a prime block of G. Assume
that (A,B, S) is a decomposition of G. Furthermore, if the
prime blocks of G′ = G(A

⋃
S) and G′′ = G(B

⋃
S) are

pairwise different and they are all the prime blocks of G,
then (A,B, S) is called a P-decomposition of G where the
letter “P” denotes the word “prime” (see [15]). An exam-
ple is shown in Figure 4. This graph has four prime blocks
{{1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6, 7}, {5, 8}}. And it can be veri-
fied that ({1, 2, 3}, {6, 7, 8}, {4, 5}) is a P-decomposition of
this graph, while ({1, 2, 3}, {7, 8}, {4, 5, 6}) is a decomposi-
tion but not a P-decomposition.

4.1 Marked graphs for mixed graphical
models in statistics

Mixed graphical models under conditional Gaussian dis-
tributions introduced by Lauritzen and Wermuth [13] are
important in statistics for mixtures of qualitative and quan-
titative data. Those models are represented by marked
graphs with marked vertices Δ and unmarked vertices Γ
corresponding to discrete and continuous variables, respec-
tively. In mixed graphical models, discrete variables Δ fol-
lows multinomial distributions and continuous variables Γ
given Δ follows Gaussian distributions.

Assume that G = (Δ
⋃

Γ, E) is a marked graph with
marked vertices Δ and unmarked vertices Γ, which are dis-
played as round rectangles and circles, respectively. In a
special case, decomposable marked graphs are considered by
Leimer [14], which can be applied to decomposable graphical
models as discussed in Lauritzen [11]. And in this section, we
mainly discuss general marked graphs for mixed graphical
models.

If a partition (A,B, S) of V = Δ
⋃

Γ is a decomposition
of G = (V,E) and any of the three conditions A ⊆ Γ, B ⊆ Γ
or S ⊆ Δ holds, we call (A,B, S) an M-decomposition
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Figure 5. A marked graph with three MP-blocks.

of G where the letter “M” denotes the word “marked”.
A subgraph is M-prime if there is no M-decomposition of
it. An induced subgraph G(U) is an MP-block of G if
G(U) is M-prime and G(X) is not M-prime for all X with
U � X ⊆ V . For convenience, if G(U) is an MP-block of
G, then we also call U an MP-block of G. Assume that
(A,B, S) is an M-decomposition of G. Furthermore, if the
MP-blocks of G′ = G(A

⋃
S) and G′′ = G(B

⋃
S) are pair-

wise different and they are all the MP-blocks of G, then
(A,B, S) is called an MP-decomposition of G. For example,
there are two MP-decompositions ({1, 7}, {3, 4, 5}, {2, 6})
and ({1, 2, 6, 7}, {4}, {3, 5}) of the graph G in Figure 5.
{1, 2, 6, 7}, {2, 3, 5, 6} and {3, 4, 5} are all the three MP-
blocks of G.

A subset sequence {U1, . . . , Um} of V has a marked run-
ning intersection property (MRIP) if {U1, . . . , Um} is an RIP
sequence, and any of the two conditions (Uj \ Sj) ⊆ Γ or
Sj ⊆ Δ holds for any 2 ≤ j ≤ m. The sequence with the
marked running intersection property is called a SD-ordered
sequence in [14].

For a marked graph G, a mixed graphical model PG on
it consists of conditional Gaussian distributions which are
Markovian with regards to G. A graphical model PG is said
to be collapsible onto B ⊆ V if P (xB) ∈ PG(B) for any
P (x) ∈ PG. For mixed graphical models, the model col-
lapsibility is equivalent to the estimation collapsibility that
the marginality P̂ (xB) of the maximum-likelihood estimate
on the whole model for G is just the maximum-likelihood
estimate P̂B(xB) on the marginal model for G(B). Fryden-
berg [5] also shows that a mixed model of marked graph
G = (Γ

⋃
Δ, E) is collapsible onto A if and only if for any

connected component C in Ac, the boundary of C is com-
plete, and either C ⊆ Γ or Δ contains the boundary of C.
In fact, this equivalent condition for collapsibility expressed
by graph language is consistent with the definition of M-
decompositions of marked graphs, which provides statisti-
cians a convenient way of estimating and testing for mixed
models [26]. And an example for applying M-decomposition
to collapsibility is described at the end of this subsection.

The following Lemma 4.1, Theorem 4.1 and Corollary 4.1,
which characterize the properties of the M-decomposition
and MP-blocks, are inspired by Leimer [15].

Lemma 4.1. Let (A,B, S) be an M-decomposition of a
marked graph G, then:

(i) If U is an MP-block of G, then U ⊆ A
⋃

S or U ⊆
B

⋃
S and U is an MP-block of G(A

⋃
S) or G(B

⋃
S),

respectively.
(ii) Every MP-block U of G(A

⋃
S) or G(B

⋃
S) with U �=

S is an MP-block of G.
(iii) If U1 and U2 are different MP-blocks of G, then U1

⋂
U2

is complete.

Proof. (i) Assume that A
⋂
U �= ∅ and B

⋂
U �= ∅.

(A
⋂

U,B
⋂

U, S
⋂
U) is an M-decomposition of G(U),

which is a contradiction. The second part of (i) is obvious.
(ii) Let U be an MP-block of G(A

⋃
S) with U �= S (and

similarly for G(B
⋃

S)). We can not have U ⊂ S since G(S)
is M-prime, hence U

⋂
A �= ∅. There is an MP-block X of G

with U ⊆ X, i.e., X
⋂
A �= ∅. It follows from part (i) of the

lemma that X is an MP-block of G(A
⋃

S), hence U = X.
(iii) U := U1

⋃
U2. G(U) is not M-prime since U1 and

U2 are different MP-blocks of G. Let (A′, B′, S′) be an M-
decomposition of G(U). Then U1 and U2 are also MP-blocks
of G(U) and part (i) of this lemma implies U1 ⊆ A′ ⋃S′ and
U2 ⊆ B′ ⋃S′ or vice versa. Hence U1

⋂
U2 ⊆ S′. Thus we

have that U1

⋂
U2 is complete.

By this lemma, we know that an M-decomposition
(A,B, S) of G is an MP-decomposition if and only if S is
neither an MP-block of G(A

⋃
S) nor G(B

⋃
S). If (A,B, S)

is an M-decomposition of G, and S is an MP-block of both
G(A

⋃
S) and G(B

⋃
S), then S is an MP-block of G.

Theorem 4.1. For a marked graph G = (Δ
⋃

Γ, E)
and a complete set C ⊆ Δ, there is an MRIP sequence
{U1, . . . , Um} of all the MP-blocks in G such that C ⊆ U1.

Proof. We proceed by induction on n = |V |. The case n = 1
is trivial. Consider G = (V,E) with n ≥ 2 and assume that
the theorem is true for all graphs with less than n vertices.
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Figure 6. The marked graph G = (V,E) with marked vertices Δ = {5, 6, 7, 8} and unmarked vertices Γ = {1, 2, 3, 4, 9}
which has three MP-blocks {1, 2, 3, 4}, {3, 4, 5, 6, 7} and {5, 6, 8, 9}.

If G is M-prime, there is nothing to prove. Otherwise, let
(A,B, S) be an M-decomposition of G. Based on the induc-
tion hypothesis there are two MRIP sequences {A1, . . . , Aa}
and {B1, . . . , Bb} of all the MP-blocks in G(A

⋃
S) and

G(B
⋃
S), respectively.

If S ⊆ Δ and C ⊆ A
⋃

S, then we can assume that C ⊆
A1 and S ⊆ B1 according to the induction hypothesis since
S and C are both complete. Thus {A1, . . . , Aa, B1, . . . , Bb}
is an MRIP sequence. The case that S ⊆ Δ and C ⊆ B

⋃
S

is similar.
If B ⊆ Γ and C ⊆ A

⋃
S, then we can assume that C ⊆

A1 according to induction hypothesis since C is complete.
Thus {A1, . . . , Aa, B1, . . . , Bb} is also an MRIP sequence. If
B ⊆ Γ and C ⊆ B

⋃
S, then we have C ⊆ S. We can assume

that C ⊆ A1 according to induction hypothesis since C is
complete. Thus {A1, . . . , Aa, B1, . . . , Bb} is still an MRIP
sequence. The case that A ⊆ Γ is similar.

Without loss of generality, we assume that
{A1, . . . , Aa, B1, . . . , Bb} is an MRIP sequence and C ⊆ A1.
If (A,B, S) is an MP-decomposition, then the above joint
sequence is the desired MRIP sequence. Otherwise, we see
that S is an MP-block of G(A

⋃
S) or/and G(B

⋃
S). In

both case, we get the desired sequence after omitting S
once in the joint sequence by Lemma 2.13 of Lauritzen
[11].

Corollary 4.1. For a marked graph G, if {U1, . . . , Um}
is an MRIP sequence of all the MP-blocks of G,
then the partition (A,B, S) := ((

⋃m−1
k=1 Uk) \ Um, Um \

(
⋃m−1

k=1 Uk), (
⋃m−1

k=1 Uk)
⋂

Um) is an MP-decomposition of G

into G′ = G(A
⋃

S) = G(
⋃m−1

k=1 Uk)) and G′′ = G(Um).
{U1, . . . , Um−1} is an MRIP sequence of all the MP-blocks
of G′.

Proof. S is complete by Lemma 4.1(iii). Using the definition
of the MRIP sequence, it remains to show that (A,B, S) is
a decomposition of G and that S is not an MP-block of G′.

If (b, v) ∈ E for some b ∈ B, v ∈ V \ Un, then there is an
MP-block U of G with {b, v} ⊆ U , and we have b ∈ S by
the definition of S. It is a contradiction. This shows that
(A,B, S) is a decomposition of G. Furthermore, S ⊆ Up

for some p < n, hence S is not an MP-block in G′. Thus
(A,B, S) is an MP-decomposition of G. The second part of
this corollary is obvious.

We denote the set of all the MP-blocks in G as UG. Then
UG can form junction trees and we also have the following
corollary.

Corollary 4.2. For a marked graph G, if UG is the set of
all the MP-blocks in G, then T jp

UG
= T ist

UG
= T rip

UG
= T mst

UG
.

An example for the tree structure of marked graphs is
shown in Figure 6. {{1, 2, 3, 4},{3, 4, 5, 6, 7},{5, 6, 8, 9}} is
the set UG of all the MP-blocks of G, and a junction tree
for UG is also shown. Estimates and tests on the whole
mixed graphical models can be decomposed into those on
sub-models of three MP-blocks. If we are interested in vari-
ables {3, 7}, variables {1, 2, 8, 9} can be collapsed over.

Figure 7 shows a graphical representation of an emis-
sion problem considered in Lauritzen [10]. The variables,
filter state (F), waste type (W) and burning regimen (B),
are conceived as discrete variables. The remaining variables
are measured on a continuous quantitative scale: metals in
waste (Min), metals emission (Mout), filter efficiency (E),
dust emission (D), CO2 concentration in emission (C), and
light penetrability (L).

From the junction tree structure showed in Figure 8,
we have an M-decomposition ({B,C,E, F, L}, {Min,Mout},
{D,W}). Thus {Min,Mout} can be collapsed over by the
graph condition of collapsibility for mixed graphical models.
If we are interested in statistical inferences on some variables
which are contained in {B,C,E, F, L,D,W}, we can di-
rectly do the estimate on the local graphical model induced
by {B,C,E, F, L,D,W}, rather than first estimate for the
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Figure 7. A marked graph from emission problems.

whole model and then do the marginality. This shows that
M-decompositions and tree structures provide us a method
to enhance the efficiency and accuracy of estimate. More-
over, even if {Min,Mout} are unobserved variables or vari-
ables with missing data, they can be negligible when we are
only interested in variables in {B,C,E, F, L,D,W}.

4.2 Interaction graphs of generating classes
in hierarchical models

A hierarchical model in statistics is characterized by a
reduced class of variable sets, which is called a generating
class. Let C = {C1, C2, . . . , Cm} be a generating class and

V =
⋃m

k=1 Ck. For a subset B ⊆ V , we define CB = {C
⋂

B :
C ∈ C} and assume that CB is reduced for convenience.

A hierarchical model PC on C consists of multinomial
distributions P (iV ) satisfying that P (iV ) =

∏
C∈C φC(iC),

where φC(iC) is a function on C. For B ⊆ V , denote
PCB

as the marginal model on CB , and P̂[B](iB) as the
maximum-likelihood estimate on PCB

. PC is collapsible onto
B if P (iB) ∈ PCB

for any P (iV ) ∈ PC . As shown in [1], PC
is collapsible onto B if and only if the marginality P̂ (iB) of
the maximum-likelihood estimate on the whole model is just
the maximum-likelihood estimate P̂[B](iB) on the marginal
model PCB

.

The graph GC := (V,EC) is the interaction graph of C,
where an edge (e, f) belongs to EC if and only if e �= f
and e, f ∈ Ct for some t. If a partition (A,B, S) of V is a
decomposition of GC and S ⊆ C for some C ∈ C, we call
(A,B, S) an H-decomposition of GC where the letter “H”
denotes the word “hierarchical”. An induced subgraph of GC
is H-prime if there is no H-decomposition of it. An induced
subgraph GC(U) is called an HP-block of GC if GC(U) is H-
prime and GC(X) is not H-prime for all X with U � X ⊆ V .
For convenience, if GC(U) is an HP-block of GC , then we also
call U an HP-block of GC . Assume that (A,B, S) is an H-
decomposition of GC . Furthermore, if the HP-blocks of G′

C =
GC(A

⋃
S) and G′′

C = GC(B
⋃

S) are pairwise different and
they are all the HP-blocks of GC , then (A,B, S) is called an
HP-decomposition of GC .

Figure 9 shows an interaction graph GC of the generating
class C = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},{3, 4},
{3, 5}, {3, 6}, {4, 5}, {5, 6}}. In GC , ({1, 2, 4}, {6}, {3, 5}) is

Figure 8. A junction tree consists of five MP-blocks.
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Figure 9. The interaction graph GC of the generating class C = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},{3, 4}, {3, 5},
{3, 6}, {4, 5}, {5, 6}} with two HP-blocks.

the only one HP-decomposition. {1, 2, 3, 4, 5} and {3, 5, 6}
are the two HP-blocks of GC .

The definition of H-decompositions comes from the equiv-
alence condition of the collapsibility of hierarchical mod-
els in statistics. Asmussen and Edwards [1] show that a
hierarchical model is collapsible onto a if and only if the
boundary of every connected component of ac is contained
in some generator, which is consistent with the definition
of H-decompositions. For a generating class C, if there is
an H-decomposition (A,B, S) of GC , PC is collapsible onto
A

⋃
S. Thus the maximum likelihood estimate on variables

of A
⋃
S directly from the sub-model on CA⋃

S is just the
marginality of the estimate from the whole model on C. If
we are interested in some variables in A

⋃
S and there are

some unobserved variables in B, then the estimate on A
⋃

S
directly from the sub-model on CA⋃

S is valid and avoids un-
observed variables.

The proofs of the following Lemma 4.2, Theorem 4.2 and
Corollary 4.3 are similar as Lemma 4.1, Theorem 4.1 and
Corollary 4.1. So we omit the proofs of Lemma 4.2, Theo-
rem 4.2 and Corollary 4.3.

Lemma 4.2. Let (A,B, S) be an H-decomposition of GC,
then:

(i) If U is an HP-block of GC, then U ⊆ A
⋃
S or

U ⊆ B
⋃
S and U is an HP-block of GC(A

⋃
S) or

GC(B
⋃
S), respectively.

(ii) Every HP-block U of GC(A
⋃

S) (or GC(B
⋃
S)) with

U �= S is an HP-block of GC.
(iii) If U1 and U2 are different HP-blocks of GC, U1

⋂
U2 is

contained in some element of C.
From this lemma, an H-decomposition (A,B, S) is an

HP-decomposition of GC if and only if S is neither an
HP-block of GC(A

⋃
S) nor GC(B

⋃
S). If (A,B, S) is an

H-decomposition of GC , and S is an HP-block of both
GC(A

⋃
S) and GC(B

⋃
S), then S is an HP-block of GC .

Theorem 4.2. For a generating class C, there is an or-
dering of all the HP-blocks U1, . . . , Um of GC such that
{U1, . . . , Um} is an RIP sequence.

Corollary 4.3. For a generating class C, if {U1, . . . , Um}
is an RIP sequence of all the HP-blocks of the interaction
graph GC, the partition (A,B, S) := ((

⋃m−1
k=1 Uk) \Um, Um \

(
⋃m−1

k=1 Uk), (
⋃m−1

k=1 Uk)
⋂

Um) is an HP-decomposition of
GC into G′

C = GC(A
⋃

S) and G′′
C = GC(Um).

{U1, . . . , Um−1} is an RIP sequence of all the HP-blocks of
G′

C.

The decomposition algorithm proposed by Leimer [15]
can be revised to find the set UC of all the HP-blocks in
GC . Then UC can form junction trees and we also have the
following corollary.

Corollary 4.4. For a generated class C, if UC is the set of
all the HP-blocks in GC, then T jp

UC
= T ist

UC
= T rip

UC
= T mst

UC
.

Let us consider a hierarchical model whose generating
class is C = {{1, 2, 3}, {2, 3, 4}, {2, 3, 5}, {2, 6}, {4, 5, 6, 7}}.
This generating class forms an interaction graph GC , which
has three HP-blocks, and a junction tree of all the three
HP-blocks is shown in Figure 10. This tree structure from
H-decomposition demonstrates the independence relations
among subsets of variables within the framework of the
globe. By the equivalent condition of collapsibility for hier-
archical models, the estimates and tests on the whole mod-
els can be decomposed into those on sub-models of three
HP-blocks. If we are only interested in variables {3, 6}, we
can directly do the estimate on the local model induced by
{2, 3, 4, 5, 6}. This shows that even if {1, 7} are unobserved
variables or variables with missing data, H-decompositions
and tree structures can help us eliminate {1, 7}.

Let G be an undirected graph and C be the set of all the
cliques in G. G can be viewed as the interaction graph GC of
C. Thus (A,B, S) is an HP-decomposition of GC if and only
if (A,B, S) is a P-decomposition of G, and U is an HP-block
of GC if and only if U is a prime block of G. The following
corollary is also referred to by Wang and Guo [25].

Corollary 4.5. If G = (V,E) is an undirected graph, and
UG is the set of all the prime blocks in G, then T jp

UG
= T ist

UG
=

T rip
UG

= T mst
UG

.
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Figure 10. The interaction graph GC of the generating class C = {{1, 2, 3}, {2, 3, 4}, {2, 3, 5}, {2, 6}, {4, 5, 6, 7}} which has
three HP-blocks {1, 2, 3}, {2, 3, 4, 5, 6} and {4, 5, 6, 7}.

Figure 11. Graph G with four prime blocks and a junction tree T of the set of all the prime blocks in this graph.

Figure 12. Chordal graph G with four cliques and a junction tree T of the set of all the cliques in this chordal graph.
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Furthermore, if G is a chordal graph, the set of all the
prime blocks of G is just the set of all the cliques of G. Then
we have the following corollary which is also studied by Blair
and Peyton [3].

Corollary 4.6. If G = (V,E) is a chordal graph, and KG

is the set of all the cliques in G, then T jp
KG

= T ist
KG

= T rip
KG

=
T mst
KG

.

4.3 Separation trees for general undirected
graphs

Let G = (V,E) be an undirected graph and UV be a
family of subsets of V . A secondary tree T = (UV , ET ) is
a separation tree for G = (V,E) if for any (U,U ′) ∈ ET ,
S = U

⋂
U ′ can separate the vertex sets V1 \ S and V2 \ S

of two subtrees T1 and T2 obtained by removing the edge
(U,U ′) from T (see [16]). The following Theorem 4.3 shows
the relationship between separation trees and junction trees.

Theorem 4.3. For an undirected graph G = (V,E), T =
(UV , ET ) is a separation tree for G if and only if T =
(UV , ET ) is a junction tree and for any edge (x, y) ∈ E there
is a U ∈ UV such that x, y ∈ U .

Proof. To verify the necessity, we show that for every pair
of distinct elements U,U ′ ∈ UV , the set U

⋂
U ′ is contained

in every element on the path connecting U and U ′ in the
T . If U and U ′ are adjacent in T , it is trivial. If there is
a path [U1 = U,U2, . . . , Ul, Ul+1 = U ′] in T , then U

⋂
U ′

is contained in Sk = Uk

⋂
Uk+1 for k = 1, 2, . . . , n because

of the separation property of Sk. Thus T is a junction tree.
For any (x, y) ∈ E, if there does not exist a U ∈ UV such
that x, y ∈ U , x and y are separated from the definition of
separation trees. It is a contradiction to the fact that (x, y)
is an edge.

To verify the sufficiency, we show that for any (U,U ′) ∈
ET , S = U

⋂
U ′ can separate the vertex sets V1\S and V2\S

of two subtrees T1 and T2 obtained by removing the edge
(U,U ′) from T . If not, there is x ∈ V1 \ S and y ∈ V2 \ S
such that (x, y) ∈ E. Then there is a U ∈ UV such that
x, y ∈ U . Without loss of generality, we assume that U in
T1. From the junction property, y is contained in S. So it is
a contradiction to the fact that y ∈ V2 \ S.

From Theorem 4.3, we know that the separation tree also
has three other properties.

Corollary 4.7. A separation tree T = (UV , ET ) for an
undirected graph G = (V,E) has the junction property, the
induced-subtree property, the running-intersection property,
and the maximum-weight spanning tree property.

Proof. It follows from Theorem 4.3 and Theorem 3.1.

The following Theorem 4.4 shows a specific separation
tree for an undirected connected graph G.

Theorem 4.4. For an undirected graph G = (V,E) and
the set UG of all the prime blocks in G, any junction tree
T = (UG, ET ) ∈ T jp

UG
is a separation tree for G.

Proof. It follows from Theorem 4.3.

For any undirected graph G = (V,E), we can construct a
separation tree whose multiset consists of a maximal set of
pairwise non-crossing relative minimal separators of G. Two
relative minimal separators S and T are said to be crossing
if S is a uv-separator for a pair of vertices u, v ∈ T , in which
case T is an xy-separator for a pair of vertices x, y ∈ S. Let
SG denote a maximal set of pairwise non-crossing relative
minimal separators of G. We can obtain a chordal graph G′

by putting every separator in SG into a complete vertex set.
Then SG is the set of all the relative minimal separators of
G′ by Property 5.3 of Heggernes [8]. The set KG′ of all the
cliques in G′, which is a reduced subset class of V , can form
a junction tree and also a separation tree T = (KG′ , ET )
for G′ and G by Corollary 4.4 and Theorem 4.4. Thus the
multiset MT in the separation tree T consists of the set SG.
An invariant property for separation trees is characterized
in the following theorem.

Theorem 4.5. For an undirected graph G = (V,E) and a
family UV of V , if T = (UV , ET ) is a separation tree for G
and T ′ = (UV , ET ′) is a junction tree, then we have that T ′

is also a separation tree for G.

Proof. It follows from Theorem 4.3.

4.4 D-separation trees for directed acyclic
graphs

The D-separation tree is a useful notion in statistics,
which is introduced by Xie, Geng and Zhao [30] to character-
ize the structure of conditional independencies among mul-
tiple variable sets. By using D-separation trees, the struc-
tural learning of a directed acyclic graph can be decomposed
into problems related to small subgraphs. Thus both the ef-
ficiency of structural learning and the power of conditional
independence tests can be improved. Recently, Liu, Guo and
Jing [16] have studied a minimal d-separation tree under a
partial ordering, by which the maximal efficiency of learn-
ing can be obtained. And in this subsection, we focus on the
properties of D-separation trees.

Let
−→
G = (V,

−→
E ) be a directed acyclic graph, where V is

the vertex set and
−→
E is the set of directed edges. A directed

edge from a vertex u to a vertex v is denoted by u → v, and
u is called a parent of v. The set of all parents of a vertex
v is denoted by pa(v). u → v ← w forms a v-structure if
there is no edge from u to w or from w to u. A moral graph−→
Gm for

−→
G = (V,

−→
E ) is an undirected graph (V,Em) where

Em = {(u, v) : u → v or v → u in
−→
E }

⋃
{(u, v) : u → w ← v

forms a v-structure}.
We define a set of distinct vertices [x0 =

u, . . . , xn−1, xn = v] as a path in G between u and

v if xi−1 → xi or xi → xi−1 is contained in
−→
E for

i = 1, . . . , n. v is a descendant of u if there is a path
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between u and v in
−→
G and all edges on this path point at

the direction toward v. A path l is d-separated by a set of
vertices S, if l contains three vertices u, r, v such that either
r ∈ S satisfying one of the three conditions u → r → v,
v → r → u and u ← r → v, or r �∈ S satisfying u → r ← v
and no descendant of r in S. Two distinct sets X and
Y of vertices are d-separated by a set S if S d-separates
every path between any vertex in X and any vertex in Y .

Let
−→
G = (V,

−→
E ) be a directed acyclic graph and UV be

a family of subsets of V . A secondary tree T = (UV , ET )
is a d-separation tree for

−→
G = (V,

−→
E ) if for any edge

(U,U ′) ∈ ET , S = U
⋂

U ′ d-separates, in
−→
G , the vertex

sets V1 \ S and V2 \ S of two subtrees T1 and T2 obtained
by removing the (U,U ′) from T (see [30]). The following
Theorem 4.6 shows the relationship between d-separation
trees and junction trees.

Theorem 4.6. For a directed acyclic graph
−→
G = (V,

−→
E ),

T = (UV , ET ) is a d-separation tree for
−→
G if and only if

T = (UV , ET ) is a junction tree and for any x ∈ V there is
a U ∈ UV such that ({x}

⋃
pa(x)) ⊆ U .

Proof. It is well known that T is a d-separation tree for
−→
G

if and only if T is a separation tree for
−→
Gm = (V,Em)(see

[16]).

If T is a d-separation tree for
−→
G , then T is a separation

tree for
−→
Gm. From Theorem 4.3, T is a junction tree. Since

{x}
⋃

pa(x) is complete in
−→
Gm and T is a separation tree for−→

Gm, thus there is a U ∈ UV such that ({x}
⋃

pa(x)) ⊆ U .

If for any x ∈ V there is a U ∈ UV such that
({x}

⋃
pa(x)) ⊆ U , then for any edge (u, v) ∈ Em there is

a U ∈ UV such that u, v ∈ U . Furthermore, if T = (UV , ET )
is a junction tree, then T is a separation tree for

−→
Gm from

Theorem 4.3. Thus, T is a d-separation tree for
−→
G .

From Theorem 4.6 we know that the d-separation tree
also has three other properties.

Corollary 4.8. For a directed acyclic graph
−→
G = (V,

−→
E )

and a d-separation tree T = (UV , ET ) for
−→
G , T has the

junction property, the induced-subtree property, the running-
intersection property, and the maximum-weight spanning
tree property.

If we substitute the d-separation tree for the separa-
tion tree in Theorem 4.5, the corresponding conclusion also
holds.

Theorem 4.7. For a directed acyclic graph
−→
G = (V,

−→
E ),

if T = (UV , ET ) is a d-separation tree for
−→
G and T ′ =

(UV , ET ′) is a junction tree, then we have that T ′ is also a

d-separation tree for
−→
G .

Proof. It follows from Theorem 4.6.

Figure 13. Star graph constructed from Figure 5.

5. ALGORITHMS FOR CONSTRUCTING
JUNCTION TREES FOR MIXED
GRAPHICAL MODELS AND
HIERARCHICAL MODELS

In this section, we discuss how to construct junction
trees for mixed graphical models and hierarchical models.
First, we consider the case for mixed graphical models.
We need to introduce the notion of star graphs for mark
graphs. For a marked graph G = (V = Γ

⋃
Δ, E), we can

construct a star graph from G by adding � into its ver-
tex set and connecting this � with every discrete variables,
and denote this star graph as G� = (V

⋃
{�}, E�), where

E� = {(δ, �)|δ ∈ Δ}
⋃

E. For any subset B ⊆ V , the star
graph (G(B))� of the induced graphG(B) is just the induced
subgraph G�(B

⋃
{�}) of the star graph G�. Figure 13, in

which � is connected with all the discrete variables, is the
star graph constructed from Figure 5.

Lemma 5.1. Let G = (V,E) be a marked graph and
(A,B, S) is a partition of V with A �= ∅ and B �= ∅, then:

(i) (A,B, S) is an M-decomposition of G and A ⊆ Γ if and
only if (A,B

⋃
{�}, S) is a decomposition of G�.

(ii) (A,B, S) is an M-decomposition of G and B ⊆ Γ if and
only if (A

⋃
{�}, B, S) is a decomposition of G�.

(iii) (A,B, S) is an M-decomposition of G and S ⊆ Δ if and
only if (A,B, S

⋃
{�}) is a decomposition of G�.

Proof. It can be gotten by the relation between marked
graphs and star graphs.

Theorem 5.1. Let G = (V,E) be a marked graph and A ⊆
V , then G(A) is M-prime in G if and only if G�(A

⋃
{�}) is

prime in G� or G�(A) is prime in G�.

Proof. (⇒) If neither G�(A
⋃
{�}) nor G�(A) is prime in G�,

then there is a decomposition (A′, B′, S′) of G�(A
⋃
{�}),

and a decomposition (A′′, B′′, S′′) of G�(A). Then we con-
sider three cases: First, let us consider that � ∈ B′. If B′ =
{�}, then A′′ ⊆ Γ or B′′ ⊆ Γ since A

⋂
Δ ⊆ S′ and S′ is com-

plete. Thus (A′′, B′′, S′′) is an M-decomposition of G(A).
This is a contradiction. If {�} � B′, then (A′, B′ \{�}, S′) is
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an M-decomposition of G(A) by Lemma 5.1. This is a con-
tradiction. Second, let us consider that � ∈ A′. It is similar
to the above discussion. Third, let us consider that � ∈ S′.
We have that (A′, B′, S′ \ {�}) is an M-decomposition of
G(A) by Lemma 5.1. It is a contradiction.

(⇐) If G(A) is not M-prime in G, then there is an M-
decomposition (A′, B′, S′) of G(A). Then we consider three
cases: First, if B′ ⊆ Γ, then (A′ ⋃{�}, B′, S′) is a decom-
position of G�(A

⋃
{�}) by Lemma 5.1 and (A′, B′, S′) is a

decomposition of G�(A). This is a contradiction. Second, if
A ⊆ Γ, then it is similar to the above discussion. Third, if
S′ ⊆ Δ, (A′, B′, S′ ⋃{�}) is a decomposition of G�(A

⋃
{�})

by Lemma 5.1 and (A′, B′, S′) is a decomposition of G�(A).
This is a contradiction.

Theorem 5.2. Let G = (V,E) be a marked graph and U ⊆
V , then U is an MP-block of G if and only if U

⋃
{�} is the

unique prime block containing U of G� or U is a prime block
of G�.

Proof. (⇐) Since G�(U
⋃
{�}) or G�(U) is prime in G�,

G(U) is M-prime in G by Theorem 5.1. If U is not an MP-
block, then there is a subset B ⊆ V such that U � B
and G(B) is M-prime in G. By Theorem 5.1, G�(B

⋃
{�})

or G�(B) is prime in G�. If G�(B
⋃
{�}) is prime, then

neither U
⋃
{�} nor U is a prime block of G� since U �

U
⋃
{�} � B

⋃
{�}. If G�(B) is prime, U is not a prime

block and U
⋃
{�} is not the unique prime block containing

U of G�. It is also a contradiction.
(⇒) Since U is an MP-bock of G, G�(U

⋃
{�}) is prime

or G�(U) is prime.
If G�(U

⋃
{�}) is prime, then G�(U) is not a prime block

of G�. Furthermore, if U
⋃
{�} is not a prime block of G�,

then there is a subset B ⊆ V such that U � B and
G�(B

⋃
{�}) is prime. Thus G(B) is M-prime in G by The-

orem 5.1. It is in contradiction with the fact that U is an
MP-block of G. Thus U

⋃
{�} is a prime block of G�. If there

is a subset B ⊆ V such that U � B and G�(B) is prime,
then G(B) is M-prime in G. It is in contradiction with the
fact that U is an MP-block of G. Thus U

⋃
{�} is the unique

prime block containing U of G�.
If G�(U

⋃
{�}) is not prime, then G�(U) is prime. If U is

not a prime block of G�, there is a subset B ⊆ V
⋃
{�} such

that U � B and G�(B) is prime in G�. Since G�(U
⋃
{�})

is not prime in G�, we have U
⋃
{�} �= B. If � ∈ B, then

G(B \{�}) is M-prime by Theorem 5.1. It is a contradiction.
If � �∈ B, G(B) is M-prime by Theorem 5.1. It is also a
contradiction.

Theorem 5.3. If {U1, . . . , Un} is a RIP sequence of all the
prime blocks of G� and � ∈ U1, then {U1 \{�}, . . . , Un \{�}}
is an MRIP sequence.

Proof. It can be gotten by using induction.

From Theorem 5.3 and Lemma 2.13 of Lauritzen [11], an
MRIP sequence of all the MP-blocks of G can be obtained
by a RIP sequence of all the prime blocks of G�, where it

only needs to judge the inclusion relationship among sub-
sets. Thus we use Leimer’s algorithm [15] for G∗, which de-
scribes the P-decomposition for undirected graphs, to con-
struct junction trees for marked graphs.

Algorithm Junction Trees For Mixed Graphical Mod-
els
Input: A marked graph G for a mixed graphical model.
Output: A junction tree for UG of all the MP-blocks of G.
Begin
1. Construct a star graph G∗ for G.
2. Call Leimer’s algorithm [15] for finding a RIP sequence
{U1, U2, . . . , Un} of all the prime blocks of G∗ such that
� ∈ U1.
3. For t = 1, . . . , n, drop the star in Ut if � ∈ Ut. And we ob-
tain an MRIP sequence {U ′

1, U
′
2, . . . , U

′
n} where U ′

t = Ut\{∗}
for t = 1, . . . ,m.
4. Repeatedly remove the element U in {U ′

1, U
′
2, . . . , U

′
n} if

U is contained in another element, and adjust the ordering
by Lemma 2.13 of Lauritzen [11]. Then we obtain an MRIP
sequence {U ′′

1 , U
′′
2 , . . . , U

′′
m} of all the MP-blocks of G.

6. Construct junction tree from this MRIP sequence.
End

Now we consider the case for hierarchical models. We can
apply a slight revised edition of Leimer’s algorithm to the
interaction graph of the generating class for the hierarchical
model.

In the HP-decomposition (A,B, S) for interaction graphs,
S is required to be contained in some element of the gener-
ating class. So we only need to judge whether C(ft), which
is defined in [15], is contained in some element in generating
class. Thus we obtain an algorithm for finding junction trees
for hierarchical models as follows:

Algorithm Junction Trees For Hierarchical Models
Input: A generating class C of a hierarchical model.
Output: A junction tree for UC of all the HP-blocks of GC .
Begin
1. Construct GC from C.
2. Call Leimer’s algorithm [15] for GC , and in addition,
the decomposition step is successful only if C(ft) is con-
tained in some element in C. Then we obtain a RIP sequence
{U1, . . . , Um} of all the HP-block of GC .
3. Construct junction from this RIP sequence.
End

6. DISCUSSION AND CONCLUSION

In this paper, we consider the structure of graphs in var-
ious graphical models from the viewpoint of junction trees,
and these trees have four equivalent properties: junction
properties, induced subtree properties, running intersection
properties and maximum weight spanning tree properties.
This common tree structure can efficiently demonstrate lots
of conditional independence relations in statistical models,
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which provides us convenience to divide and conquer esti-
mates [32], tests [5] and computations [12].

To handle with all the potential occurrences in different
graphical models, we present the definition of junction trees
as general as possible, and investigate secondary structures
for graphs used in different graphical models.

Our investigation shows that there exist junction tree
structures for marked graphs in mixed graphical models.
And a similar result is also for interaction graphs in hi-
erarchical models. These secondary structures of graphical
models can be exploited to find essential models, containing
our interested variables, of lower dimensions and to collapse
unobserved variables or variables of missing data over.

We study the relations among junction trees, separation
trees and d-separation trees. Properties of d-separation trees
can be applied to learnings of Bayesian networks, which effi-
ciently improve the power of conditional independence tests
[16, 30].

For mixed graphical models and hierarchical models,
we propose two algorithms to construct junction trees for
marked graphs and interaction graphs. And these junction
tree structures obtained by our algorithms can be applied
to collapsibility for mixed graphical models and hierarchical
models, and enhance the efficiency of estimates and tests.

Statistical models and relational databases have a close
relation, which is not further considered in this paper. Wong
et al. [27] give a detailed discussion on the relation between
Bayesian networks and relational databases for the implica-
tion problem. Some algorithms in database areas can also
be applied to statistical problems. Graham’s algorithm can
be used for collapsibility in decomposable graphical mod-
els [17]. Fagin’s decomposition algorithm [2] has reference
values to the decomposition of statistical models.

In this paper, we have not discussed the association be-
tween marked graphs and mixed Bayesian networks. Actu-
ally, moral graphs for mixed Bayesian networks are marked
graphs. By some proper triangulations of these marked
graphs, we can obtain junction trees to provide efficient al-
gorithms for probabilistic propagation computations [19]. A
further work for applying junction trees to those computa-
tions in mixed Bayesian networks is a topic of our future
research.
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