
Statistics and Its Interface Volume 6 (2013) 117–135
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digital images via testing on wavelet coefficients
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Full-reference image quality assessment methods seek to
measure visual similarity between two images (in practice,
one original and the other its altered version). It has been
established that traditional methods, such as Mean Square
Error and Peak Signal-to-Noise Ratio poorly mimic the
human visual system and much of the recent research in
image quality assessment has been directed toward devel-
oping image similarity measures that are more consistent
with assessments from human observers. Some extensively
tested popular methods in this regard are Visual Image
Fidelity (VIF), Structure Similarity Index (SSIM) and its
variants Multi-scale Structure Similarity Index (MS-SSIM)
and Information Content Weighted Multi-scale Structure
Similarity Index (IW-SSIM). However, experiments show
that these methods may produce drastically different sim-
ilarity indices for different images contaminated with the
same source of random noise. In this article, we propose a
new full-reference image quality assessment method, namely,
Wavelet-based Non-parametric Structure Similarity Index
(WNPSSIM), specifically designed to detect visual simi-
larity between images contaminated with all sorts of ran-
dom noises. WNPSSIM is based on a rank test of the
hypothesis of identical images conducted on the wavelet
domain. Our experimental comparisons demonstrate that
WNPSSIM provides similar ranking as MS-SSIM, IW-SSIM
and VIF for images contaminated with different random
noises in general though the methodology is very different.
In addition, WNPSSIM corrects the aforementioned short-
coming of assigning sharply different similarity indices for
different images contaminated with the same source of ran-
dom noise.

AMS 2000 subject classifications: Primary 68U10,
97K80, 62H35; secondary 62G10.
Keywords and phrases: Image structure similarity, Non-
parametric hypothesis testing, Full-reference, Human visual
system (HVS), Discrete wavelet transform (DWT).

1. INTRODUCTION

Digital imaging has found massive applications in many
branches of science: astronomy, meteorology, seismology, in-
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dustrial inspection, aerial reconnaissance, autonomous nav-
igation, to name but a few. As such, a reliable image qual-
ity index is highly desirable and vigorously pursued by the
research community. In the literature, we find three generic
approaches to an image quality assessment method; namely,
full-reference, reduced-reference and no-reference. A full-
reference image quality assessment method measures the
visual similarity of a test image with respect to a supplied
reference image. It is applicable when a true image or a stan-
dard reference image is known, such as in image compression
and image coding (Richter and Larabi, 2008).

Many full-reference image quality assessment methods
can be found in the literature. Multi-scale Structure
Similarity Index (MS-SSIM) (Wang et al., 2003), Visual
Image Fidelity (VIF) (Sheikh and Bovik, 2006), and
Information Content Weighted Multi-scale Structure Sim-
ilarity Index (IW-SSIM) (Wang and Li, 2011) are popular
image quality assessment methods which are extensively
tested and widely recognized to be consistent with the
HVS. Others are Wang et al. (2004), Wang and Simoncelli
(2005a), Sheikh et al. (2005a), Ninassi et al. (2006),
Chandler and Hemami (2007), Gao et al. (2009) and
Wang et al. (2011). We found that the extent to which
these methods are capable of seeing through random noises
in the same way the human visual system (HVS) does is
limited. As a result, they may assign drastically different
similarity index values for images contaminated with the
same source of random noise. In practice, random noise
is inevitably abundant in digital images. They occur at
every stage of image acquisition and processing and they
are quite difficult to remove completely. Thus, some level
of random noise is always assumed in almost all forms of
digital images. Moreover, if the contamination level of the
random noise is low, the HVS easily sees through it and
recognizes the underlying true image. This property of
the HVS is the main focus of interest in this paper as it
concentrates on developing an image similarity assessment
method which possesses the ability to see through moderate
amounts of random noise in images in the same manner as
the HVS does and is robust for all types of random noises.

Our experiments found that the ability of the aforemen-
tioned methods to see through noises depends heavily on
the content of the images. Figure 1 shows that IW-SSIM
and MS-SSIM may assign values that spread out in a big
range for different images contaminated with the same noise
type or level. This is certainly a weakness indicating that
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Figure 1. Visual illustration of the comparison of MS-SSIM, VIF, IW-SSIM and HaarWNPSSIM for 9 reference images with
all of their respective 17 noisy versions which are described in Section 5.1 and can be viewed in Figures 8 and 9. Each curve in

the left panel connects the similarity indices assigned by the same method for one image and its different noisy versions.
Curves with the same color are for the same method on different reference images. The variation of the measured similarity for

IW-SSIM and MS-SSIM for 5th noise contamination is much bigger than that for the 6th noise contamination.

these methods are somewhat lacking robustness to scene
variation for noise assessment. In addition, the similarity
assignment by these methods for the comparison between
a reference image and its noisy version is seen to rely on
the interaction between the image content and the noise.
For instance, the performance of Structure Similarity In-
dex (SSIM) (Wang et al., 2004), one of the hugely popular
methods currently in use, is easily affected by the presence of
random noises. It is seen to assign a higher similarity index
value for the comparison of two completely different visu-
ally noise-free images than for that of the two images where
one is visually noise-free and the other is its random noise
contaminated version. In Figure 2 with A4 (lady with black
hair) as the reference image, the test image A8 (peppers) is
assigned a SSIM value of 0.2457 whereas the image N14,4 is
assigned a SSIM value of 0.1885. This is clearly not reason-
able since the latter, being only a random noisy version of
the reference image, looks visually much closer. In addition,
SSIM is unable to focus on the natural image content in
the presence of random noise. For example, when N14,4 is
the reference image, SSIM judges that N14,4 is much closer
to N14,8 (noisy peppers) than to its own contamination-free
version A4 since it assigned similarity index values of 0.73
and 0.1885 for these comparisons respectively. Visual Image
Fidelity (VIF) introduced in Sheikh and Bovik (2006) has a
similar drawback in addition to the fact that it often under-

estimates similarities between like images. The objective of
the present work is to build an image similarity index which
can assign consistent values on images with random noise
contamination visible to the eye without being adversely af-
fected by the contents in images.

We will first briefly list typical random noises that are
common in digital images, since identifying the nature of
these noise sources is critical to the development of quality
assessment methods under realistic assumptions. The fact
that different noises follow different distributions motivates
us to propose an image quality assessment method based on
non-parametric statistics. We will then review some image
quality assessment methods with brief discussion of their rel-
evance to the context of this paper and the reason they may
yield quality indices inconsistent with the HVS. Then we will
describe our new wavelet-based image similarity assessment
method which is developed through a non-parametric test
on hypotheses related to the wavelet coefficients of the ref-
erence and test images. We illustrate with experiments that
the proposed image similarity index WNPSSIM provides a
more realistic similarity assessment of images contaminated
with random noise.

2. RANDOM NOISES IN IMAGES

Random noise is an inherent component of digital images.
Natural images as we see in the open environment contain
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Figure 2. SSIM, MS-SSIM, VIF, IW-SSIM, and HaarWNPSSIM similarity indices for various test images with one clean image
(A4) and one noisy image (N14,4) as reference images. Values marked with ∗ are absolute values of complex indices.

analog signals. Both the domain where the signals exist and
the range where they take values are virtually continuous.
Digital images are produced by devices with sensors that
acquire these analog signals, process them and store them
in computer-readable digital format. Thus, they contain sig-
nals on a discrete pixel domain and the pixels take values
from a discrete set of possibilities. The two processes of dis-
cretization, that of the domain and of the range of pixels, are
known as sampling and quantization, respectively. Random
noise occurs naturally in this process of analog-to-digital
conversion. Moreover, faulty devices and their faulty pro-
cessing are bound to produce additional random noise in im-
ages. If the noise is independent of the signal it is referred to
as white noise whereas pink and red noises refer to the noises
that depend on the signal frequency. Sensors used in con-
temporary imaging devices such as complementary metal–
oxide–semiconductor and charged-coupled device produce
noise that are intensity-dependent, i.e., noise level varies
with pixel intensity. We refer the reader to (Bovik, 2009)
for more details on such noises as well as other common
types of random noises in digital images, of which a brief
summary is provided below.

• Gaussian noise. Also referred to as white noise or ther-
mal noise or Johnson noise in other contexts, Gaussian
noise is one of the most common noises found in dig-
ital images. See the images on the second column in
Figure 8 for the effect of the same Gaussian noise level
on different images and the first row of Figure 9 for an
illustration of different levels of this noise on the same
image. Some non-Gaussian noises similar to static in the
AM radio can also be imitated by a Gaussian mixture
model. The probability density function of a mixture
model is of the form pq(x) = αpq1(x) + (1 − α)pq2(x)
(0 < p < 1) for the noise that comes from two sources

having probability density functions pq1(x) and pq2(x)
respectively, where the first occurs 100α% of the time
and the second occurs 100(1− α)% of the time.

• Poisson noise. There is a noise built into the detector
of light particles or the photon counter of any image
acquisition device. Since the random nature of photon-
counting is governed by Poisson statistics, this noise is
called Poisson or photon-counting or shot noise. A typ-
ical context of occurrence of Poisson noise is biomicro-
scopic images where live samples are often observed at
very low light levels, due to acquisition-time and photo-
toxicity constraints (Luisier et al., 2010; Vonesch et al.,
2006). See the images on the fourth column in Figure 8
and the image on the second row and fourth column of
Figure 9.

• Salt and pepper noise. This is an impulse noise which
is very common in digital images. Images corrupted
with salt and pepper noise are degraded in only a
few random pixel locations. This noise is often the re-
sult of faulty memory locations and signal transmission
through noisy digital links. See the images on the third
column in Figure 8 and the first three images on the
second row of Figure 9.

• Speckle noise. Another noise that is more common in
geoscience imaging such as active radar, synthetic aper-
ture radar and biomedical imaging such as optical co-
herence tomography and ultrasound images is called
speckle noise. This noise is produced in the imaging
system where there are coherent light sources such as
lasers or radar transmitters. The source of this noise is
attributed to random interference of the coherent re-
turns issued from the numerous scatterers present on
a surface, on the scale of a wavelength of the incident
radar wave (Gagnon and Jouan, 1997). In other words,
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due to the microscopic variations of the surface rough-
ness within one pixel, when the light is reflected off the
surface, the received signal is subjected to random vari-
ations in phase and amplitude (Bovik, 2009). See the
images on the fifth column in Figure 8 and the last two
images on the second row and the first one on the third
row of Figure 9.

3. SOME COMMON IMAGE SIMILARITY
ASSESSMENT METHODS AND THEIR

POSSIBLE LIMITATIONS

Images get degraded in time naturally or get corrupted
through various processes they are subject to since they
are captured. An image similarity assessment method is a
measure of the degradation or corruption of an image. Full-
reference image similarity assessment methods measure the
loss of quality in a noisy image relative to a supplied ref-
erence image which is treated as the pure or ideal version.
In this section, we define and discuss some common full-
reference image similarity assessment methods. Let X be
an original or reference image and Y be its estimate or a
test image, both 8-bit images of size m× n.

3.1 Traditional similarity indices

Most conventional image similarity indices are based on
the Euclidean distance or the L2-norm because it is regarded
as the natural distance in most spaces. Let X and Y be
images of size m × n. The mean squared error (MSE) of
Y with respect to X, the error in terms of the Euclidean
distance, is defined as

MSE(X,Y )=
1

mn
‖X − Y ‖22=

1

mn

m∑
i=1

n∑
j=1

|X(i, j)−Y (i, j)|2.

The human eye is regarded to be the true benchmark for im-
age similarity assessment methods which is known to process
an image in a much more complicated sense, viewing image
pixels en bloc to capture visual similarity. As is clear from
the above definition, MSE merely takes into account each in-
dividual pixel value without any adjusted weighting in mea-
suring the similarity between images. As a result, MSE turns
out to be a very poor indicator of visual similarity between
images. This has been discussed in great detail along with
extensive illustrations in Wang and Bovik (2009). A popu-
lar traditional measure of image similarity is Signal-to-Noise
Ratio (SNR) defined as

SNR(X,Y ) = 10 log10

(
‖X‖22

‖X − Y ‖22

)
.

It is measured in decibel (dB) units. A larger value of SNR
in general indicates the presence of less noise in the image.
Since SNR is defined through MSE, it shares the drawbacks
of MSE as an image similarity measure. Since MSE, Total

Variation (TV), and other similar measures such as L1-norm
which are purely mathematical in nature treat each pixel
identically, we avoid reiteration of them.

3.2 Structure similarity index (SSIM)

Introduced first in Wang and Bovik (2002) and fully de-
veloped in Wang et al. (2004), a correlation-based image
similarity measure called the Structure Similarity Index
(SSIM) emerged as a solid method giving more realistic im-
age similarity measures than L2-norm-based methods such
as MSE and Signal-to-Noise Ratio (SNR). The introduction
of SSIM led to many other full-reference image similarity
measures in the literature seeking to eliminate some of the
limitations of SSIM. Notwithstanding its drawbacks, SSIM
is found widely cited in the literature owing to its thorough
construction which incorporates several factors of visual per-
ception.

SSIM(X,Y ) is defined to be the average of all local indices
SSIM(x, y), x = X(i, j), y = Y (i, j), i = 1, . . . ,m− 10, j =
1, . . . , n− 10, which, in turn, is the product of three factors:

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y)

=

(
2μxμy + C1

μ2
x + μ2

y + C1

)
·
(

2σxσy + C2

σ2
x + σ2

y + C2

)
·
(

σxy + C3

σxσy + C3

)
,

where l(x, y), c(x, y) and s(x, y) are the local luminance
comparison, local contrast comparison and local structure
comparison or correlation between the images X and Y re-
spectively. For local statistics on each pixel, a 11 × 11 sub-
matrix of X with X(i, j) as the (1, 1) entry is chosen and
the local mean μx is computed for this local window as a
weighted mean with the same size Gaussian low-pass fil-
ter with standard deviation 1.5 as the weight matrix. Sim-
ilarly, the local mean μy, local standard deviations σx and
σy and the local covariance σxy are computed. C1 = 0.01,
C2 = 2C3 = 0.03 are small positive constants incorpo-
rated to avoid numerical instability. Note the cancelation
in the formula for SSIM(x, y) after the choice C2 = 2C3.
The SSIM(X,Y ) described here is the simplest and default
version of the SSIM MATLAB code as made available by
Wang et al. (2004). We refer the reader to the original pa-
per for details on a more complete version of SSIM.

The local statistics in SSIM was necessary to account for
local variations of image features across a scene and also due
to the fact that at typical viewing distances, only a local area
in the image can be perceived with high resolution by the
human observer at one time instance. The local smooth-
ing with a low-pass filter was reported to eliminate unde-
sirable “blocking” artifacts and exhibit a locally isotropic
property in the SSIM index map (Wang et al., 2004). Such
local smoothing makes SSIM quite insensitive to boundary
or edge loss. This, however, becomes unfavorable when the
loss is too much to preserve the visual quality. The third
factor in the SSIM formula is Pearson’s correlation which
is too naive a measure for structure similarity comparison
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since it only quantifies the strength of a linear relationship.
It is well-known that Pearson’s correlation is a valid measure
of dependence between two variables only if one variable is
a linear function of the other, say Y = Xβ+ε, and the noise
ε has a Gaussian distribution. When the noise distribution
is not Gaussian, it is possible that the correlation between
X and Y is zero but X and Y are perfectly related (see
Wang et al. (2010) for explicit examples). Indeed, we have
found in our experiments that SSIM yields persistently high
scores for blurred distortions and deceptively low scores for
slight random noisy versions in relation to how the human
eye perceives the quality loss.

3.3 MS-SSIM, VIF and IW-SSIM

Among all the full-reference image quality assess-
ment methods in the literature, the three multi-scale de-
composition methods MS-SSIM (Wang et al., 2003), VIF
(Sheikh and Bovik, 2006) and IW-SSIM (Wang and Li,
2011) are most relevant to our article. In most practical
purposes (not always, though, see Figure 2), they have sim-
ilarity indices on a scale of 0 to 1 (perfect similarity) just
like the proposed image quality assessment method in this
article. We refer the reader to the original papers for more
detail and only provide here a very brief description of these
methods.

MS-SSIM was introduced by some of the co-developers
of SSIM as an improvement over SSIM. The methodol-
ogy involves a multi-scale decomposition of involved images
through an iterative process of applying a low-pass filtering
and downsampling by 2 in each dimension. It is apt to men-
tion that the standard discrete wavelet transform is very
similar to this process as it also applies a low-pass filtering
associated with a particular wavelet followed by downsam-
pling by 2. If the low-pass filters associated with a particular
wavelet are of length 2N , a one-dimensional signal of length
n will reduce to an approximated signal of length equal to
the integer less than or equal to (n − 1 + 2N)/2. The final
MS-SSIM index is constructed by combining the three com-
ponents of SSIM, namely, luminance, contrast and structure
computed at different scales. As is the case with SSIM, due
to a correlation factor as its component, the values of the
MS-SSIM index, in principle, might range between−1 and 1.

VIF, proposed by two of the co-developers of SSIM,
uses a statistical approach developed by the authors in
Sheikh et al. (2005a) where the so-called natural images are
modeled in the wavelet domain as perceived by the HVS. A
more detailed discussion of the natural images in the wavelet
domain is provided in Section 4.1. First, the source, distor-
tion and HVS models based on the Gaussian Scale Mix-
ture (GSM) model (Wainwright et al., 2001) are developed.
Reference images are then modeled as outputs of a natural
source having passed through the HVS channel. Distorted
images pass through an additional distortion channel before
entering the HVS channel. Next, the image information is
computed as the mutual information between the input and

the output of the HVS channel. Finally, the VIF index is
computed as the ratio of the distorted image information
and the reference image information. VIF is not a symmet-
ric index and can take on values bigger than 1 for contrast-
enhanced test images. However, for most practical purposes,
including the one considered in this paper which restricts
the attention to only random-noisy test images, VIF does
lie between 0 and 1.

IW-SSIM is another recent image quality assessment al-
gorithm proposed as an improvement over MS-SSIM. Most
methods, including MS-SSIM, provide elaborate ways of
measuring local image similarity and a relatively more sim-
plistic method of pooling those local measurements into a
global image similarity measure. The main feature of IW-
SSIM is a more sophisticated way of pooling together local
measurements. The authors provide an elaborate formula
to compute weights proportional to local information con-
tent based on the image information measure in the VIF
index described above. The IW-SSIM index employs the
weighted pooling of the SSIM components computed at dif-
ferent scales and locations. In the event of some unconven-
tional comparison, the IW-SSIM index can also take com-
plex values (see examples in Figure 2).

3.4 Other image similarity assessment
methods

Development of full-reference image quality assessment
methods in agreement with the HVS is one of the highly pur-
sued topics of research in the image processing community.
A discussion of several old and new full-reference image qual-
ity assessment methods can be found in Ponomarenko et al.
(2009a) along with a comparison among them. One of
the earlier methods based on the idea of a wavelet anal-
ysis was proposed in Lai and Kuo (2000). Besides those
already mentioned, some other methods include Complex
Wavelet-domain SSIM (CWSSIM) (Wang and Simoncelli,
2005b), Information Fidelity Criterion (IFC) (Sheikh et al.,
2005a), Peak Signal-to-Noise Ratio human visual sys-
tem (Egiazarian et al., 2006), Visual Signal-to-Noise Ra-
tio (Chandler and Hemami, 2007) and Peak Signal-to-Noise
Ratio taking into account Contrast Sensitivity Function,
Between-coefficient Contrast Masking of Discrete Cosine
Transform basis functions (Ponomarenko et al., 2009a).

In Wang et al. (2011), the authors of this article have
proposed an image similarity assessment method called P-
value-based Structure Similarity Index (PSSIM) which is
constructed by applying a rank-based non-parametric test of
independence developed in Wang et al. (2010). It has been
shown in Wang et al. (2011) that PSSIM consistently out-
performs SSIM and MSE as an image similarity index in
the context of both random and deterministic noises. The
emphasis of PSSIM is on structural loss of image features.
Hence, it employs a test of independence which is violated
when there is a loss of image structure. By contrast, the goal
of this article is to develop an image similarity assessment
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method with the emphasis on the ability to see through
random noise at reasonable levels such that the human eye
can still identify the image content of the underlying im-
age. Hence, in the construction of the WNPSSIM index pro-
posed in this article, we employ a completely different test
that appropriately detects the structural difference in the
presence of random noise in images by assessing whether
or not the noise come from an identical source. Although
both PSSIM and the proposed WNPSSIM method employ
statistical tests, there is a significant methodological differ-
ence between the two methods. PSSIM employs a test in the
pixel domain and WNPSSIM employs a test in the wavelet
domain, where the HVS properties are known to be bet-
ter captured. Owing to the pixel-domain methodology of
PSSIM and the very specific objective of this paper, PSSIM
is deemed irrelevant to the current context. Thus, we do not
provide any more discussion of PSSIM in this paper and the
reader is referred to the original article Wang et al. (2011)
for its detailed description. Instead, we include in this article
comparisons of the proposed method with MS-SSIM, VIF,
and IW-SSIM (see Section 3.3) which are more relevant to
our current context.

4. OUR PROPOSED IMAGE SIMILARITY
ASSESSMENT METHOD

This section describes the details of our proposed im-
age similarity assessment method. This method employs,
in the wavelet domain, a non-parametric test developed by
Wang et al. (2008). In Section 4.1, we briefly revisit the
wavelet paradigm applied to natural images. A description
of our construction of the proposed similarity index is pro-
vided in Sections 4.2 and 4.3.

4.1 The wavelet domain and the natural
images in the wavelet domain

The wavelet transform provides a representation of im-
ages that enables a rich image analysis due to various prop-
erties that are not available in the raw image data, i.e., the
data in the pixel domain. Moreover, the decay and local-
ization properties of wavelets have made the wavelet do-
main even better than the Fourier domain where the repre-
sentative profiles are global sinusoidal signals. We refer the
reader to (Daubechies, 1992) and (Mallat, 2008) for a de-
tailed treatment of the wavelet and multi-resolution approx-
imation theories. An illustration of the wavelet transform of
data in the context of images is given in Figure 3, where
the image on the left is the data in the pixel domain and
the image on the right is the visualization of the data in the
wavelet domain which consists of the four sets of wavelet
coefficients called subbands. In Figure 3, the approximation
subband (ap), horizontal subband (h), vertical subband (v)
and diagonal subband (d) are represented by the four blocks:
the top left, top right, bottom left and bottom right respec-
tively.

Figure 3. Original image and its Haar subbands at level 1.

Mathematically, all M × N matrices with entries lying
in a range of values representing grayscale intensities, most
commonly in {0, 1, . . . , 255}, are (monochromatic) images.
However, the majority of such images neither resemble any-
thing in nature nor are encountered in most applications.
The images that are mainly of interest to the image analy-
sis community are the so-called natural images, that is, the
images that occur in nature and everyday life. The collec-
tion of these natural images is believed to be a very thin
subset of R

MN . Indeed, these images typically have spa-
tial structure mostly consisting of smooth areas interspersed
with occasional edges (Simoncelli and Adelson, 1996). This
structure, which distinguishes an image as a natural im-
age, is better explained and exploited via some transforma-
tion in domains other than the pixel domain. In the Fourier
domain, the power spectrum S(f) of natural images typ-
ically possess the decay property S(f) = Cf−γ where f
is the spatial frequency, C is some constant and γ ≈ 2
(Field, 1987; Field and Brady, 1997; Millane et al., 2003;
Ruderman, 1997; Tolhurst et al., 1992). Likewise, natural
images when transformed into the wavelet domain are also
seen to enjoy a number of properties. One is the sparsity
of the wavelet coefficients, i.e., most wavelet coefficients are
near-zero and can be discarded for approximation purposes
(Mallat, 2008). Second, the sizes of the detail wavelet coef-
ficients can be modeled by the following generic probability

density function: h(u) = Ke−(|u|/α)β where α and β are
the decay and variance parameters respectively and K is a
normalizing constant (Mallat, 1989).

As regards the goal of this paper which is to develop
an image similarity method close to the human visual sys-
tem (HVS) in performance, the most important property
of the wavelet transform of the natural images is its high
similarity with the HVS (Field, 1999; Ninassi et al., 2008;
Xiong et al., 1997). The process of the HVS can be tersely
explained in two phases: the pre-processing of the light re-
flected off an object by the neurons before it enters the vi-
sual cortex as an input and the post-processing thereof by
the cortical cells eventually leading to object recognition by
the human brain. During both phases, the different visual
information components are processed by a series of different
and independent channels which are sensitive to the visual
stimuli with specific spectrum location, frequency and ori-
entation (Gao et al., 2010). The wavelet decomposition of
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an image exhibits striking similarity with the HVS regard-
ing the independent processing of the different components
of an image relative to location and orientation. This prop-
erty of the HVS is referred to as multi-channel parallel path-
ways. Hence, the representation of images in the wavelet
domain better captures this property of the HVS by sharing
basic properties of neural responses in the primary visual
cortex of mammals which are presumably adapted to ef-
ficiently represent the visually relevant features of images
(Portilla et al., 2003). Thus, keeping in view that the dis-
crete wavelet transformation establishes a multiresolution
representation which attempts to mimic the decomposition
performed by the cortical basis, all with relatively low com-
plexity (Chandler and Hemami, 2005; Watson, 1987), we
take the wavelet domain as our natural domain for image
quality assessment.

4.2 The non-parametric test in the context
of image similarity

Wang et al. (2008) have developed a non-parametric test
which evaluates whether the observations in a vector or a sig-
nal are independently identically distributed, i.e., iid. This
is a rank-based hypothesis test which is essentially an “iid
noise detector”. We refer the reader to Wang et al. (2008)
and Wang and Akritas (2004) for details. Our work in this
current paper is to measure the similarity between the two
images, say, the reference image X and the test image Y
by applying the above-mentioned test to the relative differ-
ence between them, namely, the ratio X−Y

|X|+|Y | . If Y is some

random-noise contamination of X, this ratio measures how
big the noise at each pixel location is relative to the images.
The denominator may be replaced by X if an asymmetric
similarity index is desired. By testing whether the local ra-
tios are ‘iid’, we obtain a similarity assessment method of
how far Y departs from X locally and whether this depar-
ture is negligible.

We have discussed in Section 4.1 that the signal features
relevant to the human visual system (HVS) are better cap-
tured by their transforms in the wavelet domain than in the
raw pixel domain. Hence, instead of applying the test di-
rectly on the difference of the reference image X and the
test image Y , we consider their four first-level subbands,
namely, approximation subband (ap), vertical detail sub-
band (v), horizontal detail subband (h) and diagonal detail
subband (d) and apply the test to their relative differences,
namely,

Xap − Yap

|Xap|+ |Yap|
,

Xv − Yv

|Xv|+ |Yv|
,

Xh − Yh

|Xh|+ |Yh|
and

Xd − Yd

|Xd|+ |Yd|
.

(1)

A wavelet decomposition of the images in our experi-
ment data was done in MATLAB using the DIPUM pack-
age (Gonzalez et al., 2009). A vast number of choices for
wavelets is also available with the wavelet toolbox in MAT-
LAB. In our experiment, we have used the five wavelets:

Haar, Daubechies 4, Symmlet 4, Jpeg 9.7 and Biorthogo-
nal 6.8. All the five versions of WNPSSIM give a better
performance in comparison to other methods. Since the sim-
ilarity measures assigned by them are very close to one an-
other, we take HaarWNPSSIM as the representative of all
five versions and only refer to this one in most of our dis-
cussions. Further remarks on the types of wavelets and their
performances are provided in Section 6.1.

Next, we adopt the same principle of incorporating local
measurements as was done by SSIM. Instead of applying the
test only once to each relative difference of subbands in (1),
we consider multiple local windows in it and apply the test
to each local window. For example, in a local window of
Xap−Y ap

|Xap|+|Yap| , a non-rejection of the test indicated by a large

‘p-value’ provides evidence to believe that the relative dif-
ference between the two subbands Xap and Yap restricted to
that local region is close enough to ‘iid’ random noise (sub-
ject to type II error), which, in turn, can be interpreted as
the two subbands having a high level of structural similarity
between them in that local window, except for some ran-
dom noise. We then record the percentage of non-rejections
of the hypothesis tests applied to the local windows within
each subband image and we denote them by pap, ph, pv and
pd after approximation, horizontal detail, vertical detail and
diagonal detail respectively.

We emphasize that pap, ph, pv and pd are proportions
of non-rejections, and not p-values. They have a more di-
rect meaning in the sense that they represent the propor-
tions of local regions of the two images that resemble each
other structure-wise in corresponding subbands. This idea
of considering the proportion of non-rejections was success-
fully implemented by the same authors in Wang et al. (2011)
where another image similarity index based on a different
rank-based non-parametric test in the spatial domain was
proposed and shown to imitate the HVS better than other
contemporary similarity indices, most notably, SSIM. This
paper, as we have described above, seeks to focus on the
seeing-through ability of random noises of the HVS. Also,
note that the objective of our test is the non-rejections of the
null hypotheses rather than the rejections which is different
from the usual objective of a hypothesis test in most cases.
Therefore, we do not recommend to use multiple-comparison
adjustments aimed at controlling the family-wise error rate.
Instead, a cut-off level of α for non-rejection is more strin-
gent than the threshold by Bonferroni corrected level (≈ α
divided by the number of tests). This ensures the p-values
need to be large enough to qualify as a non-rejection. We
have implemented in our experiment α = 0.01.

All the images in our experiment described in Section 5.1
and partially illustrated in Figures 8 and 9 are of size
512 × 512. Each subband is one-fourth the original image
size, i.e., of size 256 × 256. For these subbands, we con-
sider local windows of size 11× 11, much in the same spirit
as that of SSIM. The application of the test on local win-
dows provide local similarity measurements which are then
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pooled together to obtain a global similarity measurement.
In choosing the size for a shift of a local window so as to cover
the whole image, there is a trade-off between the amount of
local comparisons to take into account and the computa-
tional cost. A local window of size 11×11 and its horizontal
or vertical shift by only 1 pixel differ, at the most, at 11
observations out of a total of 121 observations. As a result,
the p-values produced with the test applied with respect to
these two local windows are almost identical. On the other
hand, the intersection of the windows is also necessary, to
some extent, to ensure that the spatial connection within
the local regions of the two images is carried over to the
final similarity measurement between them. Hence, in order
to strike a balance, our rule is to shift the local windows hor-
izontally and then vertically by half of the window width,
namely, by 5 pixel locations.

With the proportions of non-rejections pap, ph, pv and pd
corresponding to the four subbands defined in this section,
a similarity index between the reference image and the test
image is calculated as a weighted geometric mean of these
proportions as below:

WSSIM = p0.95ap · p0.02h · p0.02v · p0.01d .

The weighted mean WSSIM is so constructed as to give
proper credential to each subband to the extent it supplies
structural information to the HVS. Note that all the propor-
tions as well as weights are positive numbers less than one.
Hence, raising the proportions of non-rejections from each
subband to such weights has the effect of boosting those pro-
portions. The construction of the weighted geometric mean
WSSIM is based on the idea that a proportion that is to
be given less importance is assigned a smaller weight and is
boosted thereof. The weights, as assigned, reflect that WS-
SIM honors more of the conclusion from the approximation
subband and pays less attention to the detail subbands. We
list below a few points to justify our approach:

1. The approximation subband is a subsampled version of
the original image and, thus, clearly retains most visual
structure of the original image. On the other hand, the
horizontal, vertical and diagonal subbands contain de-
tails of the original image missed by the approximation
subband in the respective orientations. For reference, see
Figure 3 which illustrates an original image and its four
subbands of Haar wavelet coefficients. Consequently, pap
needs to be boosted the least as the visual structure of
the original image is clearly obvious in the approximation
subband and ph, pv and pd need to be boosted more as
the fine details in the detail subbands are not so visually
obvious.

2. The percentage of structural similarity information cap-
tured by each subband will be different for different data
of natural images. However, we believe that data-driven
estimates of these percentages might not provide con-
vincing evidence to prove that the weights as suggested

by such estimates will be any better. Instead, we rely on
the fact that the empirical distribution of the size of the
detail coefficients for natural images exhibit the pattern
of double exponential distribution (Mallat, 1989). Due
to this fact, the structural information captured by the
detail coefficients is significantly understated. Hence, we
need to boost the proportion of non-rejections from the
detail subbands to a greater extent.

3. The use of weights can be viewed as an alternate way
of thresholding wavelet coefficients which is a standard
practice in image reconstruction. The idea of thresh-
olding is based on the sparsity property of wavelet co-
efficients which says that it is sufficient to consider
only a few wavelet coefficients and discard the rest
of them which are near-zero. Wavelet thresholding has
a very strong theoretical support provided in Donoho
(1995). Most information about the underlying true im-
age structure will be retained by thresholding because
every wavelet coefficient contributes random noise, but
only a very few wavelet coefficients contribute signal
(Donoho and Johnstone, 1994). Since determining the
optimal cut-off for thresholding is computationally exten-
sive (Kim and Akritas, 2010), we instead keep 25% of the
total wavelet coefficients by assigning the weight 0.95 to
the approximation subband (keeping 95% of the approxi-
mation coefficients which account for 1/4 of the total) and
utilize the rest of the coefficients, most of which are al-
ready near-zero, by assigning smaller weights to the detail
subbands (keeping 5% of all the detail coefficients which
account for 3/4 of the total). Notice also that our assign-
ment of the weight 0.02 to the horizontal and vertical
subbands and 0.01 to the diagonal subband comes from
a reasonable assumption that the horizontal and vertical
details are more common than the diagonal ones in natu-
ral images (Huang and Mumford, 1999; Watanabe et al.,
1968). Thus, the weighted mean WSSIM can be inter-
preted as taking into account the approximation, horizon-
tal detail, vertical detail and diagonal detail coefficients
with appropriate weights as described above.

4.3 Wavelet-based non-parametric structure
similarity index (WNPSSIM)

Luminance plays an important role when the human eye
scans two images for similarity. We have found that WS-
SIM detached from luminance considerations assigns almost
identical similarity indices for two noisy images that differ
only in pixel-wise luminance shift (see N13,4 and N14,4 in Fig-
ure 9). But, the human eye, being sensitive to such change,
prefers a better discrimination of their similarity indices.
This objective is precisely met when we define our similar-
ity index, called Wavelet-based Non-parametric Structure
Similarity Index (WNPSSIM), to be the product of WSSIM
and the average luminance similarity. Following Wang et al.
(2011), we take the average luminance similarity L to be
the average of pixel-wise luminance similarities instead of
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the locally estimated mean pixel values as in SSIM to avoid
the bias as a result of local smoothing for finite samples. For
two images X = (Xij) and Y = (Yij) of size m×n, we thus
have

WNPSSIM(X,Y ) = p
19
20
ap · p

2
100

h · p
2

100
v · p

1
100

d · L,

where

L =
1

mn

m∑
i=1

n∑
j=1

Lij =
1

mn

m∑
i=1

n∑
j=1

2XijYij + C

X2
ij + Y 2

ij + C
,

where, in turn, C is some small positive constant to avoid
numerical instability which occurs when Xij and Yij are
very small floating-point numbers. In our experiment, we
have used C = 0.001.

5. PERFORMANCE EVALUATION OF
WNPSSIM

In this section, performance of WNPSSIM is evaluated
against the performances of some well-established image
similarity assessment methods in meeting the objective of
this paper. The methods we have selected for this purpose
are MSE, TV, SSIM, MS-SSIM, VIF, and IW-SSIM. MSE
and its variant SNR (see Section 3.1) are traditional meth-
ods still widely used due to their mathematical convenience.
TV is another mathematically convenient method which is
more popular among the partial differential equations com-
munity. Just like in the case of MSE, TV’s poor perfor-
mance in trying to follow the HVS is its largest drawback
which greatly subtracts from its recognition due to its math-
ematical convenience. SSIM (see Section 3.2), on the other
hand, is highly regarded as the first successful universal im-
age similarity assessment method in defeating traditional
methods in capturing similarity in the sense of the HVS.
Yet, SSIM does not fare very well in our experiment results.
Our proposed method is specifically designed to perform well
in the context of random-noise contamination and employs
a multi-scale decomposition via the wavelet transform. MS-
SSIM, VIF, and IW-SSIM (see Section 3.3) are all based
on the techniques of a multi-scale decomposition of images.
The MATLAB codes for SSIM and IW-SSIM were down-
loaded from http://ece.uwaterloo.ca/˜z70wang/research.
htm and the codes for MS-SSIM and VIF were down-
loaded from http://live.ece.utexas.edu/research/Quality.
The WNPSSIM code, not publicly released yet but avail-
able from the authors upon request, was implemented in
both MATLAB and R 2.8.1.

5.1 Experiment data

Our experiment data consist of nine standard images in
the image processing literature as original reference images
and 17 different noisy versions of each one of them as test im-
ages. For robustness, we include all common random noises

described in Section 2. The original reference images are la-
beled A1, A2, . . . , A9 (see Figure 8). All are of size 512×512
and has intensities ranging from 0 to 255. Of each refer-
ence image Ai, 17 noisy versions were created by random
noise contamination of various types and levels and labeled
as N1,i, N2,i, . . . , N17,i. These distortions are illustrated in
Figure 9 for image A4. The distorted images N13,i and N14,i

were generated in R by adding mixture noise to the orig-
inal images. The rest of the distortions were generated in
MATLAB using the imnoise.m function. The numerical pa-
rameters of imnoise.m are normalized so that the images
are scaled to have intensities in the range of [0, 1] before the
noise contamination process and then scaled back to the
original range of {0, . . . , 255} afterward. The description of
these noisy images are given as below:

1. N1,i, N2,i, N3,i, N4,i and N5,i contain additive Gaussian
noise with mean 0 and variances 0.00068, 0.0018, 0.005,
0.01 and 0.068 respectively.

2. N6,i, N7,i and N8,i contain salt and pepper noise with
noise densities 0.0011, 0.006 and 0.011 respectively.

3. N9,i contains Poisson noise generated from the image
itself. If the input pixel value is λ then the output
pixel value is drawn from the Poisson distribution with
mean λ.

4. N10,i, N11,i and N12,i contain MATLAB-generated
speckle noise (addition of uniformly distributed multi-
plicative noise) with mean 0 and variances 0.007, 0.012
and 0.12 respectively.

5. N13,i and N14,i contain mixture noise coming from two
sources: 60% of the noise is from an exponential distri-
bution with mean 1 and 40% of the noise is from a t-
distribution with 3 degrees of freedom with mean at 90
and 120 respectively. Note that the parameters here cor-
respond to image pixel values in the range {0, . . . , 255}.

6. N15,i, N16,i and N17,i contain localvar noise. This noise
is generated in MATLAB as an additive Gaussian noise
with mean 0 and variance as a function of image inten-
sity. When at least two image intensities take two differ-
ent variances, MATLAB extends this initial correspon-
dence to be an all-out intensity-to-variance function by
assigning a unique variance to each of the whole range
of intensities in the particular image through linear in-
terpolation. The initial intensity-to-variance correspon-
dences used to generate images N15,i, N16,i and N17,i

are {0.01, 0.09} �→ {0.02, 0.01}, {0.01, 0.09, 0.9} �→
{0.08, 0.02, 0.01} and {0.01, 0.9} �→ {0.06, 0.1} respec-
tively.

Figure 4 plots the SNR values for random noisy versions
of various types and levels of each of the 9 reference images.
Figure 8 shows all 9 reference images and Figure 9 shows
all 17 noises of one single reference image. The SNR values
are only meant to show how much noise is present in our
experimental data by using a traditional measure.
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Figure 4. SNR values of 6 different types of random noisy
versions of each of the 9 reference images. Full details of the
noise types and levels are provided in Section 5.1. All the 9
reference images are illustrated in Figure 8 and all the 17
versions of random noise in a particular reference image is

illustrated in Figure 9.

5.2 Comparison of WNPSSIM with other
image similarity indices

In this section we provide experimental results to verify
that WNPSSIM outperforms some popular image similarity
methods in order to meet the main objective of this paper,
that is, the ability to see through random noise in images
and assign similarity indices that are more coherent with
the human eye.

Six popular image similarity assessment methods,
namely, MSE, TV, SSIM, MS-SSIM, VIF, and IW-SSIM
are evaluated vis-à-vis WNPSSIM, the proposed method.
However, keeping in mind space constraints and relevance
to our current context as outlined in Section 3.3, we provide
a complete list of similarity measures only for MS-SSIM,
VIF, IW-SSIM and the five versions of WNPSSIM and make
a passing reference to the similarity measures of MSE, TV
and SSIM in our discussion. Despite the noises, all the im-
ages are clearly recognizable as noise-contaminated versions
of the original image. MSE and TV are bound to perform
the worst as they are meant to capture mathematical sim-
ilarities rather than visual similarities between the two im-
ages. SSIM is also seen to assign values rather inconsistently
and unreasonably. In order to save some space, we do not
provide the SSIM values for our entire experiment data but

would like to point out that the SSIM values do appear to
be changing too dramatically in the case of mixture, Gaus-
sian and localvar noises in comparison to the effective visual
differences.

Figure 5 shows the image similarity measures for all 17
noisy versions of each of the 9 reference images assigned
by similarity indices MS-SSIM, VIF, IW-SSIM, and the five
wavelet versions of WNPSSIM (denoted as HaarWNPSSIM,
Db4WNPSSIM, Sym4WNPSSIM, Jpeg9.7WNPSSIM and
Bior6.8WNPSSIM). Although we have five different versions
of WNPSSIM associated to five different wavelets, we will
constantly refer to HaarWNPSSIM as the representative
WNPSSIM index since the five versions have similar per-
formance.

Figures 1 and 6 show more details for comparison of
HaarWNPSSIM with MS-SSIM, VIF, IW-SSIM. Figure 1
presents the similarity assessments as judged by these image
similarity indices for the noisy versions of all the 9 reference
images collectively on the left and the Box-Percentile plots
for the same on the right. Figure 6 illustrates the perfor-
mances of these similarity indices individually for each of
the 9 images. For subjective evaluation of the random noise
assessment, the reader can refer to Figure 9 which lists A4

as the original reference image as well as all the 17 noisy
versions of it. The images in the paper are small for organi-
zational purposes but they can be viewed in a larger scale
by zooming in on the pdf file to see the degradation of the
visual quality with higher levels of noise. For these images,
the reader can compare their own subjective judgement of
the visual similarity with the assessment of various similar-
ity indices given in Figure 6.

First of all, notice that all the similarity measures in
Figures 5 and 6 lie between 0 and 1, where the index
value of 1 indicates perfect similarity (see Section 3.4). An-
other common feature about MS-SSIM, VIF, IW-SSIM and
WNPSSIM is that all these indices agree on the relative
rankings of the similarity measures for most of the different
versions of noise contamination as illustrated in Figure 1.
The only exception is between the noisy versions N8,k and
N9,k of the original image Ak, (k = 1, . . . , 9). Note that N8,k

was created by sprinkling salt and pepper noise thereby af-
fecting its visual similarity with A4 only partially whereas
N9,k contains Poisson noise which affects the entire image.
This observation is also endorsed by the illustration in Fig-
ure 9 where N9,4 appears to be slightly more corrupted than
N8,4. Hence, HaarWNPSSIM’s assignment of slightly higher
index values for N8,k than for N9,k appears to be more in
accord with our visual perception. On the other hand, MS-
SSIM, VIF and IW-SSIM are observed to assign much lower
values for N8,k than for N9,k in direct contrast to our visual
sense.

Another observation is that the similarity indices as-
signed by SSIM, MS-SSIM, VIF, and IW-SSIM have big
ranges over our experiment data (see Figure 1). Scanning
the images in Figure 9, however, suggests that the incre-
mental noise level within each noise type changes slightly.
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Figure 5. Visual illustration of the comparison of WNPSSIM with MS-SSIM, VIF and IW-SSIM for all 9 images and its 17
noisy versions of 6 different types. The original similarity values assigned by these methods are given in Tables 1–3 in

supplementary material (http://www.intlpress.com/SII/p/2013/6-1/SII-6-1-silwal-supplement.pdf). Full details of the noise
types and levels are provided in Section 5.1. All the 9 reference images are illustrated in Figure 8 and all the 17 versions of

random noise in a particular reference image is illustrated in Figure 9. The five versions of WNPSSIM have very close
performance. VIF assigns much lower similarity values than other methods. MS-SSIM and IW-SSIM show big variations.

The slight change should not be the cause for drastic changes
in similarity index values. WNPSSIM assigns values within
a shorter range ([0.713, 0.96] for HaarWNPSSIM), remain-
ing more in line with the visual perception, while values
assigned by the other indices fluctuate quite dramatically
(for instance, [0.425, 0.988] for MS-SSIM and [0.101, 0.859]
for VIF).

One attractive feature of WNPSSIM which makes it very
convenient as an image similarity index is the fact that it is
a symmetric index and rates similarity strictly on a scale of
0 to 1. MS-SSIM, VIF and IW-SSIM might not have these
properties in general. Although MS-SSIM is a symmetric in-
dex, its values, in full generality, range between −1 and 1.
VIF is an unsymmetric index and takes values bigger than 1
if the test image is an enhanced version of the original image.
IW-SSIM is an asymmetric index and might take complex
values. In our experiment data, the values assigned by MS-
SSIM, VIF and IW-SSIM do lie between 0 and 1. However,
these similarity index values cannot be interpreted on a scale
of 0 to 1 as they clearly do not vary in accordance to per-
ceived levels of random noise. The values assigned by these
three similarity indices appear to plunge dramatically as the
random noise contamination increases. The noisy versions
N5,k, N8,k, N12,k, N14,k, and N17,k contain the highest level
of Gaussian, salt & pepper, speckle, mixture, and localvar
noises respectively. MS-SSIM, VIF, and IWSSIM assigned

very low similarity measures for these noisy versions. For
example, for N14,4, the similarity indices assigned by MS-
SSIM, VIF, and IWSSIM are 0.3889, 0.1081, and 0.3952
respectively. Due to the complicated range for these simi-
larity indices, it is difficult for the human brain to quickly
judge how far away these values are from perfect similar-
ity. The WNPSSIM value of 0.7726 in the range of [0, 1]
for N14,4 better reflects our visual sense because although it
contains the highest level of random noise coming from two
different sources, a very high degree of similarity with the
original image A4 is clearly visible to the human eye. Sim-
ilarly, the similarity indices of 0.5243, 0.1311, and 0.4878
assigned respectively by MS-SSIM, VIF, and IW-SSIM for
the noisy image N17,4 may be difficult for the user to judge
how close this image is to the original reference image. The
WNPSSIM value of 0.7516 strictly lying in the range of [0, 1]
clearly indicates that the noisy image N17,4 exhibits about
75% resemblance of the original image.

An outstanding observation we have made about the per-
formance of WNPSSIM is that it assigns more consistent
values for each noise contamination across all 9 images over
MS-SSIM, VIF, and IW-SSIM. It is clearly observed by in-
specting the plot of the similarity measures for each of the
images in Figure 1 or 6. This suggests that HaarWNPSSIM’s
measure of visible degradation in images is noise-specific
and robust to variations of images while the measures de-
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Figure 6. Visual illustration of the comparison of MS-SSIM, VIF, IW-SSIM and HaarWNPSSIM for similarity assessment of
each of the 9 reference images with their 17 noisy versions. Full details of the noise types and levels are provided in

Section 5.1. All the 9 reference images are illustrated in Figure 8 and all the 17 versions of random noise in a particular
reference image is illustrated in Figure 9.

termined by MS-SSIM, VIF, and IW-SSIM may be adversely
affected by image-specific details present in images. An ideal
image similarity index in presence of random noises should
see through the noises in images and focus on the scene
and features that have substantial effect on the HVS. Our
experimentation results suggest that in comparison to MS-
SSIM, VIF, and IW-SSIM, WNPSSIM indeed is more in
agreement with this property of the HVS as it appears to
be more consistent in perceiving the features that matter
more to the human eye. Also, the Box-Percentile plot illus-
trated in Figure 1 reveals that, relative to the variations of
measures assigned to different versions of noise contamina-
tion, the difference between MS-SSIM and IW-SSIM values
are negligible. The VIF index is seen to have the largest

range and the lowest similarity index values for each type of
noise. On the other hand, WNPSSIM has the lowest range
and highest similarity index values in general in each type
of noise. Our analysis shows that VIF would be more de-
sired for detecting the slightest level of noise in images while
WNPSSIM would be the best performer when it comes to
detecting visual similarity in the presence of random noise.

In order to verify that the proposed similarity measure is
also capable of detecting dissimilarity, we present similarity
indices experimented on some completely different images.
We first take the A4 (lady with black hair) as the reference
image and compare it to A8, N2,1, N7,2, N14,8 and N14,4.
The results are presented in the first five rows underneath
the images in Figure 2. Then we take the N14,4 as the refer-
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ence image and compare it to A4, A8, N2,1, N7,2 and N14,8.
The results are shown in the last five rows in Figure 2.
It can be seen that MS-SSIM, IW-SSIM, and WNPSSIM
all detect dissimilarity reasonably well. Evidently, VIF is
seen to be having difficulty detecting dissimilarity between
two images. Taking N14,4 (lady with the highest mixture
noise) as the reference image, the VIF index value for N14,8

(peppers with similar mixture noise) is 0.4396 which is
much higher than the VIF index is 0.0223 for A4 (noise-
free version of N14,4 itself). The HaarWNPSSIM index val-
ues for these comparisons are 0.1489 for the different im-
age and 0.7726 for the same image source. Clearly, Haar-
WNPSSIM is following the eye whereas VIF is merely com-
paring the superficial noises rather than the underlying im-
ages, thus assigning a misleadingly higher similarity index
value.

Finally, althoughWNPSSIM has values much higher than
the other ones for these dissimilarity comparisons, it is to be
noted that WNPSSIM is strictly on a scale of 0 to 1 while the
others are not. The non-parametric test we have employed in
the construction of our similarity index is essentially an “iid”
noise detector. Hence, our similarity index is not expected to
perform well in the case of some deterministic noises such
as those caused by spatial filtering. In addition, a locally
homogeneous region in one image compared to such a region
in another image would give a non-rejection even though
the two regions may represent different image contents or
objects. Consequently, the cut-off threshold for unsimilarity
for the entire images would shift upward away from 0. The
general rule of thumb is that if WNPSSIM is below 0.4, the
images should be taken to have significantly low structural
similarity. This can be seen in our comparisons of completely
different images: A4 and N14,8, N14,4 and A8, and N14,4 and
N7,2 in Figure 2, where WNPSSIM values are all between
0.25 and 0.4.

6. APPLICATIONS AND LIMITATIONS OF
WNPSSIM

In this section, the applications and limitations of the
proposed image similarity index, namely, WNPSSIM are
described. We also discuss the question of whether or not
WNPSSIM defines an actual distance.

6.1 Applications and limitations in image
analysis

Algorithmic methods of image similarity assessment con-
sistent with the HVS are most vigorously pursued research
topics in the image analysis literature. Robust methods,
whether universal or context-specific, will evidently have
huge applications in several fields as pointed out in Section
1. In this article, a new image similarity assessment method
by the name of WNPSSIM has been proposed in the con-
text of images contaminated with random noises from all
possible sources. Images are susceptible to random noise all
too often such as during acquisition, storage and processing.

Our experiments show that WNPSSIM is quite powerful in
detecting visual similarity between images when the images
have been contaminated with random noises from various
sources.

The construction of WNPSSIM we have described in this
article worked out best for the experiments we have con-
ducted which consisted of 9 standard 512× 512 test images
common in the literature. Some parameters in the construc-
tion of WNPSSIM can be adjusted in order to better suit
the application data as follows:

1. Local window size: At typical viewing distances, only a
local area in the image can be perceived with high res-
olution by the human observer at one time instance be-
cause of the foveation feature of the HVS (Wang et al.,
2004). For this reason, computation of local statistics is
necessary. For 512× 512 images in this article, we have
used a local window of size 11 × 11 as in Wang et al.
(2004) (see Section 4.2). With this choice there are
enough pixels within each local window to make the
test valid. We comment that the test is also valid if the
local window size is bigger, which also reduces the com-
putational requirement since there are fewer windows
to be tested. However, increasing the local window size
will make the algorithm depart from incorporating the
foveation feature of the HVS. Hence, we recommend to
use local windows of size 11 × 11 for all images. With
this choice of local window, we have found that our sim-
ilarity index is capable of detecting significant visual
similarity even when the test images have some image
information missing. This is shown in Figure 7 where
both of the reference images are of size 512×512. In test
image 1, the last 51 columns, i.e., 9.96% of the total pix-
els were subjected to information loss by turning them
into grey pixels of some fixed intensity. In test image 2,
a near square area of 100 × 101 = 10100 pixels in the
upper right corner were blackened out resulting in a loss
of 3.85% image information. On top of the information
loss, low levels of random noise were also imposed on
the test images. Test image 1 was contaminated with a
speckle noise with mean 0 and variance 0.002 while test
image 2 was corrupted with a salt & pepper noise with
density 0.005. In this particular experiment illustrated
in Figure 7, WNPSSIM finds the information loss more
dominating relative to the random noise contamination
and assigns similarity measures for the two test images
in the reverse order of the information loss percentage.
The assignments from the other measures are just op-
posite.

2. Wavelet type: There are a vast number of wavelets avail-
able for implementation with the wavelet toolbox in
MATLAB that vary in symmetry, continuity, support
size, etc. We have used five wavelets, namely, Haar,
Daubechies 4, Symmlet 4, Jpeg 9.7 and Biorthogo-
nal 6.8 in our experiment which are available with
DIPUM package (Gonzalez et al., 2009). We notice
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Figure 7. The foveation feature of the HVS asserts that
human observers only focus on one local area at a time.
Illustration of this feature using images with lost partial

information and low level random noise contamination. Test
images were generated in MATLAB by partially removing or
occluding some information from the corresponding reference
images followed by corruption with random noise. Test image
1 has 51 columns turned to grey which amounts to 9.96% of

information loss. Test image 2 has a subimage of size
100× 101 turned to black resulting in 3.85% information

missing. Additionally, test image 1 contains speckle noise with
mean 0 and variance 0.002; and test image 2 has salt &

pepper noise with density 0.005.

slightly different results for these five different wavelets.
This happens because wavelets come in different shapes
and sizes and measuring an arbitrary signal in terms
of different wavelets will produce different results. In
fact, it is possible to find empirically a wavelet that
works best for a given data set of images, such as faces,
fingerprints, terrain, paintings, etc. For example, for a
data set of aerial images of skyscrapers, Haar wavelets
will provide the best succinct representation with least
wavelet coefficients due to their block-like resemblance.
However, we notice for our collection of experimental
images, WNPSSIM based on the selected five wavelets
produce similar measures and that they all perform bet-
ter in comparison with the other image quality assess-
ment methods considered in this article. If the applica-

tion data set is not well-defined, we recommend using
Haar wavelets for their simplicity.

3. Wavelet subband weights: The weights we have used in
this article for approximation, horizontal, vertical and
diagonal subbands are 0.95, 0.02, 0.02 and 0.01 respec-
tively (see Section 4.2). The reason for these choices
come from our belief that for our experiment data, the
visual structure of the original image retained by the
approximation, horizontal, vertical and diagonal sub-
bands are 95%, 2%, 2% and 1% respectively. Please re-
fer to Figure 3 to have an estimate of these values.
These parameters can be adjusted if there is a very
strong reason to believe otherwise. However, we do not
recommend to change these weights because it is very
hard to ascertain the precise values of these parameters
and also the decomposition of the original image into
wavelet subbands fairly stays the same regardless of the
image types.

4. Wavelet decomposition level : We have used only one
level of wavelet decomposition in this article. Depend-
ing on the size of the images under consideration, higher
levels of decomposition is possible. Even if more decom-
position levels are possible, the authors recommend to
use only one decomposition level as it keeps the algo-
rithm fairly simple and it is very hard to justify the
use of more iterations of the wavelet transform in our
present context. Nevertheless, if more than one decom-
position level is preferred, then the local window size
and the wavelet subband weights need to be adjusted
accordingly.

It should be noted that the application of WNPSSIM
is to be restricted to registered databases of images. This
means that all the images in the database need to be brought
down to the same coordinate system and have the same
size. In other words, image registration is a required pre-
processing step if WNPSSIM is to be applied to an arbitrary
set of images. This, in fact, is true of almost all currently
available full-reference image quality assessment methods.
We propose WNPSSIM as a robust method to detect image
similarity very much in accordance with that of the HVS in
the presence of random noise of all types. For that reason, we
think image denoising might be the best application domain
of WNPSSIM.

Finally, MS-SSIM, VIF and IW-SSIM have gone through
validation involving extensive subjective experiments to fol-
low the HVS in the same pattern. The fact that WNPSSIM
concurs with MS-SSIM, VIF and IW-SSIM on relative rank-
ings of the similarity measures for different kinds of noises
with the exception of one case (see Section 5.2) we can con-
clude that WNPSSIM exhibits a reasonable amount of prox-
imity with the HVS. Furthermore, WNPSSIM offers addi-
tional advantages (see Section 5.2) especially in the case of
images with noises from multiple sources, namely, N13,k and
N14,k, and images with noises having intensity-dependent
variances, namely, N15,k through N17,k.
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The authors are aware that there are some large-scale im-
age databases featuring psycho-visual experimentation such
as LIVE image quality assessment database (Sheikh et al.,
2005b) and TID2008 database (Ponomarenko et al., 2009b)
available for use completely free of charge to researchers.
However, the main purpose in this paper is the detection of
visual similarity between images degraded only through ran-
dom noise contamination. Deterministic noises such as com-
pression and blurring are beyond the scope of this paper. In
order to establish the robustness of the proposed method,
we need several different kinds of random noises at several
different levels. Most publicly available databases, featuring
both deterministic and random noises, are specially designed
for universal image similarity assessment methods. However,
due to an insufficient number of variations in random noise,
they are not quite suitable to serve the specific purpose un-
dertaken in this paper. This is essentially what prompted us
to come up with our own experiment data. The authors were
unable to locate any publicly available databases which of-
fered the variety of random noises we have considered in this
paper. For example, our experiment data features a mixture
noise which is a random noise with more than one source.
A mixture noise is certainly a realistic noise since images
in real life subjected to various processes are susceptible
to contamination from multiple sources. Our experiments
show that this type of noise might adversely affect the per-
formance of some popular image similarity indices such as
SSIM. Also, the results in the context of the 5 relatively
complicated noises N13,k through N17,k sufficiently convince
the authors to refrain from resorting to any large-scale ex-
periments. In light of the large proportion of time and effort
such experimentation would require as well as its value in
its own right, the authors wish to undertake it as a separate
project in the future.

6.2 Does WNPSSIM define a distance?

It is relevant to raise a question as to whether or not
WNPSSIM defines a distance. We give a negative answer
to this question and provide an argument that a distance
as an image similarity assessment method is not necessarily
desirable. A distance is usually desired for its mathematical
convenience due to the fact that it makes a continuous mea-
surement of distances between images possible. A distance
d, by definition, is a function taking values in [0,∞) and
possessing the following properties:

1. d(X,Y ) = d(Y,X) for any two images X and Y .
2. d(X,Y ) = 0 if and only if the two images X and Y are

identical.
3. d(X,Y ) ≤ d(X,Z)+d(Z, Y ) for any three images X,Y

and Z.

To a distance, an M×N matrix is just a mathematical point
in the space R

MN and it treats all the points in this space
exactly the same way without any discrimination. Conse-
quently, a distance lacks the ability to take into account the

redundancy present in natural images as it cannot distin-
guish between random matrices and matrices corresponding
to natural images. However, as we have remarked in Sec-
tion 1, the whole purpose of image quality assessment is to
provide a method that goes hand in hand with the HVS in
determining the proximity between natural images. A dis-
tance in the space of all possible images (random and natu-
ral), clearly, will not do justice to the set of natural images
which, according to the discussion in Section 4.1, is merely a
thin subset of the space of all images and, therefore, cannot
be the right tool for image quality assessment.

Given the range and meaning of WNPSSIM (i.e., the in-
terval [0, 1], with 0 indicating complete dissimilarity and 1
complete similarity), a natural candidate for a distance de-
fined by WNPSSIM is d(X,Y ) = − log(WNPSSIM(X,Y )),
which trivially verifies Properties 1 and 2. Along the lines of
the previous discussion, the fact that d(X,Y ) fails to satisfy
Property 3 will attest to its ability to discriminate between
natural images and mathematical matrices. This is indeed
the case, for instance, if we consider X = A4, Y = A8 and
Z = N14,4, where the images A4, A8, and N14,4 are as in
Figure 2. Then we find from the WNPSSIM values in the
same figure,

7.6009 = d(X,Y ) ≥ d(Z, Y ) + d(X,Z) = 1.3556 + 0.2580.

Hence, as anticipated, d does not satisfy Property 3. In ad-
dition, the corresponding values of d(X,Y ), d(Z, Y ), and
d(X,Z) are in accordance with visual perception. Meaning,
images X and Y are clearly different images, Z is a noisy
version of X and our assessment of its distance to X and
Y is hindered by the existence of noises leading to smaller
distances.

7. CONCLUSION

One of the properties of the HVS is the ability to see
through a low-level of random noise contamination and rec-
ognize the underlying image. Another important property
of the HVS is its multi-channel parallel pathways (see Sec-
tion 4.1). This article seeks to emulate these two properties
in the proposed image similarity index.

In this article, we have developed an image similarity in-
dex WNPSSIM that provides a measure of visual similarity
on a scale of 0 to 1 between any two supplied images. In
practice, one of the images is a reference image and the
other one is a random-noisy version of it and the goal is
to assess the similarity between the two, incorporating the
seeing-through ability of moderate levels of random noise
in images. The main idea of the construction of WNPSSIM
is to apply a non-parametric test to the relative difference
of the reference image and the test image in the wavelet
domain to evaluate the structural similarity of the images
locally. The final similarity assessment method integrates
the information from the level-one wavelet subbands as well
as the local luminance comparison.
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Figure 8. All 9 reference images with six different types of random noise.
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Figure 9. Original image A4 and all of its 17 noisy versions.

Since the WNPSSIM index is a method based on multi-
scale decomposition techniques, the three other multi-scale
similarity indices, MS-SSIM, VIF, and IW-SSIM, have pre-
sented themselves as suitable choices for comparison against
the performance of WNPSSIM in the present context of this
article. Furthermore, these three similarity indices are exten-
sively tested methods and are widely regarded as state-of-
the-art performers in mimicking the human visual system
(HVS). Our experimentation show that WNPSSIM indeed
shares the virtues of MS-SSIM, VIF, IW-SSIM in detecting
visual similarity between images very much in sync with the
HVS. This is clear from the fact that MS-SSIM, VIF, IW-
SSIM, and WNPSSIM almost always agree on the rankings
of different types of noisy versions according to their visual
similarity with the reference image. Our results find that
WNPSSIM offers additional advantage over the other con-
sidered image similarity indices when it comes to random-
noise contamination. WNPSSIM values comply more with
our visual sense by assigning similarity values using the geo-
metric mean of the proportions of local agreements between
the two images in each wavelet subband scaled by the av-
erage luminance. Further, slight incremental changes in the
levels of noise seem to affect the images in our experiment
data only slightly in terms of visual degradation. This fact
is reflected very well in WNPSSIM values. The other sim-
ilarity indices, on the other hand, show drastic changes in

their values for these noisy images. Since various kinds of
random noises inevitably exist in abundance in digital im-
ages, a non-parametric image quality assessment method as
the one proposed in this article should have plenty of po-
tential to provide a reliable similarity measure in this con-
text.
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