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Multi-category parallel models in the design of
surveys with sensitive questions

Yin Liu and Guo-Liang Tian
∗

In the past few years, several non-randomized response
(NRR) designs were introduced in sample surveys with sen-
sitive questions. However, existing NRR models (e.g., the
crosswise model, the triangular model, the hidden sensitive
model and the multi-category triangular model) have cer-
tain limitations in applications, for example, they can only
be applied to a situation where at least one of the popula-
tion categories of interest is non-sensitive. In this paper, we
propose a new NRR multi-category parallel model with a
better degree of privacy protection and a wider application
range, where all population categories of interest can be sen-
sitive or one of them can be totally non-sensitive. Likelihood-
based inferences for parameters of interest are developed. In
addition, an important special case of the multi-category
parallel model is studied to test the association of two sen-
sitive binary variables. Furthermore, theoretic comparisons
show that the multi-category parallel model is more efficient
than the multi-category triangular model for some cases. An
example on the study of association between the number of
sex partners and annual income is used to illustrate the pro-
posed method.

Keywords and phrases: Chi-squared test, Likelihood ra-
tio test, Multi-category parallel model, Multi-category tri-
angular model, Non-randomized response technique.

1. INTRODUCTION

In the past few decades, the sample survey technique has
played an important role in epidemiological, psychological,
medical and social studies and is indispensable in assist-
ing researchers to make statistical inferences and in guiding
them to establish a meaningful decision. However, in surveys
involving sensitive information or highly private questions
(e.g., sexual behavior, drug-taking, tax evasion, cheating on
exams, gambling and so on), problems often arise when sen-
sitive questions are asked directly. For example, some re-
spondents may refuse to answer or provide false answers in
order to protect their privacy. Statistical inferences based
on these inaccurate survey data are in general unreliable.

For a single sensitive question with binary answers (‘yes’
or ‘no’), Warner [15] proposed a randomized response (RR)
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method for partially overcoming aforementioned problems
while protecting respondents’ privacy. Such a technique en-
courages interviewees to provide truthful responses, avoiding
a non-response or false answer. Abul-Ela et al. [1] extended
the Warner model from the dichotomous case to the multi-
chotomous case. Another extension of the Warner model was
made by Bourke and Dalenius [3], in which a Latin square
design was suggested. In addition, Eriksson [4] proposed an
unrelated question RR model, which could be used to esti-
mate the proportions of m (> 2) mutually exclusive sensi-
tive groups (up to m−1 sensitive subclasses) only using one
sample. Bourke [5] considered another unrelated question
model to estimate the proportions of m mutually exclusive
groups with k (1 ≤ k ≤ m − 1) groups containing sensitive
information. If the distribution of the unrelated character-
istic is known, only one sample is needed. Because of the
use of one or two randomized devices (RDs), all RR models
have some limitations including the lack of reproducibility,
of trust, and of cost control.

Recently, without using any RDs some investigators
proposed several non-randomized response (NRR) models
[13, 14, 17, 11], which could overcome some of the limita-
tions with RR designs. Despite greater advances, all NRR
models including the multi-category triangular model [11]
require that at least one of the population categories of in-
terest be non-sensitive. For example, in some surveys, we
may be interested in estimating the proportions of popula-
tion groups associated with sensitive questions such as the
number of sexual partners (≤ 3, 4–6, >7), or days of ille-
gal drug usage in the last month (≤ 1, 2, or ≥ 3), and so
on. First, as the unique NRR model dealing with the case
of m (m ≥ 3) groups, the existing multi-category triangu-
lar model cannot be applied to such situations where each
subclass (denoted by {Y = i} for i = 1, . . . ,m) is sensi-
tive. Second, the multi-category triangular model still has a
lower efficiency for some cases. Third, the newly developed
parallel model of Tian [12] can only deal with the case of
m = 2 groups where both {Y = 0} and {Y = 1} could
be sensitive. Therefore, these limitations with NRR models
motivate us to further develop a new non-randomized multi-
category parallel model, which is an extension of the NRR
parallel model.

This article is organized as follows. In Section 2, we pro-
pose the survey design for the multi-category parallel model
with a wider application range. Section 3 presents the max-
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Table 1. The multi-category parallel model and the corresponding cell probabilities

Category W = 0 W = 1 Category W = 0 W = 1 Marginal
U = 1 © U = 1 p1(1− q) p1

U = 2 � U = 2 p2(1− q) p2
...

...
...

...
...

U = m • U = m pm(1− q) pm
Y = 1 © Y = 1 π1q π1

Y = 2 � Y = 2 π2q π2

...
...

...
...

...
Y = m • Y = m πmq πm

Marginal 1− q q 1

Note: Please truthfully link the two circles by a straightline if you belong to {U = 1,W = 0} ∪ {Y = 1,W = 1}, or link the two
triangles by a straightline if you belong to {U = 2,W = 0} ∪ {Y = 2,W = 1}, . . ., or link the two dots by a straightline if you
belong to {U = m,W = 0} ∪ {Y = m,W = 1}.

imum likelihood estimates (MLEs) and two bootstrap confi-
dence intervals (CIs) of the parameters of interest for small
to moderate sample sizes. In addition, two asymptotic CIs
of parameters are also constructed for large sample sizes. An
important special case (m = 4) for the multi-category par-
allel design is studied in Section 4. In Section 5, we compare
the efficiency between the multi-category parallel model and
the multi-category triangular model. In Section 6, an exam-
ple on the study of association between the number of sex
partners and annual income is used to illustrate the pro-
posed method. Finally, we conclude with a discussion in
Section 7.

2. THE SURVEY DESIGN FOR THE
MULTI-CATEGORY PARALLEL MODEL

Consider a sensitive question QY (e.g., how many sex
partners do you have within a certain period?) withm possi-
ble answers (e.g., 0–3, 4–6 or ≥ 7), which classify the target
population into m mutually exclusive categories and each
category has a certain degree of a sensitive attribute. Let Y
denote the categorical random variable associated with the
question QY and {Y = i} denote that a person in the target
population belongs to the i-th category (i = 1, . . . ,m). The
purpose here is to estimate the proportions πi = Pr{Y = i}
for i = 1, . . . ,m. Let
(2.1)

Tm =̂

{
(x1, . . . , xm)� : xi ≥ 0, i = 1, . . . ,m,

m∑
i=1

xi = 1

}
,

obviously, we have π = (π1, . . . , πm)�∈ Tm.

To carry out the survey for which each category includes
a sensitive attribute, we require an introduction of the non-
sensitive dichotomous variate W and another non-sensitive
multichotomous variate U so that the three variables W , U

and Y are mutually independent with known proportions
q = Pr{W = 1} and

pi = Pr{U = i}, i = 1, . . . ,m.

For example, when m = 4, we may define W = 0 if the re-
spondent’s birthday is in the first half of a month andW = 1
otherwise. Similarly, we define U = i if the respondent was
born in the i-th quarter of a year (i = 1, . . . , 4). Hence, it is
reasonable to assume that q ≈ 0.5 and pi ≈ 0.25 for each i.
Some practical guidelines in choosing the two non-sensitive
variables W and U are given in Section 7. The interviewer
may design the questionnaire in the format as shown at the
left-hand side of Table 1 and ask the interviewee to truth-
fully link the two circles by a straight line if he/she be-
longs to one of the two circles (i.e., {U = 1, W = 0} or
{Y = 1, W = 1}); or to connect the two triangles by a
straight line if he/she belongs to one of the two triangles
(i.e., {U = 2, W = 0} or {Y = 2, W = 1}); . . .; or to con-
nect the two dots by a straightline if he/she belongs to one of
the two dots (i.e., {U = m, W = 0} or {Y = m, W = 1}).
Note that all {W = 0}, {W = 1}, and {U = i} are non-
sensitive subclasses, thus

{U = i, W = 0} ∪ {Y = i, W = 1}, i = 1, . . . ,m,

are also non-sensitive subclasses. Therefore, the respon-
dent’s privacy is well protected, and the interviewer does not
have information on whether the interviewee belongs to the
sensitive class or not. We call this the multi-category parallel
model. The right-hand side of Table 1 shows the correspond-
ing cell probabilities. Since the three random variables W,U
and Y are independent, the joint probability is the product
of two corresponding marginal probabilities.

For those who may not completely understand the ques-
tionnaire shown in Table 1, we can formulate the survey
design of the multi-category parallel model in another man-
ner. For example, let m = 4 and define Y = 1, 2, 3 or 4 if the
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number of days of the illegal drug usage in the last month
for a respondent is 0–1, 2, 3 or ≥ 4. Thus, the 4-category
parallel model can be re-formulated in the following way:

1◦ If your birthday is in the first half of a month (i.e.,
W = 0), please answer ‘1’ (i.e., U = 1), or ‘2’ (i.e.,
U = 2), or ‘3’ (i.e., U = 3), or ‘4’ (i.e., U = 4) to the
question: In which quarter of the year is your birthday?

2◦ If your birthday is in the second half of a month (i.e.,
W = 1), please answer ‘1’ (i.e., Y = 1), or ‘2’ (i.e.,
Y = 2), or ‘3’ (i.e., Y = 3), or ‘4’ (i.e., Y = 4) to the
question: How many days in the last month have you
used illegal drugs?

3. MAXIMUM LIKELIHOOD INFERENCES

3.1 MLEs of parameters via the EM
algorithm

Suppose we conduct a sample survey with n question-
naires and observe n1 respondents connecting the two cir-
cles, n2 respondents connecting the two triangles, . . ., and
nm respondents connecting the two dots (see, Table 1). Let
Yobs = {n; n1, . . . , nm} denote the observed data, where
n =

∑m
i=1 ni. Hence, the observed-data likelihood function

for π = (π1, . . . , πm)� is

(3.1) LMP(π|Yobs) =

(
n

n1, . . . , nm

) m∏
i=1

[pi(1− q) + πiq]
ni ,

where the subscript ‘MP’ refers to the ‘multi-category par-
allel’ model. We employ the EM algorithm [7] to calcu-
late the MLEs of {πi}mi=1 by introducing the latent vector
z = (z1, . . . , zm)�, where zi denotes the number of respon-
dents belonging to the sensitive subclass {Y = i,W = 1}.
We denote the complete data by Ycom = {Yobs, z}. Note
that {pi}mi=1 and q are known, the complete-data likelihood
function for π is

(3.2) L
MP

(π|Yobs, z) ∝
m∏
i=1

[pi(1− q)]ni−zi(πiq)
zi ∝

m∏
i=1

πzi
i .

Therefore, the M-step is to calculate the complete-data
MLEs of {πi}mi=1, which are given by

(3.3) π̂i =
zi

z1 + · · ·+ zm
, i = 1, . . . ,m.

Since the conditional predictive density is

f(z|Yobs,π)(3.4)

=

m∏
i=1

f(zi|Yobs, πi)

=

m∏
i=1

Binomial

(
zi

∣∣∣∣ni,
πiq

pi(1− q) + πiq

)
,

the E-step is to replace zi in (3.3) by its conditional expec-
tation

(3.5) E(zi|Yobs, πi) =
niπiq

pi(1− q) + πiq
, i = 1, . . . ,m.

3.2 Two bootstrap confidence intervals of
parameters

We utilize the bootstrap method to derive the corre-
sponding CIs of {πi}mi=1. Based on the obtained MLE π̂MP =
(π̂

MP1
, . . . , π̂

MPm
)� of π, we could generate

(n∗
1, . . . , n

∗
m)�∼

Multinomial(n; p1(1− q)+qπ̂MP1 , . . . , pm(1− q)+qπ̂MPm).

For the bootstrap sample {n∗
1, . . . , n

∗
m}, we can compute the

bootstrap replication π̂∗
MPi

via the EM algorithm (3.3) and
(3.5) by replacing {n1, . . . , nm} with {n∗

1, . . . , n
∗
m}. Indepen-

dently repeating this process G times, we obtain G boot-
strap replications {π̂∗

MPi
(g)}Gg=1. Therefore, the standard er-

ror, Se(π̂MPi), of π̂MPi can be estimated by the sample stan-
dard deviation of the G replications, i.e.

Ŝe(π̂
MPi

)

(3.6)

=

{
1

G− 1

G∑
g=1

[
π̂∗

MPi
(g)−

π̂∗
MPi

(1) + · · ·+ π̂∗
MPi

(G)

G

]2} 1
2

.

If {π̂∗
MPi

(g)}Gg=1 is approximately normally distributed, a
(1− α)100% bootstrap CI for πi is given by

(3.7)
[
π̂MPi − zα/2Ŝe(π̂MPi), π̂MPi + zα/2Ŝe(π̂MPi)

]
,

where zα is the upper α-th quantile of the standard normal
distribution. Alternatively, if {π̂∗

MPi
(g)}Gg=1 is non-normally

distributed or the bootstrap CI (3.7) is beyond the unit
interval (0, 1), a (1 − α)100% bootstrap CI of πi can be
obtained by

(3.8) [π̂MPi,BL , π̂MPi,BU ],

where π̂MPi,BL and π̂MPi,BU are the 100(α/2) and 100(1−α/2)
percentiles of {π̂∗

MPi
(g)}Gg=1, respectively.

3.3 Explicit solutions to the valid estimators

Although the resulting MLE π̂MP via the EM algorithm
(3.3) and (3.5) definitely belongs to Tm, we can only ob-
tain a numerical solution to π̂MP . In addition, the variance-
covariance matrix of π̂MP does not have a closed-form ex-
pression. However, for some cases, we can obtain explicit
solutions to π̂MP and its variance-covariance matrix.

From (3.1), the log-likelihood function is given by

�MP(π|Yobs) = c+

m∑
i=1

ni log[pi(1− q) + πiq],
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where c is a constant not depending on π. Let
∂�MP(π|Yobs)/∂πi = 0, an alternative estimator of π is given
by

π̂v = (π̂v1, . . . , π̂vm)�(3.9)

=

(
n1/n− p1(1− q)

q
, . . . ,

nm/n− pm(1− q)

q

)�
.

Although π̂vi is an unbiased estimator of the true proportion
πi, π̂v may not belong to Tm. For example, let m = 4, p1 =
· · · = p4 = 0.25, q = 1/3 and (n1, . . . , n4)

� = (15, 19, 7, 9)�,
then

π̂v = (0.40, 0.64,−0.08, 0.04)� /∈ T4.

In this paper, the estimator π̂v given by (3.9) is said to be
valid if π̂v ∈ Tm. Clearly, if π̂v specified by (3.9) is a valid
estimator of π, then π̂v = π̂

MP
. In the following discussion,

we only consider the case of valid estimators.
Note that (n1, . . . , nm)� ∼ Multinomialm(n,λ), where

λ = (λ1, . . . , λm)�∈ Tm,

(3.10) λi = pi(1− q) + πiq, i = 1, . . . ,m.

Let λ̂ = (λ̂1, . . . , λ̂m)� = (n1/n, . . . , nm/n)� denote the
MLE of λ. Then (3.9) can be rewritten in the vector form
as

(3.11) π̂MP = (π̂MP1 , . . . , π̂MPm)�=
λ̂− (1− q)p

q
,

where p = (p1, . . . , pm)�. Thus, the variance-covariance ma-
trix of π̂MP is given by

Var(π̂MP) =
1

q2
Var(λ̂)

(3.12)

=
1

nq2

⎛⎜⎜⎜⎝
λ1(1− λ1) −λ1λ2 · · · −λ1λm

−λ2λ1 λ2(1− λ2) · · · −λ2λm

...
...

. . .
...

−λmλ1 −λmλ2 · · · λm(1− λm)

⎞⎟⎟⎟⎠ .

3.4 Three asymptotic confidence intervals of
parameters for large sample sizes

From (3.12), it is not difficult to show the following result.

Theorem 1. Let

(3.13) V̂ar(π̂
MPi

) =
λ̂i(1− λ̂i)

(n− 1)q2
, i = 1, . . . ,m.

Then, we have

V̂ar(π̂MPi) =
π̂

MPi
(1− π̂

MPi
)

n− 1
+

(1− q)f(π̂
MPi

, pi, q)

(n− 1)q2
,

where f(πi, pi, q) =̂ q(1 − 2pi)πi + pi(1 − pi + qpi), and it
is an unbiased estimator of Var(π̂MPi) = λi(1 − λi)/(nq

2),
i = 1, . . . ,m.

Based on the property of MLE for large sample sizes, we
have

π̂MPi − πi√
V̂ar(π̂MPi)

.∼ N(0, 1), as n → ∞, i = 1, . . . ,m.

Thus, an asymptotic (1 − α)100% Wald CI for πi is given
by
(3.14)[

π̂MPi − zα/2

√
V̂ar(π̂MPi), π̂MPi + zα/2

√
V̂ar(π̂MPi)

]
.

If the lower bound of the Wald CI in (3.14) is less than zero
or the upper bound is larger than one, then the Wald CI is
useless. For such cases, according to the Central Limit The-
orem, we can establish an asymptotic (1 − α)100% Wilson
(score) CI of πi based on

1− α = Pr

{∣∣∣∣ π̂
MPi

− πi√
Var(π̂

MPi
)

∣∣∣∣ ≤ zα/2

}
(3.15)

= Pr{(π̂MPi − πi)
2 ≤ z2α/2Var(π̂MPi)}

(3.12)
= Pr

{
(π̂MPi − πi)

2 ≤
z2α/2

n

[
πi(1− πi)

+
(1− q)f(πi, pi, q)

q2

]}
= Pr

{
π̂2

MPi
− 2π̂

MPi
πi + π2

i

≤
z2α/2(−π2

i + ρ1πi + ρ2)

n

}
= Pr{(1 + z∗)π

2
i − (2π̂MPi + z∗ρ1)πi

+ π̂2
MPi

− z∗ρ2 ≤ 0},

where z∗ =̂ z2α/2/n, ρ1 =̂ [1 − 2pi(1 − q)]/q and ρ2 =̂ pi(1 −
q)(1 − pi + qpi)/q

2. Solving the quadratic inequality inside
the probability in (3.15), we obtain the Wilson CI given by
(3.16)
2π̂MPi + z∗ρ1 ±

√
(2π̂MPi + z∗ρ1)2 − 4(1 + z∗)(π̂2

MPi
− z∗ρ2)

2(1 + z∗)
,

which is, in general, within [0, 1]. The Wilson CI has been
shown to have better performance than the Wald CI and
the exact (Clopper–Pearson) CI, see [6, 2, 10, 5] for more
detail.

For sensitive responses where some of the true values {πi}
are often small, likelihood ratio confidence intervals (LRCIs)
could provide better performance than other alternatives.
To construct the LRCI of πi (i = 1, . . . ,m), we consider the
null hypothesis H0: πi = πi0 against the alternative hypoth-
esis H1: H0 is not true. Let π̂R = (π̂R

1 , . . . , π̂
R
m)� denote the
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Table 2. The four-category parallel model and the corresponding cell probabilities

Category W = 0 W = 1 Category W = 0 W = 1 Marginal
U = 1 © U = 1 p1(1− q) p1

U = 2 � U = 2 p2(1− q) p2

U = 3 � U = 3 p3(1− q) p3
U = 4 • U = 4 p4(1− q) p4

X = 0, Y = 0 © X = 0, Y = 0 π1q π1

X = 0, Y = 1 � X = 0, Y = 1 π2q π2

X = 1, Y = 0 � X = 1, Y = 0 π3q π3

X = 1, Y = 1 • X = 1, Y = 1 π4q π4

Marginal 1− q q 1

restricted MLE of π under H0. It can be verified that⎧⎨⎩
π̂R
i = πi0,

π̂R
j =

[1− pi(1− q)− πi0q]nj/(n− ni)− pj(1− q)

q
,

where j = 1, . . . ,m; j �= i.

When n → ∞, it is well known that

Λ(πi0) = −2{�MP(π̂
R|Yobs)− �MP(π̂v|Yobs)} ·∼ χ2(1),

where π̂v denotes the unrestricted MLE of π specified by
(3.9). Since

Λ(πi0) = − 2

{
ni log[pi(1− q) + πi0q](3.17)

+

m∑
j=1,j �=i

nj log[pj(1− q) + π̂R
j q]

−
m∑

k=1

nk log[pk(1− q) + π̂vkq]

}
,

it is easy to verify that Λ(πi0) is a decreasing function of

πi0 when πi0 ∈
[
0, ni/n−pi(1−q)

q

]
and an increasing function

of πi0 when πi0 ∈
[ni/n−pi(1−q)

q , 1
]
. Therefore, for a given

significance level α, the (1−α)100% LRCI for πi is given by

(3.18) [π̂MPi,LRL , π̂MPi,LRU ],

where π̂MPi,LRL and π̂MPi,LRU are two roots of πi0 to the fol-
lowing equation

(3.19) Λ(πi0) = χ2(α, 1),

where χ2(α, 1) denotes the upper α-th quantile of χ2 distri-
bution with one degree of freedom.

The asymptotic CIs (3.14), (3.16) and (3.18) are appro-
priate for the cases of large sample sizes. When n is small to
moderate, we could use the bootstrap CIs (3.7) and/or (3.8).

4. A SPECIAL CASE FOR THE
MULTI-CATEGORY PARALLEL MODEL

In this section, we consider a special case of the the multi-
category parallel model with four categories, which can be
utilized to investigate the association of two binary sensitive
variates. Some simulation studies are conducted to assess the
performances of the likelihood ratio test and the chi-squared
statistic by comparing their empirical type I error rates (or
the actual significance levels) and powers.

4.1 A four-category parallel model

Let X and Y be two dichotomous random variables asso-
ciated with two sensitive questions. For example, X repre-
sents whether or not a respondent is an illegal drug user and
Y denotes whether a respondent is with AIDS or not. Let
X = 1 and Y = 1 denote the sensitive characteristics of a re-
spondent (e.g., X = 1 if the respondent is a drug user), and
X = 0 and Y = 0 denote the non-sensitive characteristics of
a respondent (e.g., Y = 0 if a respondent is without AIDS).
Define π1 = Pr{X = 0, Y = 0}, π2 = Pr{X = 0, Y = 1},
π3 = Pr{X = 1, Y = 0} and π4 = Pr{X = 1, Y = 1}.
Obviously, we have π = (π1, . . . , π4)

� ∈ T4. From Table 1,
the survey design for the four-category parallel model is dis-
played in Table 2. Two major objectives here are to collect
sensitive data and to test whether or not the association
exists between the two binary variates X andY .

4.2 Testing hypothesis for association

A commonly used index for measuring the association
of two binary variates is the odds ratio ψ = π1π4/(π2π3).
Assume that we want to test H0: ψ = 1 against H1: ψ �= 1.
The likelihood ratio statistic defined by

Λ1 = − 2{�
MP

(π̂0|Yobs)(4.1)

− �
MP

(π̂
MP

|Yobs)} ·∼ χ2(1), as n → ∞,

where π̂0 denotes the restricted MLE of π under H0 and
π̂

MP
denotes the MLE of π given by (3.11). To calculate π̂0,

let πx =̂ Pr(X = 1) = π3+π4 and πy =̂ Pr(Y = 1) = π2+π4.
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If H0 is true, i.e., X and Y are mutually independent, we
have

(4.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π1 = (1− πx)(1− πy),

π2 = (1− πx)πy,

π3 = πx(1− πy), and

π4 = πxπy.

If we could obtain the restricted MLEs π̂0x of πx and π̂0y of
πy, from (4.2) the restricted MLEs π̂0 = (π̂01, . . . , π̂04)

� can
be calculated as

(4.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π̂01 = (1− π̂0x)(1− π̂0y),

π̂02 = (1− π̂0x)π̂0y,

π̂03 = π̂0x(1− π̂0y), and

π̂04 = π̂0xπ̂0y.

Recall that the number of the respondents belonging to the
subclass {Y = i, W = 1} is denoted by zi and the frequen-
cies {zi} are unobservable. From (3.2), the complete-data
likelihood function for π under H0 becomes

LMP(πx, πy|Yobs, z, H0)

∝ [(1− πx)(1− πy)]
z1 [(1− πx)πy]

z2

× [πx(1− πy)]
z3(πxπy)

z4

= πz3+z4
x (1− πx)

z1+z2 × πz2+z4
y (1− πy)

z1+z3 .

Thus, the M-step is to calculate the complete-data MLEs of
πx and πy as follows:

(4.4) π̂0x =
z3 + z4
z+

and π̂0y =
z2 + z4
z+

,

respectively. From (3.4), the E-step is to find the conditional
expectations:

(4.5) E(zi|Yobs, π̂0) =
niπ̂0iq

pi(1− q) + π̂0iq
, i = 1, . . . ,m,

where {π̂0i}4i=1 are defined by (4.3). Alternatively, the chi-
squared statistic can be utilized to test H0 against H1. Let
p = (p1, . . . , p4)

� and λ = (λ1, . . . , λ4)
�, where λi = (1 −

q)pi+ qπi for i = 1, . . . , 4. Then, we have λ = (1− q)p+ qπ.
Note that the restricted MLE π̂0 = (π̂01, . . . , π̂04)

� of π
under H0 is given by (4.3), then

λ̂0 = (λ̂01, . . . , λ̂04)
�= (1− q)p+ qπ̂0

is the restricted MLE of λ under H0. Therefore, under H0,
the chi-squared statistic

(4.6) Λ2 =

4∑
i=1

(ni − nλ̂0i)
2

nλ̂0i

·∼ χ2(1), as n → ∞.

Table 3. Various values of π1 and ψ for the three scenarios
specified by (4.7)

π1

0.200 0.300 0.500 0.700 0.800 0.900

Scenario 1: ψ 0.167 0.286 0.667 1.556 2.667 6.000
Scenario 2: ψ 0.094 0.161 0.375 0.875 1.500 3.375
Scenario 3: ψ 0.064 0.110 0.256 0.598 1.026 2.308

4.3 Comparison of the likelihood ratio test
with the χ2 test

For a given π1, we consider the following three combina-
tions of π2, π3 and π4 such that

∑4
i=1 πi = 1:

Scenario 1: (π2, π3, π4)=(3, 4, 1)
1− π1

8
, ψ=

2π1

3(1− π1)
;

Scenario 2: (π2, π3, π4)=(4, 10, 1)
1− π1

15
, ψ=

3π1

8(1− π1)
;

Scenario 3: (π2, π3, π4)=(6, 13, 1)
1− π1

20
, ψ=

10π1

39(1− π1)
.

(4.7)

The sample sizes in simulations are designed by n =
50(50)500. To compare the type I error rates (i.e.,
π1π4/(π2π3) = ψ = 1), we take π1 = 3

5 for scenario 1,
π1 = 8

11 for scenario 2, and π1 = 39
49 for scenario 3. For

the comparison of powers (i.e., ψ �= 1), the chosen π1 and
the corresponding ψ are listed in Table 3. For a given pair
(n, π1), we independently generate

(n
(l)
1 , . . . , n

(l)
4 ) ∼

(4.8)

Multinomial

(
n;

1

8
+

1

2
π1,

1

8
+

1

2
π2,

1

8
+

1

2
π3,

1

8
+

1

2
π4

)
for l = 1, . . . , L (L = 1, 000), where only pi = 1

4 (i =
1, . . . , 4) and q = 1

2 are considered. All hypothesis testings
are conducted at level 0.05. Let rj denote the number re-
jecting the null hypothesis (i.e., H0: ψ = 1) by the statis-
tics Λj (j = 1, 2). Hence, the actual significance level can
be estimated by rj/L with ψ = 1 and the power of the
test statistic Λj (j = 1, 2) can be estimated by rj/L with
ψ �= 1.

Figure 1 shows that some comparisons of type I error
rates between the likelihood ratio test and the χ2 test for the
three scenarios. In general, the chi-squared test has a bet-
ter performance in controlling its Type I error rates around
the pre-chosen nominal level than the likelihood ratio test,
which can be seen in the three scenarios.

Figure 2 gives the comparisons of powers between the
likelihood ratio test and the chi-squared test for different
cases with ψ �= 1. It is not difficult to find that there is
no significant difference between the powers of the two test
when ψ is small (i.e., < 0.40). When 0.60 < ψ < 1, always
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Figure 1. Comparisons of type I error rates between the
likelihood ratio test (solid line) and the χ2 test (dotted line):
(a) π1 = 3/5, ψ = 1 (Scenario 1); (b) π1 = 8/11, ψ = 1

(Scenario 2); (c) π1 = 39/49, ψ = 1 (Scenario 3).

the likelihood ratio test is slightly less powerful than the
chi-squared test, no matter whether the sample size is large
or small.

Table 4. Questionnaire for the multi-category triangular
model

Category U = 1 U = 2 · · · U = m

1: {Y = 1} Block 1: Block 2: · · · Block m:

2: {Y = 2} Category 2: please put a tick in Block 2
... · · ·

m: {Y = m} Category m: please put a tick in Block m

Note: {Y = 1} represents the non-sensitive class.

5. COMPARISON OF THE
MULTI-CATEGORY PARALLEL MODEL

WITH THE MULTI-CATEGORY
TRIANGULAR MODEL

In this section, we first briefly introduce the multi-
category triangular model [11], and we then theoretically
compare the efficiency of the multi-category parallel model
with the multi-category triangular model by comparing the
two variance-covariance matrices of the MLEs of parame-
ters based on the trace criterion. Finally, we also consider
the comparison of the degree of privacy protection for the
two models.

5.1 The survey design for the multi-category
triangular model

Tang et al. [11] proposed the survey design of the multi-
category triangular model and developed the corresponding
methods of statistical inference. Let U and Y be two inde-
pendent categorical random variables as defined in Section 2,
{Y = 1} denote the non-sensitive class and {Y = j} the sen-
sitive classes for j = 2, . . . ,m. Define pj = Pr{U = j} and
πj = Pr{Y = j}, j = 1, . . . ,m. Assume that {pj}mj=1 are

known. The objective is to estimate π = (π1, . . . , πm)� ∈
Tm. The survey design shown in Table 4 can be described
as following: Since the category 1 (i.e., {Y = 1}) is a non-
sensitive class, it is supposed that the respondents belonging
to this class can provide correct answers (i.e., putting a tick
in Block j for j = 1, . . . ,m) according to their true sta-
tus. In addition, the respondents belonging to the category
j (j = 2, . . . ,m) will be asked to put a tick in Block j. The
cell probabilities {πj}, the observed frequencies {nj} and
the unobservable frequencies {zj} are shown in Table 5.

5.2 The difference between two traces of
variance-covariance matrice of the MLEs
of parameters

(a) The variance-covariance matrix of π̂MT

For the multi-category triangular model, let θ =
(θ1, . . . , θm)�, where θ1 = p1π1 and θj = pjπ1 + πj (j =
2, . . . ,m) represent the proportions that the respondents be-
longing to Block j. In matrix notation, we have
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Figure 2. Comparisons of powers between the likelihood ratio test (solid line) and the χ2 test (dotted line).
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Table 5. Questionnaire for the multi-category triangular
model

Category U = 1 U = 2 · · · U = m Total

1: Y = 1 p1π1 p2π1 · · · pmπ1 π1(z1)

2: Y = 2 π2(z2)
...

...

m: Y = m πm(zm)

Total p1π1(n1) p2π1 +
π2(n2)

· · · pmπ1 +
πm(nm)

1(n)

Note: n =
∑m

j=1 nj , z1 = n −
∑m

j=2 zj , where {z2, . . . , zm} are
unobservable.

(5.1) θ = Pπ =

(
p1 0�m−1

p−1 Im−1

)⎛⎜⎝π1

...
πm

⎞⎟⎠ ,

where p−1 = (p2, . . . , pm)�, 0m−1 is the (m−1)×1 vector of
zeros and Im−1 denotes the (m−1)×(m−1) identity matrix.
Since (n1, . . . , nm)�∼ Multinomial(n; θ1, . . . , θm), the MLE

of θj is θ̂j = nj/n. Thus, the variance-covariance matrix of

θ̂ = (θ̂1, . . . , θ̂m)� is

(5.2) Var(θ̂) =
1

n

[
diag(θ)− θθ�

]
.

In general, the MLE π̂
MT

of π for the multi-category
triangular model can be obtained by using the EM algo-
rithm [11]. However, for some cases, we can obtain a closed-
form solution to π̂MT . In fact, from (5.1), we have π = P−1θ.

Since the MLE of θ is θ̂ = (n1/n, . . . , nm/n)�, an alterna-
tive estimator of π for the multi-category triangular model
is given by

(5.3) π̂v = P−1θ̂ =

(
1/p1 0�m−1

−p−1/p1 Im−1

)⎛⎜⎝n1/n
...

nm/n

⎞⎟⎠ .

It should be noted that it is possible that π̂v /∈ Tm. For ex-
ample, let m = 4, p1 = · · · = p4 = 0.25 and (n1, . . . , n4)

�=
(12, 8, 6, 19)�, then

π̂v = (1.066667,−0.088889,−0.133333, 0.155556)� /∈ T4.

In this paper, the estimator π̂v given by (5.3) is said to be
valid if π̂v ∈ Tm. Clearly, if π̂v specified by (5.3) is a valid
estimator of π then π̂v = π̂MT . In the following discussion,
we only consider the case of valid estimators.

Hence, from (5.3), (5.2) and (5.1), the variance-covariance
matrix of π̂

MT
is

Var(π̂
MT

) = Var(π̂v)(5.4)

= P−1Var(θ̂)(P−1)�

=
1

n

[
P−1diag(Pπ)(P−1)�− ππ�],

or equivalently

(5.5)

Var(π̂
MT1

) =
1

n

(
π1

p1
− π2

1

)
,

Var(π̂
MTj

) =
1

n

(
p2j
p1

π1 + pjπ1 + πj − π2
j

)
,

Cov(π̂MT1 , π̂MTj ) =
1

n

(
− pj

p1
π1 − π1πj

)
, and

Cov(π̂
MTi

, π̂
MTj

) =
1

n

(
pipj
p1

π1 − πiπj

)
,

where i �= j, i, j = 2, . . . ,m.

(b) The comparison between Var(π̂MT) and Var(π̂MP)

In the multi-category triangular model, there are only two
parameter vectors (i.e., π and p), while in the multi-category
parallel model, besides π and p, there is an additional pa-
rameter q. By controlling q within a certain subset of the
unit interval, we may have Var(π̂MP) being ‘smaller’ than
Var(π̂MT). In the follows, we only apply the trace criterion
in the comparison between Var(π̂MT) and Var(π̂MP).

First, from (5.4) and (5.5), we have

tr[Var(π̂MT)]

=
1

n

[
π1

p1
− π1 + π1(1− π1)

+

m∑
j=2

(
p2j
p1

π1 + pjπ1 + πj(1− πj)

)]

=
π1

n

(
1

p1
− p1 +

m∑
j=2

p2j
p1

)
+

1

n

m∑
j=1

πj(1− πj).

Next, from (3.12) and (3.10), we obtain

tr[Var(π̂
MP

)]

=
1

nq2

m∑
j=1

λj(1− λj)

=
1

nq2

m∑
j=1

[pj(1− q) + πjq][1− pj(1− q)− πjq]

=
1− q

nq2

(
1 + q − 2q

m∑
j=1

πjpj − (1− q)

m∑
j=1

p2j

)

+
1

n

m∑
j=1

πj(1− πj).

Thus, the difference of them is

tr[Var(π̂MT)]− tr[Var(π̂MP)]

=
π1

n

(
1

p1
− p1 +

m∑
j=2

p2j
p1

)
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− 1− q

nq2

(
1 + q − 2q

m∑
j=1

πjpj − (1− q)

m∑
j=1

p2j

)

=
1

nq2
h(q|π,p),

where

h(q|π,p) =
[
π1

(
1

p1
− p1 +

m∑
j=2

p2j
p1

)
(5.6)

+

(
1− 2

m∑
j=1

πjpj +

m∑
j=1

p2j

)]
q2

+ 2

(
m∑
j=1

πjpj −
m∑
j=1

p2j

)
q − 1 +

m∑
j=1

p2j

=̂ aq2 + bq + c

is a quadratic function of q for given π and p. In both survey
designs (see Table 1 and Table 4), we require p1 ∈ (0, 1) so
that 1 − p21 > 0. In addition, 0 ≤

∑m
j=1 π

2
j ≤

∑m
j=1 πj = 1.

Thus,

a = π1

(
1

p1
− p1 +

m∑
j=2

p2j
p1

)
+

(
1− 2

m∑
j=1

πjpj +

m∑
j=1

p2j

)

=
π1

p1

(
1− p21 +

m∑
j=2

p2j

)
+ 1−

m∑
j=1

π2
j +

m∑
j=1

(πj − pj)
2

> 0.

Now, the discriminant of the quadratic function h(q|π,p) is

D(h) = b2 − 4ac

= 4

(
m∑
j=1

πjpj −
m∑
j=1

p2j

)2

+ 4π1

(
1

p1
− p1 +

m∑
j=2

p2j
p1

)(
1−

m∑
j=1

p2j

)

+ 4

(
1− 2

m∑
j=1

πjpj +

m∑
j=1

p2j

)(
1−

m∑
j=1

p2j

)

= 4

(
1−

m∑
j=1

πjpj

)2

+
4π1

p1

(
1− p21 +

m∑
j=2

p2j

)(
1−

m∑
j=1

p2j

)
> 0.

By applying Result (iii) of the following lemma,

Lemma 1. Let a > 0 and D(f) = b2 − 4ac denote the
discriminant of a parabola f(x) = ax2 + bx+ c. We have

(i) If D(f) < 0, then f(x) > 0 for all x ∈ (−∞,∞).

(ii) If D(f) = 0, then f(x) ≥ 0 for all x ∈ (−∞,∞), and
f(x) reaches its minimum zero at x = −b/(2a).

(iii) If D(f) > 0, then f(x) > 0 for all x ∈ (−∞, x1) ∪
(x2,∞) and f(x) ≤ 0 for all x ∈ [x1, x2], where x1 =
[−b−

√
D(f) ]/(2a) and x2 = [−b+

√
D(f) ]/(2a).

We immediately obtain the following theorem.

Theorem 2. Let π ∈ Tm and p ∈ Tm, we always have
athrmtr[Var(π̂MT)] > tr[Var(π̂MP)] for any q ∈ (0, qL) ∪
(qU , 1), where

qL = max

{
0,

−b−
√
b2 − 4ac

2a

}
and

qU = min

{
1,

−b+
√
b2 − 4ac

2a

}
,

where a, b and c are defined in (5.6).

5.3 Degree of privacy protection

In this subsection, we compare degrees of privacy pro-
tection (DPP) of the multi-category parallel model with
those of the multi-category triangular model. For the multi-
category parallel model (see Table 1), we define

DPPMP(π1, p1, q) = Pr(Y = 1|two circles are connected),

DPPMP(π2, p2, q) = Pr(Y = 2|two triangles are connected),
...

DPPMP(πm, pm, q) = Pr(Y = m|two dots are connected),

where, for example, DPPMP(π1, p1, q) denotes the condi-
tional probability that the respondent belongs to the sub-
class {Y = 1} given that he/she connected the two circles.
For the multi-category triangular model (see Table 4), we
can similarly define

DPPMT(π1, p1) = Pr(Y = 1|a tick is put in Block 1),

DPPMT(π2, p2) = Pr(Y = 2|a tick is put in Block 2),
...

DPPMT(πm, pm) = Pr(Y = m|a tick is put in Block m).

First, for any q ∈ (0, 1), π ∈ Tm and p ∈ Tm, we always
have
(5.7)

DPPMT(π1, p1) = 1 >
π1q

p1(1− q) + π1q
= DPPMP(π1, p1, q).

Next, when 0 < q < 1
1+π1

, we obtain

DPPMT(πj , pj) =
πj

pjπ1 + πj
(5.8)

>
πjq

pj(1− q) + πjq

= DPPMP(πj , pj , q), j = 2, . . . ,m,
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Table 6. Survey data from Williamson and Haber (1994)

Number of Income
sex partners Y = 0 (low) Y = 1 (high) Missing

X = 0 (0–3) 144 (m1, π1) 123 (m2, π2) 17
X = 1 (≥ 4) 237 (m3, π3) 148 (m4, π4) 17

for any π ∈ Tm and p ∈ Tm. Inequalities (5.7) and (5.8)
show that if we choose q within the open interval (0, 1

1+π1
),

the multi-category parallel model is more efficient than
the multi-category triangular model in protecting the
individual’s privacy for any π ∈ Tm and p ∈ Tm.

Williamson and Haber [16] reported a study aimed to ex-
amine the relationship among disease status of cervical can-
cer, the number of sexual partners and income. Respondents
were women of 20–79 year old in Fulton or Dekalb County
in Atlanta, Georgia. Table 6 displays the cross-classification
of income (low or high, denoted by Y = 0 or Y = 1) and
number of sex partners (‘few’ (0–3) or ‘many’ (≥ 4), de-
noted by X = 0 or X = 1). Since all four questions (i.e.,
the number of sex partners and income status) are highly
sensitive to respondents, a sizable proportion (19.9% in this
example) of the responses would be missing because of ‘un-
known’ or ‘refused to answer’ in a telephone interview. The
major objective is to examine if association exists between
the number of sex partners and income. The existing multi-
category triangular model and the corresponding statistical
methods [11] cannot be applied to such studies because each
of the four subclasses {X = 0, Y = 0}, {X = 0, Y = 1},
{X = 1, Y = 0} and {X = 1, Y = 1} is sensitive to respon-
dents. To demonstrate the proposed multi-category parallel
design in Tables 1 and 2 and the developed estimation meth-
ods in Sections 3 and 4, we let m = 4 and define W = 0 if
the respondent’s birthday is in the first half of a month and
W = 1 otherwise. Similarly, we define U = i if the respon-
dent was born in the i-th quarter of a year (i = 1, . . . , 4).
Thus, it is reasonable to assume that q = Pr(W = 1) = 0.5
and pi = Pr(U = i) = 0.25 for each i.

6. AN EXAMPLE

To obtain the observed data Yobs = {n; n1, . . . , n4} in
the four-category parallel model (see Table 2), we only con-
sider the complete observations in Table 6 and discard the
associated missing data and obtain n = m1 + · · · + m4 =
144+123+237+148 = 652. Note that n1 denotes the num-
ber of respondents connecting the two circles in Table 2,
n2 is the number of respondents connecting the two trian-
gles, n3 is the number of respondents connecting the two
rectangles, and n4 is the number of respondents connect-
ing the two dots. Let z1, z2, z3 and z4 denote the number
of respondents belonging to {X = 0, Y = 0} ∩ {W = 1},
{X = 0, Y = 1} ∩ {W = 1}, {X = 1, Y = 0} ∩ {W = 1}
and {X = 1, Y = 1} ∩ {W = 1} in Table 2 respec-
tively. Since q = 1/2, we have zi = mi/2 for the ideal

situation, i.e., (z1, z2, z3, z4)
� ≈ (72, 62, 118, 74)�. Further-

more, let n′
i denote the number of respondents belonging to

{U = i} ∩ {W = 0} for i = 1, . . . , 4 in Table 2. To obtain
these {n′

i}4i=1 by considering the sampling error, we first
generate 50 i.i.d. samples from

Multinomial

(
n−

4∑
i=1

zi; p1, p2, p3, p4

)
= Multinomial(326; 0.25× 14)

and then average these counts for each component, yielding
(n′

1, n
′
2, n

′
3, n

′
4)

�= (81, 82, 81, 82)�. Therefore, we obtain the
following observed counts

(n1, n2, n3, n4)
�

= (z1 + n′
1, z2 + n′

2, z3 + n′
3, z4 + n′

4)
�

= (153, 144, 199, 156)�.

Using π(0) = 0.25 × 14 as the initial values, the EM al-
gorithm in (3.3) and (3.5) converged in 25 iterations. The
resultant MLEs for π = (π1, . . . , π4)

� and the odds ratio ψ
are listed in the second column of Table 7. Based on (3.6),
we generate G = 10, 000 bootstrap samples to estimate the
standard errors of {π̂

MPi
}4i=1 and ψ̂, which are given in the

third column of Table 7. The corresponding 95% normal-
based bootstrap CIs and non-normal-based bootstrap CIs
are displayed in the fourth and the fifth columns of Table 7.
Since the two bootstrap CIs of ψ include 1, we do not have
reason to believe that there exists association between the
number of sex partners and income. According to (3.9), we
obtain π̂v = (0.2193252, 0.1917178, 0.3604294, 0.2285276)�.
Since π̂v ∈ T4, we know that π̂v is a valid estimator of π
and π̂v = π̂

MP
. Based on (3.12), the estimated variance-

covariance matrix of π̂MP is

V̂ar(π̂MP)

=

⎛⎜⎜⎝
0.00110 −0.00032 −0.00044 −0.00034

−0.00032 0.00106 −0.00041 −0.00032
−0.00044 −0.00041 0.00130 −0.00045
−0.00034 −0.00032 −0.00045 0.00112

⎞⎟⎟⎠
so that the unbiased estimates of {Var(π̂

MPi
)}4i=1, from

(3.13), are given by(
V̂ar(π̂

MP1
), . . . , V̂ar(π̂

MP4
)
)�

= (0.00110, 0.00106, 0.00130, 0.00112)�.

Therefore, from (3.14), (3.16) and (3.18), the 95% Wald,
Wilson and likelihood ratio CIs of {πi}4i=1 can be calculated
and are given in the second, the fourth and sixth columns
of Table 8. We noted that the width of the 95% Wilson CI
of πi is slightly shorter than those of the 95% Wald CIs and
LRCIs of πi.
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Table 7. MLEs and two bootstrap CIs of parameters for the observed counts (n1, n2, n3, n4)
�= (153, 144, 199, 156)�

Parameter std 95% bootstrap CI† 95% bootstrap CI‡

π1 0.2196 0.0328 [0.1553, 0.2839] [0.1549, 0.2837]
π2 0.1919 0.0327 [0.1277, 0.2561] [0.1273, 0.2561]
π3 0.3604 0.0359 [0.2900, 0.4308] [0.2929, 0.4310]
π4 0.2281 0.0338 [0.1619, 0.2943] [0.1641, 0.2960]
ψ 0.7661 0.2712 [0.2344, 1.2977] [0.3690, 1.4099]

CI†: Normal-based bootstrap CIs, cf. (3.7). CI‡: Non-normal-based bootstrap CIs, cf. (3.8).

Table 8. Three asymptotic 95% CIs of parameters for large sample sizes

Parameter Wald CI Width Wilson CI Width LRCI Width

π1 [0.1542, 0.2844] 0.1302 [0.1575, 0.2874] 0.1299 [0.1564, 0.2864] 0.1300
π2 [0.1280, 0.2554] 0.1274 [0.1314, 0.2586] 0.1272 [0.1303, 0.2575] 0.1272
π3 [0.2897, 0.4312] 0.1415 [0.2922, 0.4332] 0.1410 [0.2914, 0.4326] 0.1412
π4 [0.1630, 0.2941] 0.1311 [0.1662, 0.2970] 0.1308 [0.1652, 0.2960] 0.1308

7. DISCUSSION

As a natural generalization of the NRR parallel model
of Tian [12], we develop an NRR multi-category paral-
lel model for a single sensitive question with multiple an-
swers/outcomes. When comparing with the existing NRR
multi-category triangular model, the newly developed model
has several significant advantages: (i) A wider applicability.
The multi-category parallel model can be applied to such
situations where all population subclasses could be sensi-
tive, while the former is only applicable in the case that
at least one of the population subclasses is non-sensitive.
(ii) A higher efficiency. Because of the introduction of addi-
tional parameter q = Pr(W = 1) ∈ (0, 1), the multi-category
parallel model is more efficient than the multi-category tri-
angular model for a certain range of q (see Theorem 2 in
Section 5.2). (iii) A better degree of privacy protection. The
comparisons in Section 5.3 show that if 0 < q < 1

1+π1
,

the multi-category parallel model is more efficient than the
multi-category triangular model in protecting the individ-
ual’s privacy for any π ∈ Tm and p ∈ Tm.

How to choose the two non-sensitive variables W and U
in Table 1 is an important issue in practice. On the one
hand, since W is a binary variable, we could define W = 0
if the respondent was born between January and June; or
the respondent was born in an odd numbered month; or the
respondent’s birthday is in the first half of the month; or
the respondent’s age is odd numbered; or the respondent’s
house/apartment number is even. On the other hand, since
U is an m-category variable, for example, when m = 3, we
may let

U = 1 if the respondent’s mother was born in
January–April;

U = 2 if the respondent’s mother was born in May–
August; and

U = 3 if the respondent’s mother was born in
September–December.

In this case, it is reasonable to assume that each pi =
Pr(U = i) is approximately equal to 1/3. Similarly, when
m = 5, we may define

U = 1 if the last digit of the respondent’s ID
card/phone number 1 or 2;

U = 2 if the last digit of the respondent’s ID
card/phone number 3 or 4;

U = 3 if the last digit of the respondent’s ID
card/phone number 5 or 6;

U = 4 if the last digit of the respondent’s ID
card/phone number 7 or 8; and

U = 5 if the last digit of the respondent’s ID
card/phone number 9 or 0.

In Section 2, we assumed that q = Pr(W = 1) and all
pi = Pr(U = i) for i = 1, . . . ,m are known. When m = 2
and p1 is unknown, Liu and Tian [9] further developed a
variant of the parallel model [12] for sample surveys with
sensitive characteristics. When m ≥ 3 and q or/and {pi}mi=1

is unknown, it is worthwhile to investigate the corresponding
multi-category parallel model.
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