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Penalized regression methods are becoming increasingly
popular in genome-wide association studies (GWAS) for
identifying genetic markers associated with disease. How-
ever, standard penalized methods such as LASSO do not
take into account the possible linkage disequilibrium be-
tween adjacent markers. We propose a novel penalized ap-
proach for GWAS using a dense set of single nucleotide poly-
morphisms (SNPs). The proposed method uses the minimax
concave penalty (MCP) for marker selection and incorpo-
rates linkage disequilibrium (LD) information by penalizing
the difference of the genetic effects at adjacent SNPs with
high correlation. A coordinate descent algorithm is derived
to implement the proposed method. This algorithm is effi-
cient in dealing with a large number of SNPs. A multi-split
method is used to calculate the p-values of the selected SNPs
for assessing their significance. We refer to the proposed
penalty function as the smoothed MCP and the proposed
approach as the SMCP method. Performance of the pro-
posed SMCP method and its comparison with LASSO and
MCP approaches are evaluated through simulation studies,
which demonstrate that the proposed method is more ac-
curate in selecting associated SNPs. Its applicability to real
data is illustrated using heterogeneous stock mice data and
a rheumatoid arthritis.

Keywords and phrases: Genetic association, Feature se-
lection, Linkage disequilibrium, Penalized regression, Single
nucleotide polymorphism.

1. INTRODUCTION

With the rapid development of modern genotyping tech-
nology, genome-wide association studies (GWAS) have be-
come an important tool for identifying genetic factors un-
derlying complex traits. From a statistical standpoint, iden-
tifying SNPs associated with a trait can be formulated as
a variable selection problem in a sparse, high-dimensional
model. The traditional multivariate regression methods are
not directly applicable to GWAS because the number of
SNPs in an association study is usually much larger than
the sample size.

∗Corresponding author.

The LASSO (least absolute shrinkage and selection op-
erator) provides a computationally feasible way for variable
selection in high-dimensional settings [14]. Recently, this ap-
proach has been applied to GWAS for selecting important
SNPs [19]. It has been shown that the LASSO is selection
consistent if the predictors meet the irrepresentable condi-
tion [23]. This condition is stringent, and there is no known
mechanism to verify it in GWAS. Zhang and Huang [22]
studied the sparsity and bias of LASSO in high-dimensional
linear regression models. It is shown that under reasonable
conditions, the LASSO selects a model with the correct or-
der of dimensionality. However, the LASSO tends to over-
select unimportant variables. Therefore, direct application
of the LASSO to GWAS tends to generate findings with
high false positive rates. Another limitation of the LASSO
is that, if there is a group of variables among which the pair-
wise correlations are high, then the LASSO tends to select
only one variable from the group and does not care which
one is selected [25].

Several methods that attempt to improve the perfor-
mance of LASSO have been proposed. The adaptive LASSO
[24] uses adaptive weights on penalties so that the oracle
properties hold under mild regularity conditions. In the case
that the number of predictors is much larger than the sample
size, adaptive weights cannot be initiated easily. The elastic
net method [25] can effectively deal with certain correlation
structures in the predictors by using a combination of ridge
and LASSO penalties. Fan and Li [4] introduced a smoothly
clipped absolute deviation (SCAD) method. Zhang [21] pro-
posed a flexible minmax concave penalty (MCP) which at-
tenuates the effect of shrinkage that leads to bias. Both
SCAD and MCP belong to the family of quadratic spline
penalties, and both lead to oracle selection results [21]. The
MCP has a simpler form and requires weaker conditions for
the oracle properties. We refer to [21] and [10] for detailed
discussion.

However, the existing penalization methods for variable
selection do not take into account the specifics of SNP data.
SNPs are naturally ordered along the genome with respect
to their physical positions. In the presence of linkage disequi-
librium (LD), adjacent SNPs are expected to show similar
strength of association. Making use of the LD information
from adjacent SNPs is highly desirable as it may help bet-
ter delineate association signals while reducing randomness
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observed in single SNP analysis. Fused LASSO [15], which
penalizes differences of adjacent coefficients, is not appro-
priate for this purpose, since the effect of association for a
SNP (as measured by its regression coefficient) is only iden-
tifiable up to its absolute value—a homozygous genotype
can be equivalently coded as either 0 or 2 depending on the
choice of reference allele.

We propose a new penalized regression method for identi-
fying important SNPs in GWAS. The proposed method uses
a novel penalty, which we shall refer to as the smoothed min-
imax concave penalty or SMCP, for sparsity and smoothness
in absolute values (of regression coefficients). The SMCP is
a combination of the MCP and a penalty consisting of the
squared differences of the absolute effects of adjacent mark-
ers. The MCP promotes sparsity in the model and selects
important SNPs. The penalty for the squared differences of
absolute effects takes into account the natural ordering of
SNPs and adaptively incorporates the LD information be-
tween adjacent SNPs. It explicitly uses correlation between
adjacent markers and penalizes the differences of genetic ef-
fects at adjacent SNPs with high correlations. We derive a
coordinate descent algorithm for implementing the SMCP
method. We use a resampling method for computing the
p-values of selected SNPs to assess their significance.

The rest of the paper is organized as follows. Section 2
introduces the proposed SMCP method. Section 3 presents
a genome-wide screening incorporating the proposed SMCP
method. Section 4 describes a coordinate descent algorithm
for estimating model parameters and discusses the selection
of tuning parameters and calculation of p-value. Section 5
conducts simulation and compares with LASSO and MCP.
Section 6 applies the proposed method to two real data sets.
Finally, Section 7 provides a summary and discusses some
related issues.

2. THE SMCP METHOD

For the purpose of SNP selection, we use the MCP, which
is defined as

ρ(t;λ1, γ) = λ1

∫ |t|

0

(1− x/(γλ1))+dx.

Here λ1 is a penalty parameter, and γ is a regularization pa-
rameter that controls the concavity of ρ. x+ = x1{x≥0}. The
MCP can be easily understood by considering its derivative,
which is

ρ̇(t;λ1, γ) = λ1

(
1− |t|/(γλ1)

)
+
sgn(t),

where sgn(t) = −1, 0, or 1 if t < 0,= 0, or > 0, respectively.
As |t| increases from 0, MCP begins by applying the same
rate of penalization as LASSO, but continuously relaxes that
penalization until |t| > γλ1, a condition under which the
rate of penalization drops to 0. It provides a continuum of
penalties where the LASSO penalty corresponds to γ = ∞

and the hard-thresholding penalty corresponds to γ → 1+.
We note that other penalties, such as LASSO or SCAD, can
also be used to replace MCP. We choose MCP because it
possesses all the desirable properties of a penalty function
and is computationally simple [10, 21].

Let p be the number of SNPs, and βj be the effect of the
jth SNP in a working model that describes the relationship
between phenotype and markers. Assume that the SNPs are
ordered according to their physical locations on the chro-
mosomes. Adjacent SNPs in high LD are expected to have
similar strength of association with the phenotype. To adap-
tively incorporate LD information, we propose the following
penalty that encourages smoothness in |β|s at neighboring
SNPs:

(1)
λ2

2

p−1∑
j=1

ζj(|βj | − |βj+1|)2,

where the weight ζj is a measure of LD between SNPs j and
j+1. This penalty encourages |βj | and |βj+1| to be similar
to an extent inversely proportional to the LD strength be-
tween the corresponding SNPs. Adjacent SNPs in weak LD
are allowed to have larger differences in their |β|s than if
they are in stronger LD. The effect of this penalty is to en-
courage smoothness in |β|s for SNPs in strong LD. By using
this penalty, we expect a better delineation of the associa-
tion pattern in LD blocks that harbor disease variants while
reducing randomness in |β|s in LD blocks that do not. Note
that there is no monotone relationship between ζ and the
physical distance between two SNPs. While it is possible
to use other LD measures, we choose ζj to be the abso-
lute value of lag one autocorrelation coefficient between the
genotype scores of SNPs j and j+1. The values of ζj for the
rheumatoid arthritis data used by Genetic Analysis Work-
shop 16, the data set to be used in our numerical study,
are plotted for chromosome 6 (Fig. 1(a)). The proportion
that ζj > 0.5 over non-overlapping 100-SNP windows is also
plotted (Fig. 1(b)).

Denote β = (β1, . . . , βp)
′. Denote g(β) as the loss func-

tion based on a working model for the relationship between
the phenotype and markers. For given penalty parameters
λ1 and λ2, the SMCP estimate β̂ is defined as the minimizer
of the objective function

(2) g(β) +

p∑
j=1

ρ(|βj |;λ1, γ) +
λ2

2

p−1∑
j=1

ζj(|βj | − |βj+1|)2.

The SNPs corresponding to β̂j �= 0 are selected as being
potentially associated with response.

3. GENOME-WIDE SCREENING
INCORPORATING LD

A basic method for GWAS is to conduct genome-wide
screening of a large number of dense SNPs individually
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Figure 1: Plots of absolute lag-one autocorrelation ζj
on Chromosome 6 from Genetic Analysis Workshop 16
Rheumatoid Arthritis data.

and look for those with significant associations with pheno-
type. Although several important considerations, such as ad-
justment for multiple comparisons and possible population
stratification, need to be taken into account in the analysis,
the essence of existing genome-wide screening approaches is
single-marker based analysis without considering the struc-
ture of SNP data. In particular, the possible LD between
two adjacent SNPs is not incorporated in analysis.

Our proposed SMCP method can be used for screening
a dense set of SNPs incorporating the LD information in a
natural way. To be specific, here we consider the standard
case-control design for identifying SNPs that are potentially
associated with response. Let the phenotype be scored as
1 for cases and −1 for controls. Let nj be the number of
subjects whose genotypes are non-missing at SNP j. The
standardized phenotype of the ith subject with non-missing
genotype at SNP j is denoted by yij . The genotype at SNP j
is scored as 0, 1, or 2 depending on the number of copies of a
reference allele in a subject. Let xij denote the standardized
genotype score satisfying

∑
i xij = 0 and

∑nj

i=1 x
2
ij = nj .

Consider the penalized criterion

Ln(β) =
1

2

p∑
j=1

1

nj

nj∑
i=1

(yij − xijβj)
2 +

p∑
j=1

ρ(|βj |;λ1, γ)(3)

+
λ2

2

p−1∑
j=1

ζj(|βj | − |βj+1|)2.

Here the loss function is

(4) g(β) =
1

2

p∑
j=1

1

nj

nj∑
i=1

(yij − xijβj)
2.

We note that switching the reference allele used for scoring
the genotypes changes the sign of βj , but |βj | remains the
same. It may be counter-intuitive to use a quadratic loss
in (4) for case-control designs. However, it may actually be
sensible. Regardless how the phenotype is scored, the least
squares regression slope at SNP j (i.e., a regular single SNP
analysis) equals

nj∑
i=1

yijxij/

nj∑
i=1

x2
ij = 2(p̂1j − p̂2j)/φj(1− φj),

where φj is the proportion of cases computed from the sub-
jects with non-missing genotype, and p̂1j and p̂2j are the
allele frequencies of SNP j in cases and controls, respec-
tively. This shows that βj in the squared loss function (4)
can be interpreted as the effect size of SNP j. In the clas-
sification literature, quadratic loss has also been used for
indicator response variables [7].

An alternative loss function for binary phenotype would
be the sum of negative marginal log-likelihood functions
based on working logistic regression models. We have found
that the selection results using this loss function are in gen-
eral similar to those based on (4). In addition, the computa-
tional implementation of the coordinate descent algorithm
described in the next section using the loss function (4) is
much more stable and efficient and can easily handle tens of
thousands of SNPs.

4. COMPUTATION

In this section, we first present a coordinate descent al-
gorithm for the proposed SMCP method. Then we discuss
methods of selecting tuning parameters and evaluating p-
values for the selected SNPs.

4.1 Coordinate descent algorithm

In this section, we derive a coordinate descent algorithm
for computing the solution to (3). This algorithm was orig-
inally proposed for criteria with convex penalties such as
LASSO [8, 20]. It has been proposed to calculate noncon-
vex penalized regression estimates [3, 10]. This algorithm
optimizes a target function with respect to one parameter
at a time and iteratively cycles through all parameters until
convergence. It is particularly suitable for problems such as
SMCP that have a simple closed form solution in a single
dimension but lack a closed form solution in higher dimen-
sions.

We wish to minimize the objective function Ln(β) in (3)
with respect to βj while keeping all other βk, k �= j, fixed at
their current estimates. Thus only the terms involving βj in

A novel penalized regression method for GWAS 101



Ln matter. That is, this problem is equivalent to minimizing
R(βj) defined as

R(βj) =
1

2nj

nj∑
i=1

(yij − xijβj)
2 + ρ(|βj |;λ1, γ)

+
1

2
λ2[ζj(|βj | − |β̃j+1|)2 + ζj−1(|β̃j−1| − |βj |)2]

= C + ajβ
2
j + bjβj + cj |βj |, j = 2, . . . , p− 1,

where C is a term free of βj , β̃j+1 and β̃j−1 are the current
estimates of βj+1 and βj−1, respectively, and aj , bj , and cj
are determined as follows:

• For |βj | < γλ1,

aj =
1

2

(
1

nj

nj∑
i=1

x2
ij + λ2(ζj−1 + ζj)−

1

γ

)
,

bj = − 1

nj

nj∑
i=1

xijyij ,

and

(5) cj = λ1 − λ2(|β̃j+1|ζj + |β̃j−1|ζj−1).

• For |βj | ≥ γλ1,

(6)
aj =

1

2

(
1

nj

nj∑
i=1

x2
ij + λ2(ζj−1 + ζj)

)
,

cj = −λ2(|β̃j+1|ζj + |β̃j−1|ζj−1),

while bj remains the same as in the previous situation.

Note that function R(βj) is defined for j �= 1 or p. It can

be defined for j = 1 by setting β̃j−1 = 0 and for j = p by

setting β̃j+1 = 0 in the above two situations.
Minimizing R(βj) with respect to βj is equivalent to min-

imizing ajβ
2
j + bjβj + cj |βj |, or equivalently,

(7) aj

(
βj +

bj
2aj

)2

+ cj |βj |.

The first term is convex in βj if aj > 0. In the case |βj | ≥
γλ1, aj > 0 is trivially true. In the case |βj | < γλ1, aj > 0
holds when γ > 1.

Let β̂j denote the minimizer of R(βj). It has the following
explicit expression:

(8) β̂j = −sign(bj) ·
(|bj | − cj)+

2aj
.

This is because if cj > 0, minimizing (7) becomes a regular

one dimensional LASSO problem. β̂j is the soft-threshold

operator. If cj < 0, it can be shown that β̂j and bj are of
opposite signs. If bj ≥ 0, expression (7) becomes

aj

(
βj +

bj
2aj

)2

− cjβj .

Hence β̂j = −(bj − cj)/2aj < 0. If bj < 0, then |β̂j | = β̂j

and β̂j = −(bj + cj)/2aj > 0. In summary, expression (8)
holds in all situations.

The novel penalty (1) affects both aj and cj . Both 2aj
and cj are linear in λ2. As λ2 increases, 2aj increases at
the rate ∂(2aj)/∂λ2 = ζj−1 + ζj , while cj decreases at the

rate ∂cj/∂λ2 = |β̃j+1|ζj + |β̃j−1|ζj−1. In the case of |bj | −
cj ≥ 0, these are the rates of change for the denominator

and numerator of |β̂j | = (|bj | − cj)+/(2aj). The change in

|β̂j | is more complicated as it involves the intercepts of its

numerator and denominator. In terms of |β̃j+1| and |β̃j−1|,
β̂j is larger when these two values are larger. Since bj does
not depend on λ2, as λ2 increases, more SNPs will satisfy
|bj | − cj ≥ 0 and thus be selected.

We note that aj and bj do not depend on βj . They only
need to be computed once for each SNP. Only cj needs to
be updated after all βjs are updated. In the special case
of λ2 = 0, the SMCP method becomes the MCP method.
Then even cj no longer depends on β̃j−1 and β̃j+1: cj = λ1

if |βj | < γλ1, and cj = 0 otherwise. Expression (8) gives the
explicit solution for βj .

Generally, an iterative algorithm is required to estimate

these parameters. Let β̃
(0)

= (β̃
(0)
1 , . . . , β̃

(0)
p )′ be the initial

value of the estimate of β. The proposed coordinate descent
algorithm proceeds as follows:

1. Compute aj and bj for j = 1, . . . , p.
2. Set s = 0.
3. For j = 1, . . . , p,

(a) Compute cj according to expressions (5) or (6).

(b) Update β̃
(s+1)
j according to expression (8).

4. Update s ← s+ 1.
5. Repeat Steps 3 and 4 until the estimate of β converges.

In practice, the initial values β
(0)
j , j = 1, . . . , p are set to

be 0. Each βj is then updated in turn using the coordinate
descent algorithm described above. One iteration completes
when all βjs are updated. In our experience, convergence is
typically reached after about thirty iterations.

Convergence of this algorithm follows from Theo-
rem 4.1(c) of [16]. This can be shown as follows. The objec-

tive function can be written as f(β) = f0(β)+
∑J

j=1 fj(βj)
where

f0(β) =
1

2

p∑
j=1

1

nj

nj∑
i=1

(yij−xijβj)
2+

λ2

2

p−1∑
j=1

ζj(|βj |−|βj+1|)2,

and fj(βj) = ρ(|βj |;λ1, γ). Since f is regular in the sense

of (5) in [16] and
∑J

j=1 fj(βj) is separable, the coordinate
descent solution converges to a coordinatewise minimum of
f , which is also a stationary point of f .
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Now we consider in detail property of the second penalty.
Assume that λ1 and λ2 are fixed, and we want to solve
the objective function (2). Suppose that in step s− 1, βj−1

has been updated. Consider the values of estimate under

adjacent steps, and define δ = |β̃(s)
j−1| − |β̃(s−1)

j−1 |. Further

assume that at step s − 1, only β̃
(s−1)
j−1 is non-zero and δ is

usually positive. We now go into step s to update βj .

• If corr(xj , xj−1) > 0, then ζj−1 = corr(xj , xj−1). We

have c
(s)
j = c

(s−1)
j − λ2δζj−1. Note that c

(s)
j < c

(s−1)
j ,

since ζj−1 > 0. From expression (8), we know that

β
(s)
j will be nonzero if cj is less than |bj |. One can see

that when the correlation is stronger (i.e. ζj−1 is larger)

and/or λ2 is larger, c
(s)
j is smaller. Consequently, β̃

(s)
j

is more likely to be nonzero. The sign of β̃j is also posi-
tive if it is not zero. It makes sense that the correlation
between the (j − 1)th and jth predictors is assumed to
be positive.

• It is similar when corr(xj , xj−1) < 0.

Thus, incorporating the second penalty increases the chance
that adjacent SNPs with high correlations will be selected
together.

4.2 Tuning parameter selection

There are various methods that can be applied, including
AIC, BIC, cross-validation and generalized cross-validation.
However, they are all based upon the performance of pre-
diction error. In GWAS, it is rare that disease markers are
part of SNP data, which consequently results in non-true
models for SNP data. Hence, the methods mentioned above
may be inadequate in GWAS. Wu et al. [19] used a predeter-
mined number of predictors to select the tuning parameter
and implemented a combination of bracketing and bisection
to search for the optimal tuning parameter. We adopt Wu
et al.’s method [19]. For this purpose, tuning parameters λ1

and λ2 are re-parameterized as τ = λ1 + λ2 and η = λ1/τ .
The value of η is fixed beforehand. When η = 1, the SMCP
method becomes the MCP method.

The value of τ that selects the predetermined num-
ber of predictors is determined through bisection as fol-
lows. Let r(τ) denote the number of predictors selected
under τ . Let τmax be the smallest value for which all co-
efficients are 0. τmax is the upper bound for τ . From (5),
τmax = maxj |

∑nj

i=1 xijyij |/(njη). To avoid undefined sat-
urated models, τ cannot be zero or too close to zero. Its
lower bound, denoted by τmin, is set at τmin = ετmax for
a preselected ε. Setting ε = 0.1 works well in our numer-
ical study. Initially, we set τl = τmin and τu = τmax. If
r(τu) < s < r(τl), then we employ bisection. This involves
testing the midpoint τm = 1

2 (τl + τu). If r(τm) < s, replace
τu by τm. If r(τm) > s, replace τl by τm. This process is
repeated until r(τm) = s. Our simulation study suggests
that the regularization parameter γ also has an important
impact on the results. Based on our experience, γ = 6 is a
reasonable choice.

4.3 p-values for the selected SNPs

The use of p-value is a traditional way to evaluate the sig-
nificance of estimates. Unfortunately, there are no straight-
forward ways to compute standard errors of penalized lin-
ear regression estimates. We use the multi-split method
proposed by [11] to obtain p-values. This is a simulation-
based method that automatically adjusts for multiple com-
parisons.

In each iteration, the multi-split method proceeds as fol-
lows:

1. Randomly split data into two disjoint sets of equal size:
Din and Dout. The case: control ratio in each set is the
same as in the original data.

2. Fit the SMCP method with subjects in Din. Denote the
set of selected SNPs by S.

3. Assign a p-value P̃j to SNP j in the following way:

(a) If SNP j is in set S, set P̃j as the p-value computed
using Dout in the regular linear regression where
SNP j is the only predictor.

(b) If SNP j is not in set S, set P̃j = 1.

4. Define the adjusted p-value as Pj = min{P̃j |S|, 1}, j =
1, . . . , p, where |S| is the size of set S.

This procedure is repeated B times for each SNP. Let

P
(b)
j denote the adjusted p-value for SNP j in the bth itera-

tion. For π ∈ (0, 1), let qπ be the π-quantile of {P (b)
j /π; b =

1, . . . , B}. Define Q̃j(π) = min{1, qπ}. Meinshausen et al.

[11] proved that Q̃j(π) is an asymptotically correct p-value,
adjusted for multiplicity. They also proposed an adaptive
version that selects a suitable value of quantile based on
data:

Qj = min

{
1, (1− log π0) inf

π∈(π0,1)
Q̃j(π)

}
,

where π0 is chosen to be 0.05. It was shown that
{Qj , j = 1, . . . , p}, can be used for both FWER (family-wise
error rate) and FDR control.

5. SIMULATION STUDIES

To make the LD structure as realistic as possible, geno-
types are obtained from a rheumatoid arthritis (RA) study
provided by the Genetic Analysis Workshop (GAW) 16
(more details described in Section 6). This study involves
2,062 individuals. Four hundred of them are randomly cho-
sen. Five thousand SNPs are selected from chromosome 6.
For individual i, its quantitative phenotype yi is generated
as:

yi = x′
iβ + εi, i = 1, . . . , 400,

where xi (which is a vector of length 5,000) represents
the genotype data of individual i, and β is the vector
of genetic effect whose elements are all 0 except that
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(β2287, . . . , β2298) = (−0.3, 0.2,−0.25, 0.2,−0.6, 0.7,−0.5,
0.4,−0.5, 0.3,−0.6, 0.2) and (β2300, . . . , β2318) = (0.25,−0.4,
0.2,−0.5,−0.25, 0.3,−0.4,−0.4, 0.15, 0.3,−0.4, 0.4,−0.5, 0.2,
−0.3, 0.16, 0.36,−0.2, 0.1). εi is the residual sampled from
a normal distribution with mean 0 and standard deviation
1.5.

For binary phenotype yi, the linear predictor is gener-
ated in the same way as for the quantitative trait. Then,
the binary response variables are generated from Bernoulli
distributions with probability Pr(yi = 1|xi) = 1

1+e−(β0+x′
i
β)

where β0 = 0.
For the quantitative trait, the loss function g(β) is given

in expression (4), whereas for the binary trait, two loss func-
tions, including the marginal quadratic loss (4) and marginal
negative likelihood loss (Appendix: expression (10), are used
in simulation.

To evaluate the performance of SMCP, we use false dis-
covery rate (FDR) and false negative rate (FNR) which are

defined as follows. Let β̂j denote the estimated value of βj ,
then

FDR =
# of SNPs with β̂j �= 0 but βj = 0

# of SNPs with β̂ �= 0

and

FNR =
# of SNPs with β̂j = 0 but βj �= 0

# of SNPs with β �= 0
.

The mean and standard deviation of the number of true
positives, FDR and FNR for various values of η for SMCP,
LASSO and MCP over 100 replications are reported in Ta-
ble 1. In each replication, 50 SNPs are selected. It can be
seen that for different values of η, FDR and FNR change
in the same direction, since the number of selected SNPs is
fixed. As the number of true positives increases, the number
of false negatives and the number of false positives decrease.
Overall, SMCP outperforms MCP and LASSO in terms of
true positives and FDR. For the binary trait, we see that
although the marginal negative log-likelihood loss is better
than the marginal quadratic loss, it is still sensible to use the
marginal quadratic loss (4) to identify phenotype-associated
SNPs.

To further investigate the performance of SMCP, MCP
and LASSO, we look into a specific simulated data set. For
the quantitative trait, the 50 SNPs selected by the three
methods and their p-values obtained using the multi-split
method are reported in Table 4 (Appendix). For the binary
trait, the selected SNPs and their p-values are reported in
Table 5 and Table 6 (Appendix) using the marginal nega-
tive log-likelihood and marginal quadratic loss, respectively.
It is apparent that the number of true positives is much
higher for the SMCP method than for the MCP and LASSO
methods. For the quantitative trait, SMCP selects 28 out
of 31 true response-associated SNPs, while LASSO selects

23 (Appendix: Table 4). The multi-split method can effec-
tively assign p-values for the selected SNPs: with SMCP,
9 out of 22 false positives are significant, whereas 21 out
of 28 true positives are significant. In comparison, with
MCP, 14 out of 27 false positives are significant, and 16
out of 23 true positives are significant. With LASSO, 11
out of 27 false positives are significant, and 17 out of 23
true positives are significant. Similar results are obtained
for the binary trait. The difference between results in Table
5 and Table 6 (Appendix) is not significant, suggesting that
it is sensible to use the quadratic loss for binary trait in
GWAS.

6. APPLICATION TO REAL DATA

6.1 Application to heterogeneous stock mice
data

We use a dataset publicly available from the Welcome
Trust Center. This data resource, which also includes pedi-
gree information, was based on an advanced intercross mat-
ing among 8 inbred strains over 50 generations of random
mating [17]. It is expected that the use of pseudorandom
breeding for over 50 generations should result in an average
distance between recombinants of < 2 cM. The average LD,
as measured by R2 between adjacent markers, is 0.62 [9]. We
refer to the original publication for more detailed descrip-
tions [17, 18]. This dataset includes full phenotypic records
on 2,202 mice, and each was genotyped for 13,459 SNP
markers. The phenotype of interest is the starting weight.
After deleting observations with missing phenotypes and al-
leles with minor allele frequency less than 0.05, there are
1,928 mice and 10,074 SNP markers in 19 autosomes.

The SNPs on the whole genome are analyzed simultane-
ously. By using different predetermined numbers of SNPs,
we find that 400 SNPs are appropriate for this dataset. For
the SMCP method, the value of tuning parameter τ is 2.006
with η = 0.05. For the MCP method (η = 1 and γ = 6), the
tuning parameter τ is 0.099. For the LASSO method (η = 1
and γ = ∞), the tuning parameter τ is 0.099. p-values of the
selected SNPs are computed using the multi-split method.
Fig. 2 shows the Manhattan plots for all three methods plus
regular single-SNP linear regression. For SMCP, MCP and
LASSO, the large dots represent SNPs with significant esti-
mates, while the small dots are for SNPs with insignificant
estimates.

For MCP and LASSO, they identify exactly the same 400
SNPs with slightly different p-values. For SMCP, MCP and
LASSO, respectively, 199, 200 and 199 SNPs are significant.
The rough pattern of the significant SNPs can be found in
Fig. 2. The SNPs that are significant under at least one but
not all methods are listed in Table 2.

6.2 Application to rheumatoid arthritis data

Rheumatoid arthritis (RA) is a complex human disorder
with a prevalence ranging from around 0.8% in Caucasians
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Table 1. Mean (standard deviation) of the number of true positive, false discovery rate (FDR) and false negative rate (FNR)
over 100 simulation replications. There are 31 associated SNPs

γ η Quantitative Trait Binary Trait∗ Binary Trait∗∗

TP FDR FNR TP FDR FNR TP FDR FNR

1.8 0.05 29.99(0.22) 0.40(0.01) 0.03(0.01) 21.48(3.89) 0.57(0.08) 0.31(0.13) 24.43(4.45) 0.51(0.09) 0.21(0.14)
0.06 29.84(0.39) 0.40(0.01) 0.04(0.01) 21.60(4.17) 0.57(0.08) 0.30(0.13) 23.70(5.17) 0.53(0.10) 0.24(0.17)
0.08 29.56(0.57) 0.41(0.01) 0.05(0.02) 21.57(3.72) 0.57(0.07) 0.30(0.12) 23.31(4.73) 0.53(0.09) 0.25(0.15)
0.1 28.76(0.82) 0.42(0.02) 0.07(0.03) 20.99(3.91) 0.58(0.08) 0.32(0.13) 23.43(3.99) 0.53(0.08) 0.24(0.13)
0.2 27.31(0.60) 0.45(0.01) 0.12(0.02) 19.51(3.72) 0.61(0.07) 0.37(0.12) 22.59(3.99) 0.55(0.08) 0.27(0.13)
0.3 26.66(0.65) 0.47(0.01) 0.14(0.02) 18.79(3.79) 0.62(0.08) 0.39(0.12) 21.80(4.13) 0.56(0.08) 0.30(0.13)
0.4 26.37(0.56) 0.47(0.01) 0.15(0.02) 18.02(4.01) 0.64(0.08) 0.42(0.13) 21.61(3.85) 0.57(0.08) 0.30(0.12)
0.5 26.11(0.53) 0.48(0.01) 0.16(0.02) 17.52(3.49) 0.65(0.07) 0.43(0.11) 20.49(4.03) 0.59(0.08) 0.34(0.13)
0.6 25.77(0.66) 0.48(0.01) 0.17(0.02) 17.78(3.42) 0.64(0.07) 0.43(0.11) 19.55(4.08) 0.61(0.08) 0.37(0.13)
0.7 25.30(0.69) 0.49(0.01) 0.18(0.02) 17.50(3.05) 0.65(0.06) 0.44(0.10) 19.40(3.88) 0.61(0.08) 0.37(0.13)
0.8 24.84(0.72) 0.50(0.01) 0.20(0.02) 17.57(3.24) 0.65(0.06) 0.43(0.10) 19.42(3.42) 0.61(0.07) 0.37(0.11)
0.9 24.23(0.85) 0.52(0.02) 0.22(0.03) 17.35(3.42) 0.65(0.07) 0.44(0.11) 17.35(3.70) 0.65(0.07) 0.44(0.12)
MCP 23.77(0.80) 0.52(0.02) 0.23(0.03) 17.83(3.23) 0.64(0.06) 0.42(0.10) 17.72(3.19) 0.65(0.06) 0.43(0.10)

3 0.05 29.69(0.60) 0.41(0.01) 0.04(0.02) 20.85(4.05) 0.58(0.08) 0.33(0.13) 23.73(5.14) 0.53(0.10) 0.23(0.17)
0.06 29.44(0.73) 0.41(0.01) 0.05(0.02) 20.84(4.15) 0.58(0.08) 0.33(0.13) 22.33(4.54) 0.55(0.09) 0.28(0.15)
0.08 28.20(0.74) 0.44(0.01) 0.09(0.02) 20.98(4.18) 0.58(0.08) 0.32(0.13) 22.79(4.46) 0.54(0.09) 0.26(0.14)
0.1 27.78(0.63) 0.44(0.01) 0.10(0.02) 20.24(3.95) 0.60(0.08) 0.35(0.13) 22.64(4.35) 0.55(0.09) 0.27(0.14)
0.2 26.88(0.69) 0.46(0.01) 0.13(0.02) 18.84(4.10) 0.62(0.08) 0.39(0.13) 22.03(4.00) 0.56(0.08) 0.29(0.13)
0.3 26.39(0.58) 0.47(0.01) 0.15(0.02) 18.23(3.44) 0.64(0.07) 0.41(0.11) 21.16(4.30) 0.58(0.09) 0.32(0.14)
0.4 26.16(0.47) 0.48(0.01) 0.16(0.02) 17.97(3.57) 0.64(0.07) 0.42(0.12) 20.72(3.83) 0.59(0.08) 0.33(0.12)
0.5 25.92(0.61) 0.48(0.01) 0.16(0.02) 18.35(3.33) 0.63(0.07) 0.41(0.11) 20.92(4.04) 0.58(0.08) 0.33(0.13)
0.6 25.51(0.66) 0.49(0.01) 0.18(0.02) 17.40(3.48) 0.65(0.07) 0.44(0.11) 18.76(3.77) 0.62(0.08) 0.39(0.12)
0.7 25.08(0.69) 0.50(0.01) 0.19(0.02) 17.33(3.09) 0.65(0.06) 0.44(0.10) 19.40(3.65) 0.61(0.07) 0.37(0.12)
0.8 24.43(0.81) 0.51(0.02) 0.21(0.03) 17.71(3.03) 0.65(0.06) 0.43(0.10) 18.56(3.42) 0.63(0.07) 0.40(0.11)
0.9 24.15(0.90) 0.52(0.02) 0.22(0.03) 17.55(3.22) 0.65(0.06) 0.43(0.10) 17.86(3.85) 0.64(0.08) 0.42(0.12)
MCP 23.90(0.88) 0.52(0.02) 0.23(0.03) 17.31(3.00) 0.65(0.06) 0.44(0.10) 17.15(3.24) 0.66(0.06) 0.45(0.10)

6 0.05 29.19(0.80) 0.42(0.02) 0.06(0.03) 21.24(3.91) 0.58(0.08) 0.31(0.13) 23.80(4.17) 0.52(0.08) 0.23(0.13)
0.06 28.48(0.77) 0.43(0.02) 0.08(0.02) 20.33(3.93) 0.59(0.08) 0.34(0.13) 22.50(4.73) 0.55(0.09) 0.27(0.15)
0.08 27.72(0.49) 0.45(0.01) 0.11(0.02) 20.83(3.63) 0.58(0.07) 0.33(0.12) 22.97(4.61) 0.54(0.09) 0.26(0.15)
0.1 27.56(0.54) 0.45(0.01) 0.11(0.02) 19.39(4.09) 0.61(0.08) 0.37(0.13) 22.09(4.33) 0.56(0.09) 0.29(0.14)
0.2 26.68(0.66) 0.47(0.01) 0.14(0.02) 18.51(3.12) 0.63(0.06) 0.40(0.10) 21.44(3.82) 0.57(0.08) 0.31(0.12)
0.3 26.27(0.55) 0.47(0.01) 0.15(0.02) 18.57(3.52) 0.63(0.07) 0.40(0.11) 21.65(4.10) 0.57(0.08) 0.30(0.13)
0.4 25.92(0.58) 0.48(0.01) 0.16(0.02) 18.07(3.44) 0.64(0.07) 0.42(0.11) 20.07(4.38) 0.60(0.09) 0.35(0.14)
0.5 25.61(0.68) 0.49(0.01) 0.17(0.02) 17.29(3.50) 0.65(0.07) 0.44(0.11) 19.87(3.57) 0.60(0.07) 0.36(0.12)
0.6 25.00(0.72) 0.50(0.01) 0.19(0.02) 18.14(3.39) 0.64(0.07) 0.41(0.11) 19.33(3.58) 0.61(0.07) 0.38(0.12)
0.7 24.76(0.77) 0.50(0.02) 0.20(0.02) 17.78(3.75) 0.64(0.08) 0.43(0.12) 18.23(3.75) 0.64(0.07) 0.41(0.12)
0.8 24.42(0.90) 0.51(0.02) 0.21(0.03) 17.57(3.10) 0.65(0.06) 0.43(0.10) 17.49(3.91) 0.65(0.08) 0.44(0.13)
0.9 24.02(0.90) 0.52(0.02) 0.23(0.03) 17.42(3.18) 0.65(0.06) 0.44(0.10) 17.32(3.45) 0.65(0.07) 0.44(0.11)
MCP 23.83(0.88) 0.52(0.02) 0.23(0.03) 17.33(3.24) 0.65(0.06) 0.44(0.10) 17.41(3.27) 0.65(0.07) 0.44(0.11)

∞ 0.05 28.52(0.80) 0.43(0.02) 0.08(0.03) 20.82(3.55) 0.58(0.07) 0.33(0.11) 22.57(4.13) 0.55(0.08) 0.27(0.13)
0.06 28.01(0.67) 0.44(0.01) 0.10(0.02) 20.91(3.39) 0.58(0.07) 0.33(0.11) 22.86(4.21) 0.54(0.08) 0.26(0.14)
0.08 27.53(0.58) 0.45(0.01) 0.11(0.02) 19.79(3.66) 0.60(0.07) 0.36(0.12) 22.88(4.48) 0.54(0.09) 0.26(0.14)
0.1 27.30(0.63) 0.45(0.01) 0.12(0.02) 19.77(3.83) 0.60(0.08) 0.36(0.12) 22.46(4.12) 0.55(0.08) 0.28(0.13)
0.2 26.55(0.69) 0.47(0.01) 0.14(0.02) 18.25(3.40) 0.64(0.07) 0.41(0.11) 20.84(4.16) 0.58(0.08) 0.33(0.13)
0.3 26.19(0.54) 0.48(0.01) 0.16(0.02) 18.44(3.23) 0.63(0.06) 0.41(0.10) 20.18(4.06) 0.60(0.08) 0.35(0.13)
0.4 25.81(0.60) 0.48(0.01) 0.17(0.02) 18.12(3.47) 0.64(0.07) 0.42(0.11) 19.99(4.04) 0.60(0.08) 0.36(0.13)
0.5 25.40(0.68) 0.49(0.01) 0.18(0.02) 17.83(3.05) 0.64(0.06) 0.42(0.10) 19.73(3.76) 0.61(0.08) 0.36(0.12)
0.6 25.15(0.77) 0.50(0.02) 0.19(0.02) 18.18(3.14) 0.64(0.06) 0.41(0.10) 18.35(3.89) 0.63(0.08) 0.41(0.13)
0.7 24.50(0.79) 0.51(0.02) 0.21(0.03) 17.79(3.10) 0.64(0.06) 0.43(0.10) 18.11(3.63) 0.64(0.07) 0.42(0.12)
0.8 24.34(0.89) 0.51(0.02) 0.21(0.03) 17.28(3.55) 0.65(0.07) 0.44(0.11) 18.17(3.54) 0.64(0.07) 0.41(0.11)
0.9 24.11(0.88) 0.52(0.02) 0.22(0.03) 16.45(3.22) 0.67(0.06) 0.47(0.10) 17.34(3.32) 0.65(0.07) 0.44(0.11)
LASSO 23.86(0.80) 0.52(0.02) 0.23(0.03) 17.43(3.31) 0.65(0.07) 0.44(0.11) 17.08(3.29) 0.66(0.07) 0.45(0.11)

∗ The data is fitted with marginal quadratic loss (4).
∗∗ The data is fitted with marginal negative log-likelihood loss (9, Appendix).
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Figure 2: Genome-wide plot of |β| estimates for heteroge-
neous stock mice data. (Large dots for significant estimates
and small dots for insignificant estimates in SMCP, MCP
and LASSO.)

to 10% in some native American groups [1]. Its risk is gen-
erally higher in females than in males. Some studies have
identified smoking as a risk factor. Genetic factors underly-
ing RA have been mapped to the HLA region on 6p21 [12],
PTPN22 locus at 1p13 [2], and CTLA4 locus at 2q33 [13].
Other potential loci include 6q (TNFAIP3), 9p13 (CCL21),
10p15 (PRKCQ), and 20q13 (CD40), which seem to have
weaker effects [1].

GAW 16 RA data is from the North American Rheuma-
toid Arthritis Consortium (NARAC). It is the initial batch
of whole genome association data for the NARAC cases
(N=868) and controls (N=1,194) after removing duplicated
and contaminated samples. After quality control and
removing SNPs with low minor allele frequencies, there are
475,672 SNPs over 22 autosomes, of which 31,670 are on
chromosome 6.

By using different predetermined numbers of SNPs, we
find that 800 SNPs are appropriate for this dataset. For
SMCP, the tuning parameter τ is 1.861 with η = 0.05. p-
values of the selected SNPs are computed using the multi-
split method. The majority of SNPs (539 out of 800) se-
lected by SMCP are on chromosome 6, 293 of which are
significant with p-values smaller than 0.05. For LASSO, the
tuning parameter τ is 0.091. There are 537 SNPs selected on
chromosome 6, and 280 of them are significant with p-values
less than 0.05. MCP selects the same set of SNPs as LASSO.
The estimates of βs obtained from SMCP, MCP, LASSO and
regular single-SNP linear regression analysis are presented
in Fig. 3. In Fig. 3, the large dots are SNPs with signifi-
cant estimates, and small dots are for insignificant SNPs.
The difference between LASSO and MCP lies in the magni-
tude of estimates, as MCP may be unbiased under a proper
choice of γ, but LASSO is always biased. The two sets of
SNPs selected by SMCP and LASSO on chromosome 6 are
both in the region of HLA-DRB1 gene that has been found
to be associated with RA [12].

There are SNPs on other chromosomes that are signif-
icant (Table 3). Particularly, association with rheumatoid
arthritis at SNP rs2476601 in gene PTPN22 has been re-
ported previously [2]. Other noteworthy SNPs include SNP
rs512244 in RAB28 region, 4 SNPs in TRAF1 region, SNP
rs12926841 in CA5A region, SNP rs3213728 in RNF126P1
region, and SNP rs1182531 in PHACTR3 region. On chro-
mosome 9, 4 SNPs in the region of TRAF1 gene are iden-
tified by SMCP and LASSO. One can see from Fig. 3 that
MCP produces larger estimates than LASSO, but the SMCP
estimates are smaller than those from LASSO. This is caused
by the (side) shrinkage effect of the proposed smoothing
penalty. In terms of model selection, SMCP tends to select
more adjacent SNPs that are in high LD.

7. DISCUSSION

Penalization is a modern variable selection approach de-
veloped to handle “large p, small n” problems. Application
of this approach to GWAS is highly anticipated. Compared
to traditional GWAS analysis where one SNP is analyzed
at a time, penalized methods are able to handle a large col-
lection of SNPs at the same time. In this article, we have
proposed a novel SMCP penalty and introduced a penalized
regression method suitable for GWAS. A salient feature of
this method is that it takes into account the LD among SNPs
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Table 2. Significant SNPs (p-value <= 0.05) selected by at least one method for heterogeneous stock mice dataset

SMCP MCP LASSO
Gene Chr Position SNP name Estimates p-value∗ Estimates p-value∗ Estimates p-value∗

Prdm14 1 13115662 rs13475730 −0.019 0.052 −0.022 0.039 −0.018 0.023
Ncoa2 1 13219271 rs3654377 −0.020 0.052 −0.022 0.039 −0.018 0.023
Ncoa2 1 13373071 rs3655978 0.020 0.052 0.022 0.039 0.018 0.023
Eya1 1 13975254 rs3669485 −0.023 0.025 −0.020 0.061 −0.016 0.033
Eya1 1 14464945 rs3713198 −0.020 0.025 −0.020 0.061 −0.016 0.033
Trpa1 1 14667237 rs13475734 0.017 0.055 0.019 0.083 0.016 0.044
Trpa1 1 14668678 rs3723784 0.013 0.063 0.019 0.083 0.016 0.044
Gm19430 1 35090486 rs3657255 −0.015 0.048 −0.005 0.592 −0.004 0.548
Exosc3 4 45329692 rs4224463 −0.012 0.042 −0.020 0.040 −0.017 0.060
Dcaf10 4 45336647 rs6313392 −0.013 0.042 −0.020 0.040 −0.017 0.060
Shb 4 45488873 rs3665393 0.011 0.050 0.020 0.061 0.017 0.055
Shb 4 45531929 rs3668228 −0.009 0.041 −0.021 0.047 −0.017 0.055
Gm12608 4 89126034 rs13477833 −0.012 0.043 −0.013 0.132 −0.011 0.121
Epb4.1 4 131555056 CEL-4 130248229 0.009 0.073 0.018 0.047 0.015 0.068
Cdk14 5 4805395 rs3666313 0.009 0.065 0.020 0.050 0.017 0.037
Cdk14 5 4858914 rs6190354 −0.010 0.065 −0.020 0.050 −0.017 0.037
Frmd4b 6 97234200 rs3023082 −0.018 0.013 −0.020 0.052 −0.017 0.035
Csmd1 8 16859147 rs13479624 −0.015 0.047 −0.019 0.052 −0.016 0.050
Atg5 10 44026225 rs13480601 −0.009 0.069 −0.018 0.038 −0.015 0.036
Gas7 11 67464648 rs13481080 −0.008 0.048 −0.018 0.069 −0.015 0.072
Usp43 11 67705918 rs6262977 0.008 0.048 0.018 0.069 0.015 0.072
∗ Computed using the multi-split method.

Table 3. Significant SNPs (p-value <= 0.05) selected by the SMCP method on chromosomes other than chromosome 6 for
rheumatoid arthritis dataset

SMCP MCP LASSO
Gene Chr Position SNP name Estimates p-value∗ Estimates p-value∗ Estimates p-value∗

PTPN22 1 114089610 rs2476601 −0.026 6e-05 −0.074 2.0−05 −0.061 2.3e-05
RAB28 4 12775151 rs512244 0.019 0.024 0.040 0.025 0.033 0.021
LOC392232 8 73406911 rs346617 0.026 0.074 0.039 0.045 0.032 0.051
TRAF1 9 120720054 rs1953126 −0.021 0.025 −0.037 0.045 −0.031 0.053
TRAF1 9 120732452 rs881375 −0.030 0.014 −0.040 0.029 −0.033 0.016
TRAF1 9 120769793 rs3761847 0.029 0.014 0.040 0.027 0.033 0.027
TRAF1 9 120785936 rs2900180 −0.019 0.008 −0.044 0.013 −0.037 0.006
CA5A 16 86505516 rs12926841 −0.031 0.002 −0.042 0.002 −0.042 0.002
RNF126P1 17 52478747 rs3213728 0.046 8e-06 0.066 1.4e-06 0.066 1.4e-06
PHACTR3 20 57826397 rs1182531 0.018 0.025 0.032 0.021 0.032 0.021
∗ Computed using the multi-split method.

in order to reduce the randomness often seen in the tradi-
tional single SNP analysis. We have developed a coordinate
descent algorithm to implement the proposed method. Also,
we have applied a multi-split method to compute p-values
of selected SNPs.

The proposed SMCP method is different from the fused
LASSO. The penalty function for fused LASSO can be writ-
ten as

λ1

p∑
j=1

|βj |+ λ2

p−1∑
j=1

|βj+1 − βj |.

One apparent difference between SMCP and fused LASSO
is in the second penalty term. The SMCP uses the square of

the difference of absolute values. In comparison, the fused
LASSO uses the absolute value of the difference. Therefore,
SMCP is not affected by the choice of reference allele for
genotype scoring. But the fused LASSO requires specifica-
tion of reference alleles for all markers. Second, SMCP ex-
plicitly incorporates a measure of LD of adjacent SNPs to
only encourage smoothness of the effects of those with high
LD. This feature of the penalty is particularly suitable for
GWAS. Third, SMCP is computationally efficient as it has
an explicit solution when updating βj in the coordinate de-
scent algorithm. In comparison, no such explicit solution
exists for fused LASSO. Its computation is not as efficient
as SMCP even using the method proposed by [5]. A referee
pointed out that the fusion penalty (absolute value of dif-
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Figure 3: Genome-wide plot of |β| estimates for RA data.
(Large dots for significant estimates and small dots for in-
significant estimates in SMCP, MCP and LASSO.)

ference) can be used in the second penalty term. Although
we did not think this is appropriate in the current setting,
we agree it would be interesting to compare the findings of
the SMCP and those of the fused LASSO (or fused MCP).
However, a systematic comparison is beyond the scope of
this paper. The biggest obstacle is the computational bur-
den in implementing the fused Lasso with a large number of
SNP markers.

A thorny issue in handling a large number of SNPs simul-
taneously is computation. We have used several measures to

tackle this issue. We have introduced explicit expressions
for implementing the coordinate descent algorithm. This
algorithm is stable and efficient in our simulation studies
and data examples. For a dichotomous phenotype, we have
showed that a marginal quadratic loss function yields a cor-
rect estimate of the effect of a SNP. Two important advan-
tages in using the marginal loss (4) as opposed to a joint loss
are its convenience in computing over genome and capabil-
ity of handling missing genotypes, a phenomenon common
with high-throughput genotype data. As expression (5) indi-
cates, only cj needs to be updated for each iteration. Thus,
there is no need to read all the data on 22 chromosomes
in a computer. The inner products between standardized
phenotypes and genotypes are all needed. It makes com-
puting for all SNPs over genome possible. Second, the joint
loss function does not allow any missing genotypes. Miss-
ing genotypes have to be imputed upfront, incurring extra
computation time and uncertainty in imputed genotypes. In
contrast, the marginal loss function (4) is not impeded by
missing genotypes.

Compared with LASSO and MCP, the proposed SMCP is
able to incorporate the consecutive absolute difference into
the penalty. Simulation studies show that the SMCPmethod
is superior to LASSO and MCP in terms of the number of
true positives and false negative rate.

We have focused on quantitative and dichotomous pheno-
types. For dichotomous phenotype, we show that it is rea-
sonable to use a marginal quadratic loss. We expect that
covariates and environmental factors, including those de-
rived from principal components analysis based on marker
data for adjusting population stratification, can be incor-
porated in SMCP analysis. Specifically, we can consider a
loss function that includes the effects of SNPs and covariate
effects based on an appropriate working regression model,
then use the SMCP penalty on the coefficients of SNPs. The
coordinate descent algorithm for SMCP and the multi-split
method for assessing statistical significance can be used in
such settings with some modifications.

APPENDIX A. APPENDIX SECTION

A.1 Accommodating case-control data with
logistic regression

To accomandate the properties of case-control data, we
use the marginal logistic regression with the proposed SMCP
penalty.

Ln(β) = −
p∑

j=1

1

nj

nj∑
i=1

(yij logpij + (1− yij)logpij)

(9)

+

p∑
j=1

ρ(|βj |;λ, γ)|+
1

2
λ2

p−1∑
j=1

ζj(|βj+1| − |βj |)2,
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Figure 4: Genome-wide plot of |β| estimates for RA data on
chromosome 6 by marginal logistic loss function.

where pij = eβ0j+xijβj

1+eβ0j+xijβj
, ρ(t;λ, γ) is defined in Section 2.

Then, quadratic approximation can be applied piecewise to
index j by using following equations.

zij = β̂0j + xijβj +
yij − p̃ij

p̃ij(1− p̃ij)
,

wij = p̃ij(1− p̃ij).

The new objective function after quadratic approximation
is given as follows.

Ln(β) =

p∑
j=1

1

2nj

nj∑
i=1

wij(zij − β̂0j − xijβj)
2

(10)

+

p∑
j=1

ρ(|βj |;λ, γ)|+
1

2
λ2

p−1∑
j=1

ζj(|βj+1| − |βj |)2.

β0 can be omitted for linear model by centering the re-
sponse variable, but it must be included in the model for

Figure 5: Genome-wide plot of |β| estimates for heteroge-
neous stock mice data by dominant genetic model.

logistic regression .β0s can be fitted marginal logistic regres-
sion and then fixed in objective function (10). ζjs are defined
the same as in Section 2. Then algorithm implemented in
marginal linear regression with the SMCP penalty can be
used to solve the marginal logistic regression with the SMCP
penalty.

A.2 Application to rheumatoid arthritis data

Due to the computational burden, we conduct the anal-
ysis for rheumatoid arthritis data only on chromosome 6 by
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Table 4. List of SNPs selected by the SMCP, the MCP and the LASSO method for a simulated data set with quantitative
trait. Recall that the 31 disease-associated SNPs are 2287 – 2298 and 2300 – 2318

SMCP MCP LASSO Regression

SNP |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗∗

1866 −0.011 1.000 −0.005 1.000 −0.211 1.2E-04
2144 −3.6E-04 1.000 −0.044 0.031 −0.019 0.056 −0.227 3.3E-05
2167 −0.038 0.034 −0.017 0.090 −0.225 4.1E-05
2171 −0.029 0.168 −0.096 1.000 −0.043 1.000 −0.253 3.6E-06
2173 −0.026 0.112 −0.115 1.000 −0.051 1.000 −0.262 1.6E-06
2178 0.001 1.000 0.043 0.015 0.019 0.078 0.227 3.3E-05
2209 0.005 0.080 0.002 0.097 0.208 1.5E-04
2212 0.002 0.080 0.001 0.098 0.207 1.6E-04
2235 0.027 0.050 0.012 0.040 0.219 6.4E-05
2240 0.042 0.013 0.162 0.008 0.072 0.004 0.286 1.5E-07
2241 0.037 0.241 0.038 0.031 0.017 0.030 0.225 4.1E-05
2242 0.052 0.019 0.139 0.012 0.062 0.005 0.274 5.0E-07
2243 0.035 0.193 0.069 1.000 0.031 1.000 0.240 1.2E-05
2269 −0.065 0.015 −0.167 0.014 −0.074 0.005 −0.288 1.2E-07
2270 0.059 0.034 0.097 0.032 0.043 0.021 0.254 3.5E-06
2271 −0.038 0.059 −0.121 0.024 −0.054 0.024 −0.265 1.1E-06
2272 −0.009 0.950 −0.007 0.057 −0.003 0.095 −0.210 1.3E-04
2275 −0.029 1.000 −0.013 1.000 −0.220 6.0E-05
2279 −0.081 0.002 −0.237 1.000 −0.105 1.000 −0.322 2.7E-09
2281 −0.016 0.413 −0.080 1.000 −0.036 1.000 −0.245 7.2E-06
2284 −0.048 0.011 −0.159 0.007 −0.071 0.006 −0.284 1.8E-07
2285 0.039 0.470 0.205 1.9E-04
2286 −0.183 3.0E-04 −0.265 1.000 −0.118 1.000 −0.336 5.1E-10
2287 0.274 3.3E-04 0.271 3.1E-04 0.120 0.001 0.339 3.5E-10
2288 0.287 3.3E-04 0.277 2.7E-04 0.123 0.001 0.342 2.4E-10
2289 −0.352 6.0E-05 −0.412 3.2E-05 −0.183 8.1E-05 −0.409 2.0E-14
2290 0.428 3.1E-11 0.841 1.000 0.374 1.000 0.619 1.6E-34
2291 −0.037 0.187 −0.159 0.004
2293 0.201 4.9E-07 0.524 6.3E-07 0.233 5.1E-06 0.463 1.7E-18
2294 0.190 0.001 0.294 1.1E-04 0.131 0.001 0.351 8.2E-11
2295 −0.121 4.6E-04 −0.252 1.6E-04 −0.112 0.001 −0.330 1.1E-09
2296 0.035 1.000 0.159 0.004
2297 −0.015 0.211 −0.077 0.064 −0.034 0.031 −0.244 8.4E-06
2299 0.054 1.000 0.033 5.5E-01
2300 0.716 1.8E-15 0.643 2.3E-16 0.456 7.2E-15 0.711 4.0E-48
2301 −0.789 2.2E-19 −0.706 8.2E-19 −0.520 1.6E-17 −0.781 7.4E-62
2302 0.718 2.7E-12 0.913 1.4E-13 0.406 1.3E-12 0.655 2.6E-39
2303 −0.401 0.089 −0.191 5.1E-04
2304 −0.615 4.4E-17 −0.681 5.9E-18 −0.494 3.3E-18 −0.753 6.3E-56
2305 −0.531 8.5E-10 −0.762 1.7E-10 −0.339 1.2E-09 −0.580 9.0E-30
2306 0.384 0.290 0.175 0.002
2307 −0.406 1.5E-06 −0.559 1.000 −0.249 1.000 −0.481 6.1E-20
2308 0.237 0.114 0.195 3.8E-04
2309 0.359 6.9E-09 0.695 1.8E-10 0.309 7.3E-10 0.547 3.5E-26
2310 −0.291 3.5E-05 −0.452 1.000 −0.201 1.000 −0.428 8.4E-16
2312 0.153 4.7E-04 0.331 1.000 0.147 1.000 0.369 7.2E-12
2313 0.146 0.092 0.047 1.000 0.021 1.000 0.229 2.9E-05
2314 −0.276 6.6E-05 −0.368 8.8E-05 −0.164 4.1E-05 −0.387 5.4E-13
2315 0.296 6.6E-05 0.368 8.8E-05 0.164 4.1E-05 0.387 5.4E-13
2316 −0.322 3.4E-07 −0.597 1.88E-07 −0.265 1.21E-07 −0.499 1.5E-21
2317 −0.260 0.005 −0.181 0.003 −0.081 0.002 −0.295 5.8E-08
2318 0.228 0.003 0.236 1.000 0.105 1.000 0.322 2.8E-09
2320 0.014 0.735 0.065 0.009 0.029 0.015 0.238 1.4E-05
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Table 4. (Continued)

SMCP MCP LASSO Regression

SNP |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗∗

2321 −0.012 0.992 −0.055 0.009 −0.024 0.018 −0.233 2.1E-05
2337 −0.087 0.002 −0.317 1.000 −0.141 1.000 −0.362 1.8E-11
2363 −0.024 0.047 −0.011 0.054 −0.218 7.1E-05
2371 −0.023 0.035 −0.124 0.023 −0.055 0.005 −0.267 1.0E-06
∗ Computed using the multi-split method.
∗∗ Single SNP analysis, not corrected for multiple testing.
∗∗∗ Empty cells stand for SNPs that are not identified from the model.

Table 5. List of SNPs selected by the SMCP and the LASSO method for a simulated data set with binary trait. The analysis
is based on marginal negative log-likelihood loss. Recall that the 31 disease-associated SNPs are 2287–2298 and 2300–2318

SMCP MCP LASSO Regression

SNP |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗∗

366 −0.009 1.000 −0.004 1.000 −0.071 0.004
368 −0.001 1.000 −0.045 1.000 −0.020 1.000 −0.075 0.002
506 −0.002 1.000 −0.103 1.000 −0.043 1.000 −0.081 0.001
656 0.001 1.000 0.056 1.000 0.025 1.000 0.077 0.002
932 0.001 1.000 0.001 1.000 0.071 0.005
948 0.020 1.000 0.009 1.000 0.073 0.004
1047 0.009 1.000 0.004 1.000 0.071 0.004
1476 −0.003 1.000 −0.001 1.000 −0.071 0.005
1477 0.025 1.000 0.011 1.000 0.073 0.003
1478 −0.011 1.000 −0.005 1.000 −0.072 0.004
1678 −0.001 1.000 −0.033 1.000 −0.015 1.000 −0.074 0.003
1978 −0.008 1.000 −0.195 0.788 −0.083 0.788 −0.091 2.6E-04
1980 −3.8E-05 1.000 −0.028 1.000 −0.012 1.000 −0.073 0.003
1990 0.005 1.000 0.068 1.000 0.030 1.000 0.078 0.002
2048 0.001 1.000 0.039 1.000 0.016 1.000 0.074 0.003
2283 0.002 1.000 0.060 0.017
2284 −0.030 1.000 −0.108 1.000 −0.047 1.000 −0.082 0.001
2285 0.034 1.000 0.060 0.016
2286 −0.144 0.015 −0.436 0.026 −0.180 0.026 −0.113 4.9E-06
2287 0.150 0.425 0.168 0.720 0.072 0.720 0.088 3.9E-04
2288 0.151 0.354 0.187 0.615 0.080 0.615 0.090 2.9E-04
2289 −0.152 0.218 −0.192 1.000 −0.077 1.000 −0.089 3.6E-04
2290 0.152 1.0E-04 0.751 8.1E-05 0.313 8.1E-05 0.144 4.2E-09
2291 −0.034 1.000 −0.054 0.031
2292 −0.018 1.000 −0.006 0.820
2293 0.065 0.014 0.444 0.013 0.187 0.013 0.116 2.8E-06
2294 0.067 0.126 0.268 0.191 0.117 0.191 0.099 6.2E-05
2295 −0.048 0.629 −0.167 1.000 −0.072 1.000 −0.088 3.9E-04
2296 0.030 1.000 0.061 0.014
2299 −0.097 1.000 −0.021 0.399
2300 0.275 2.0E-04 0.553 0.002 0.238 0.002 0.128 0.000
2301 −0.307 2.3E-06 −0.887 2.3E-06 −0.438 2.3E-06 −0.170 2.4E-12
2302 0.294 1.9E-04 0.684 3.1E-04 0.278 3.1E-04 0.136 3.0E-08
2303 −0.211 1.000 −0.048 0.053
2304 −0.206 1.1E-05 −0.876 1.1E-05 −0.371 1.1E-05 −0.157 1.4E-10
2305 −0.176 0.003 −0.490 0.008 −0.196 0.008 −0.118 1.9E-06
2306 0.131 1.000 0.020 0.421
2307 −0.076 1.000 −0.003 1.000 −0.001 1.000 −0.071 0.005
2308 0.041 1.000 0.053 0.034
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A novel penalized regression method for GWAS 111



Table 5. (Continued)

SMCP MCP LASSO Regression

SNP |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗∗

2309 0.053 0.117 0.313 0.134 0.130 0.134 0.102 3.7E-05
2310 −0.040 1.000 −0.148 1.000 −0.061 1.000 −0.085 0.001
2316 −0.005 0.753 −0.216 0.591 −0.086 0.591 −0.091 2.4E-04
2329 0.003 1.000 0.001 1.000 0.071 0.005
2337 −0.016 0.328 −0.299 0.253 −0.113 0.253 −0.097 9.8E-05
2360 −0.002 1.000 −0.055 1.000 −0.024 1.000 −0.076 0.002
2362 −0.028 1.000 −0.012 1.000 −0.073 0.003
2461 0.001 1.000 0.049 1.000 0.020 1.000 0.075 0.003
2550 0.009 1.000 0.068 0.007
2551 0.038 0.460 0.269 0.514 0.100 0.514 0.093 1.7E-04
2552 −0.033 1.000 −0.134 1.000 −0.057 1.000 −0.085 0.001
2553 0.029 1.000 0.146 1.000 0.062 1.000 0.086 0.001
2554 −0.015 1.000 −0.056 0.024
2912 0.001 1.000 0.031 1.000 0.014 1.000 0.074 0.003
3140 0.002 1.000 0.066 1.000 0.028 1.000 0.077 0.002
3329 0.015 1.000 0.117 1.000 0.050 1.000 0.083 0.001
3388 0.001 1.000 0.045 1.000 0.020 1.000 0.075 0.002
3620 0.001 1.000 0.053 1.000 0.023 1.000 0.076 0.002
4018 0.006 0.576 0.243 0.598 0.096 0.598 0.094 1.5E-04
4078 0.002 1.000 0.059 1.000 0.026 1.000 0.077 0.002
4745 −0.007 1.000 −0.003 1.000 −0.071 0.004
4877 0.007 1.000 0.003 1.000 0.071 0.004
∗ Computed using the multi-split method.
∗∗ Single SNP analysis, not corrected for multiple testing.
∗∗∗ Empty cells stand for SNPs that are not identified from the model.

Table 6. List of SNPs selected by the SMCP and the LASSO method for a simulated data set with binary trait. The analysis
is based on marginal least-square loss. Recall that the 31 disease-associated SNPs are 2287–2298 and 2300–2318

SMCP MCP LASSO Regression

SNP |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗∗

366 −0.002 1.000 −0.002 1.000 −0.071 0.004
368 −0.002 1.000 −0.012 1.000 −0.010 1.000 −0.075 0.002
506 −0.005 1.000 −0.025 1.000 −0.021 1.000 −0.081 0.001
656 0.002 1.000 0.015 1.000 0.012 1.000 0.077 0.002
932 3.4E-04 1.000 2.9E-04 1.000 0.071 0.005
948 0.001 1.000 0.005 1.000 0.004 1.000 0.073 0.004
1047 0.002 1.000 0.002 1.000 0.071 0.004
1476 0.000 1.000 −0.001 1.000 −0.001 1.000 −0.071 0.005
1477 0.001 1.000 0.006 1.000 0.005 1.000 0.073 0.003
1478 −0.001 1.000 −0.003 1.000 −0.002 1.000 −0.072 0.004
1678 −0.002 1.000 −0.009 1.000 −0.007 1.000 −0.074 0.003
1978 −0.013 0.240 −0.049 0.230 −0.041 0.230 −0.091 2.6E-04
1980 −0.001 1.000 −0.007 1.000 −0.006 1.000 −0.073 0.003
1990 0.008 1.000 0.018 1.000 0.015 1.000 0.078 0.002
2048 0.003 1.000 0.009 1.000 0.008 1.000 0.074 0.003
2284 −0.009 1.000 −0.028 1.000 −0.023 1.000 −0.082 0.001
2285 0.005 1.000 0.060 0.016
2286 −0.076 0.006 −0.102 0.006 −0.085 0.006 −0.113 4.9E-06
2287 0.049 0.250 0.043 0.442 0.036 0.442 0.088 3.9E-04
2288 0.051 0.222 0.047 0.282 0.039 0.282 0.090 2.9E-04
2289 −0.060 0.206 −0.044 0.328 −0.037 0.328 −0.089 3.6E-04
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Table 6. (Continued)

SMCP MCP LASSO Regression

SNP |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗∗

2290 0.093 0.001 0.177 0.001 0.147 0.001 0.144 4.2E-09
2291 −0.003 1.000 −0.054 0.031
2293 0.051 0.028 0.109 0.028 0.091 0.028 0.116 2.8E-06
2294 0.049 0.153 0.069 0.259 0.058 0.259 0.099 6.2E-05
2295 −0.028 0.187 −0.042 0.500 −0.035 0.500 −0.088 3.9E-04
2296 0.007 1.000 0.061 0.014
2300 0.122 0.009 0.138 0.009 0.115 0.009 0.128 2.1E-07
2301 −0.148 4.2E-05 −0.240 4.2E-05 −0.200 4.2E-05 −0.170 2.4E-12
2302 0.126 0.003 0.158 0.003 0.131 0.003 0.136 3.0E-08
2303 −0.040 0.707 −0.048 0.053
2304 −0.090 0.001 −0.207 0.001 −0.172 0.001 −0.157 1.4E-10
2305 −0.060 0.027 −0.113 0.027 −0.095 0.027 −0.118 1.9E-06
2306 0.007 1.000 0.020 0.421
2307 −0.001 1.000 −0.001 1.000 −0.001 1.000 −0.071 0.005
2309 0.030 0.081 0.076 0.081 0.064 0.081 0.102 3.7E-05
2310 −0.024 0.313 −0.035 0.689 −0.029 0.689 −0.085 0.001
2316 −0.010 0.299 −0.050 0.214 −0.041 0.214 −0.091 2.4E-04
2329 0.001 1.000 0.001 1.000 0.071 0.005
2337 −0.022 0.238 −0.063 0.238 −0.052 0.238 −0.097 9.8E-05
2360 −0.005 1.000 −0.014 1.000 −0.012 1.000 −0.076 0.002
2362 −0.002 1.000 −0.007 1.000 −0.006 1.000 −0.073 0.003
2461 0.002 1.000 0.011 1.000 0.010 1.000 0.075 0.003
2550 0.003 1.000 0.068 0.007
2551 0.031 0.172 0.055 0.172 0.046 0.172 0.093 1.7E-04
2552 −0.022 0.639 −0.034 1.000 −0.028 1.000 −0.085 0.001
2553 0.018 0.768 0.037 0.902 0.031 0.902 0.086 0.001
2912 0.003 1.000 0.008 1.000 0.007 1.000 0.074 0.003
3140 0.004 1.000 0.016 1.000 0.014 1.000 0.077 0.002
3329 0.016 1.000 0.029 1.000 0.024 1.000 0.083 0.001
3388 0.003 1.000 0.012 1.000 0.010 1.000 0.075 0.002
3620 0.002 1.000 0.013 1.000 0.011 1.000 0.076 0.002
4018 0.011 0.124 0.057 0.124 0.047 0.124 0.094 1.5E-04
4078 0.004 1.000 0.015 1.000 0.013 1.000 0.077 0.002
4745 −0.002 1.000 −0.001 1.000 −0.071 0.004
4877 0.002 1.000 0.002 1.000 0.071 0.004
∗ Computed using the multi-split method.
∗∗ Single SNP analysis, not corrected for multiple testing.
∗∗∗ Empty cells stand for SNPs that are not identified from the model.

marginal logistic regression. The plots of estimates by the
SMCP, the MCP and the LASSO methods are presented
in Fig. 4 and their significance estimates are large dots. By
cross-sectional comparison with the results in Section 6.2, we
found that there are 559 overlapping SNPs by the SMCP
metho, in which 293 SNPs are significant. There are 535
overlapping SNPs by the MCP method, in which 293 SNPs
are significant. while the LASSO method identifies the same
set of SNPs. From simulation result and analysis results in
Section 5, we see that despite that the logistic regression
is a more natural choice for case-control studies, marginal
linear regression can capture the pattern of SNPs’ effect in
GWAS. Furthermore, the computational burden prohibit us
from conducting genome-wide scan by using marginal logis-

tic regression, but it is possible to conduct it by marginal
linear regression.

A.3 Application to dominant model with
heterogeneous stock mice data

The proposed approach can be implemented to dominant
and recessive models as well as additive model described in
Section 2 to Section 6. We choose predetermined number to
be 400 for the SMCP, the MCP and the LASSO methods.
The multi-split method is used to evaluate the significance of
the selected SNPs. The manhattan plots for all three meth-
ods are shown in Fig. 5. The large dots stand for SNPs with
significant multi-split p-values while small dots for insignif-
icant SNPs.
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