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Statistical inference of biometrical genetic model
with cultural transmission
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Twin and family studies establish the foundation for
studying the genetic, environmental and cultural transmis-
sion effects for phenotypes. In this work, we make use of the
well established statistical methods and theory for mixed
models to assess cultural transmission in twin and family
studies. Specifically, we address two critical yet poorly un-
derstood issues: the model identifiability in assessing cul-
tural transmission for twin and family data and the biases
in the estimates when sub-models are used. We apply our
models and theory to two real data sets. A simulation is con-
ducted to verify the bias in the estimates of genetic effects
when the working model is a sub-model.
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1. INTRODUCTION

Twin and family study designs are often used to assess the
heritability of a phenotype by partitioning the genetic and
environmental contributions to the phenotype. One of the
most popular approaches to analyzing such data is struc-
tural equation modeling (SEM). Meanwhile, several soft-
ware packages are available for performing SEM includ-
ing MX [21, 23], LISREL [15, 22] and Mplus [20]. De-
spite the popularity of these software packages, they have
not incorporated advanced statistical methodologies such
as nonparametric modeling and variable selection. As a re-
sult, general linear models such as mixed-effect models have
emerged as an alternative for analyzing twin and family data
[6, 8, 19, 24, 25, 28].

Recently, [28] introduced a comprehensive approach for
the analysis of twin and family data and addressed some
fundamental questions such as identifiability and the asymp-
totic properties of the likelihood ratio statistic under the
mixed model framework. An underlying assumption of the
genetic models discussed in [28] is that the resemblance be-
tween parents and offspring is determined by genes. How-
ever, in addition to genetic transmission, the resemblance
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between parents and offspring may also result from cultural
transmission [2]. In the case of cultural transmission, re-
semblance between parents and offspring is often caused
by the effects of parents’ phenotypes on offspring behav-
iors or phenotypes. In the classical twin design, cultural
transmission is regarded as part of common environmen-
tal effects. An extended twin design such as parent-twin
design [1, 4, 7, 14, 16, 18] provides a solution to parti-
tion the offspring common environmental effects into the
cultural transmission and the shared environmental effects
among offspring only. To our knowledge, the existing meth-
ods use structural equation modeling for the extended twin
design with cultural transmission. The established theory
and methods for mixed models have not been applied to
deal with parent-twin data. Our first aim here is to fill this
gap, and present a method to infer the cultural transmission
in the extended twin design.

While it is important to model cultural transmission in
parent-twin data, the identifiability problem makes it diffi-
cult to dissect the additive genetic effects (A), dominant ge-
netic effects (D), common environmental effect (C), unique
environmental effect (E), and cultural transmission simulta-
neously. Thus, a common strategy is to consider sub-models
by, for example, ignoring the dominant genetic effect, say the
ACE-fm model; or deleting the cultural transmission, that
is the ACDE model. The theory about the ACDE model has
been well established [28]. However, there is no established
theory for the ACE-fm model, even though it is widely used
in the twin study. Moreover, the estimates would be biased
under the ACE-fm. Our second aim is to investigate the
identifiability problem for the ACE-fm model and assess the
robustness of the estimates when the fitted model is different
from the data-generating model.

The rest of the paper is organized as follow. In Section 2,
we propose a general mixed model, which includes parents’
transmission effects, for parent-twin quartet data. The es-
timates of the sub-model are investigated in Section 3. In
Section 4, we use the proposed approach to analyze two real
datasets. A brief discussion is presented in Section 5.

2. MODEL WITH CULTURAL
TRANSMISSION

In genetic models, we decompose the total variance of
the trait into four components: additive (A) and dominant
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(D) genetic effects, common environmental effects (C), and
random error (E) [5]. Specifically, we have

Yij = xT
ijβ +Aij + Cij +Dij + Eij ,(1)

where Yij is the trait value of individual j in family i, xT
ijβ

is the systematic part with E(Yij) = xT
ijβ, Aij , Cij and

Dij follow normal distribution with mean 0 and variance
var(Aij) = σ2

A, var(Cij) = σ2
C and var(Dij) = σ2

D, repre-
senting additive genetic, common environmental and dom-
inant genetic effects, respectively. Independent of the other
components in model (1) and each other, Eij is a normal
random variable with mean 0 and variance σ2

E , representing
residual environmental random effects. Let j = 1, 2, 3, 4 refer
to the father, mother, and the twins, respectively. Model (1)
is commonly referred to as the ACDE model.

According to genetic theory [5], the additive genetic ef-
fects of twin pair can be decomposed as

Aij = (Ai1 +Ai2)/2 + Ãij , j = 3, 4,(2)

where Ai1, Ai2 represent offsprings’ additive genetic effect
which are transmitted by their parents, and Ãij are the
residual additive genetic effects which are independent of
Ai1, Ai2 and have variance σ2

A/2. Moreover, Ãi3 = Ãi4 for
MZ twins while for DZ twins, Ãi3 and Ãi4 are indepen-
dent. For the dominant genetic effects, the correlation be-
tween parents and twins pairs is corr(Di1(i2), Di3(i4)) = 0,
while corr(Di3, Di4) = 1/4 for MZ twin pairs and
corr(Di3, Di4) = 0 for DZ twin pairs respectively.

As for the cultural transmission effect, the resemblance
between parents and offspring is often caused by the effects
of parents’ phenotypes on offspring’s common environment.
Therefore, the common environmental effects of twin pair
can be dissected as follows:

Ci3 = Ci4 = (Yi1 − xT
i1βi1)f + (Yi2 − xT

i2βi2)m+ C̃i3,(3)

where (Yi1 − xT
i1βi1)f and (Yi2 − xT

i2βi2)m represent the
shared environment contributed by father and mother, re-
spectively, and C̃i3 is the common environment established
by twins’ cohort with variance σ̃2

C . We define cultural trans-
mission rate

hc =
σ2
C − σ̃2

C

σ2
C

,

which indicates the proportion of the common environmen-
tal effect arising from parental cultural transmission.

According to formula (3), testing whether σ2
C = 0 is

equivalent to test σ̃2
C = 0, f = 0,m = 0. However, the pa-

rameter space of σ̃2
C does not meet the standard regularity

conditions because σ̃2
C = 0 lies on the boundary of the para-

metric space [0,+∞). According to [26], we can derive that
the asymptotic distribution of the likelihood ratio statistics
for testing H0 : f = m = σ̃2

C = 0 is a a mixture distribution

of χ2
2 : χ2

3 with mixing probabilities 0.5 : 0.5. The proof is
given in the appendix.

We refer to model (1) with assumption (3) as ACDE-fm
model, and shall prove later that this ACDE-fm model is
not fully identifiable. In applications, we often focus on two
popular submodels. The first model is the well known ACDE
model which ignores cultural transmission, that is by setting
f = m = 0 in assumption (3). The second model is an ACE-
fm model which is defined by letting the dominant genetic
effect be zero in the ACDE-fm model.

Unlike the ACDE model without cultural transmis-
sion [28], we need to consider the covariance between Aij

and Cij in our model. Let S denote the covariance, and
then we have

S = Cov((Ai1 +Ai2)/2 + Ãi3, f(Yi1 − xT
i1βi1)

+m(Yi2 − xT
i2βi2) + C̃i3)

=
f

2
Cov(Ai1, Ai1 + Ci1 +Di1 + Ei1)

+
m

2
Cov(Ai2, Ai2 + Ci2 +Di2 + Ei2)

=
f

2
(σ2

a + S) +
m

2
(σ2

a + S),

therefore,

S =
f +m

2− f −m
σ2
A.

Note that Aij and Cij are not correlated only when
f + m = 0; that is, the cultural transmissions from father
and mother cancel each other out. Furthermore, we can show
that there is an underlying constraint for cultural transmis-
sions; that is f+m < 2, and S has the same sign with f+m.
The detail is given in Appendix A.1.

Let σjk = cov(Yij , Yik), where j, k ∈ {1, 2, 3, 4}. By sim-
ple calculations, we can obtain

σjj = σ2
A + σ2

C + σ2
D + σ2

E + 2S, j = 1, 2, 3, 4,

σ13 = σ14 = f(σ2
A + σ2

C + σ2
D + σ2

E + 2S) + (σ2
A + S)/2,

σ23 = σ24 = m(σ2
A + σ2

C + σ2
D + σ2

E + 2S) + (σ2
A + S)/2.

For MZ twins,

σ34 = σ2
A + σ2

C + σ2
D + 2S.

For DZ twins,

σ34 =
1

2
σ2
A + σ2

C +
1

4
σ2
D + 2S.

Let h denote the broad sense heritability, namely, the ratio
of genetic variation to the total phenotypic variation. We
have

h =
σ2
A + σ2

D

V ar(Y )
=

σ2
A + σ2

D

σ2
A + σ2

C + σ2
D + σ2

E + 2S
.
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Figure 1. The estimates of cultural transmissions, f and m, obtained in the ACE-fm models with the true value of the
dominant genetic effect ranged from 0 to 3. The dash lines represent the true values of f and m.

Unfortunately, an identifiability problem arises when fit-
ting ACDE-fm model for parent-twin data. The following
theorem helps us understand the identifiability problem.

Theorem 2.1. Consider twin-parent quartet data. Suppose
that there are nMZ pairs of MZ twins and nDZ pairs of DZ
twins and the following conditions hold,

1. nMZ > 0 and nDZ > 0.
2. Random mating.
3. Genetic and cultural transmission is the same between

son and daughter.

Then, the ACDE-fm model is not identifiable while the ACE-
fm model and ACDE model are identifiable.

The proof of this theorem is given in the Appendix. This
theorem tells us the full model is not identifiable and the
ACDE model as well as the ACE-fm model is identifiable.
There are two ways to deal with the identifiability problem.
One is to collect extended families (e.g., including cousins or
uncles) so that we can have at least one additional equation
between the covariance and parameters. Another way is to
estimate parameters using submodels ignoring some effects.
In this paper we focus on the latter solution and investigate
the bias of the estimates when the data are generated from
the full model.

3. THE ACE-FM MODELS

3.1 Estimation procedure
For the parent-twin data, even though we cannot identify

the full ACDE-fm model directly, it is meaningful to assess
the robustness of the estimates when the fitted model is dif-
ferent from the data-generated model. In this section, we in-
vestigate the parameter estimates from the ACE-fm models

when the data were generated from an additive genetic ef-
fect, dominant genetic effect, common environmental effect,
unique environmental genetic effect, and cultural transmis-
sion effect, respectively. For clarity, let λ2

A, λ
2
C , λ

2
D, λ2

E , λf ,
and λm denote the variances of the random effects A, C,
D, E, paternal and maternal cultural transmission effects in
the working genetic models, respectively.

Theorem 3.1. Suppose that λ̃2
A, λ̃

2
C , λ̃

2
E, λ̃f and λ̃m are the

maximum likelihood estimators obtained under the ACD-fm
model with parent-twin data. When dominant genetic effect
exists, λ̃2

E is consistent while λ̃2
A, λ̃

2
C , λ̃f and λ̃m are asymp-

totically biased. Specifically, we have λ̃2
A

P−→ σ2
A + 3

2σ
2
D.

Theorem 3.1 tells us σ̃2
A estimated by ACE-fm model is

overestimated when σ2
D > 0 and the bias might be relatively

large when σ2
D is large in reference to σ2

A. The bias in the
estimates of σC , f and m are more complex, and hence is
examined through simulations.

3.2 Simulation

In this section we perform simulation studies to verify the
results presented in Section 3.1. We generated 1,000 data
sets. Each data set consists of 500 families with MZ twin
pairs and 500 families with DZ twin pairs. Without loss of
generality, we set the true values as follows: σ2

A = σ2
C = 3,

σ2
E = 1, f = m = 0.1 and let σ2

D be 0, 0.5, 1, 1.5, 2 and
3, respectively. With the data simulated above, the ACE-fm
is fitted. The estimates of parental cultural transmissions f
and m obtained in the ACE-fm model are presented in Fig-
ure 1, while Figure 2 shows the comparisons of the heritabil-
ity estimates under the ACE-fm and the true heritabilities.
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Figure 2. The estimates of heritability obtained from the ACE-fm with the true value of the dominant genetic effect ranging
from 0 to 3. The dash lines represent the true values of heritability, which are also illustrated in the abscissa.

It is evident from Figure 1 that the estimates of f and
m are underestimated. In particular, when the dominant
genetic effect are relatively large, such as 2 or 3 in our sim-
ulations, the estimates of f and m can be negative though
the true values of f and m are 0.1.

In terms of heritability estimates, we can see from Fig-
ure 2 that the heritability estimate is overestimated and the
bias increases as the true value of the dominant genetic effect
rises, which confirms the theoretical result in Theorem 3.1.

4. APPLICATION

4.1 Estimating the cultural transmission of
Anterior Chamber Depth (ACD)

ACD, which is considered as an ideal intermediate pheno-
type for angle closure, has been recognized as the cardinal
anatomic risk factor for angle closure. The data are from
Guangzhou Twin Eye Study Center [12] which consists of
563 families, 2,058 individuals, 411 fathers, 521 mothers, and
563 twins (357 MZ twins and 206 DZ twins).

In [28], the ACDE model was fitted for this dataset and
an insignificant dominant genetic effect was found, which
suggests that the dominant genetic effect is relatively small.
Here we apply the ACE-fm model, which sets the dominant
genetic effect to 0, to re-analyze the ACD data. We include
age, age × age, and sex as covariates. There were 194 par-
ents who did not participate in this study, and hence are not
considered in the analysis. The estimates are computed us-
ing Matlab function “fminsearch”, which uses the simplex
search method [17]. Note that the p-value for λ2

C was ob-
tained from the mixture distribution 1

2χ
2
3 + 1

2χ
2
2, whereas

the p-values for the remaining variance components were
derived from the mixture distribution 1

2χ
2
0 +

1
2χ

2
1 [28].

Table 1. The estimates for the ACD and AOD data based on
the ACE-fm model

Parameter ACD AOD
Estimated p-value Estimated p-value

λ2
A 0.0587 <.0001 0.0329 <.0001

λ2
C 0.0178 <.0001 0.0076 0.0021

λ2
E 0.0060 <.0001 0.0144 <.0001
f 0.0108 0.8467 −0.1493 0.026
m −0.0855 0.0971 −0.138 0.0316

Intercept 3.2366 <.0001 0.5780 <.0001
Age 0.0211 <.0001 0.0103 <.0001
Age2 −0.0005 <.0001 −0.0003 <.0001
Sex 0.1117 <.0001 0.0491 <.0035

Heritability 75.0% 70.5%

From Table 1, we can see that a significant additive ge-
netic effect and common environment effect are detected. In
the ACE-fm model, no significant cultural transmission ef-
fects are detected. The estimated heritability is 75.0% using
the ACE-fm model.

4.2 Estimating the cultural transmission of
Angle Opening Distance (AOD)

Population-based studies suggest that the prevalence of
primary angle-closure glaucoma (PAGG) is higher in Chi-
nese than European and African populations [9, 10]. Pre-
vious cross-sectional studies have demonstrated that the
persons with narrow drainage angles have a higher risk for
the development of PAC-related problems [11]. Here, angle
width is represented by the AOD, as well as the angle recess
area (ARA) and the trabecular-iris space area (TISA).The
AOD data are from Guangzhou Twin Eye Study Center [13]
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which include 476 families: 276 fathers, 400 mothers, and 476
twins (311 MZ twins and 166 DZ twins). Here, the ACE-fm
model was fitted and there were 284 parents who did not
participate in this study. The same asymptotic distributions
for the likelihood ratio test statistics as those used in Sec-
tion 4.1 are applied to derive the p values for the tests of
random effects. The estimates of the ACE-fm are presented
in the right-hand s Table 1.

From Table 1, a significant additive genetic effect and
common environmental effect are detected in the ACE-fm
model. Meanwhile, two negative and significant cultural
transmission effects are revealed. The estimated heritability
is 70.5%. On the other hand, according to Section 2, we can
obtain that the cultural transmission effect explains 4.2% of
the total phenotype variation, and the correlation between
the common environmental and additive genetic effects is
-0.26. Meanwhile, the cultural transmission rate is 25.4%.

In [28], the ACDE model was fitted to this data and the
additive and dominant genetic effects are 0.0149(pvalue <
0.0001) and 0.0146(pvalue = 0.0007), both of them are ex-
tremely significant. From Figure 1, we can see that if the
dominant genetic effect is relatively large, the bias of the
estimates of cultural transmission effects would become se-
vere. In this data analysis, the negative and significant cul-
tural transmission effect could be possibly caused by the ne-
glected dominant genetic effect and a further research about
the cultural transmission problem is needed.

In summary, considering the dominant genetic effect is
commonly seen in practice, in the real data analysis, a rea-
sonable approach is to fit the ACDE model firstly. In the sec-
ond stage, if the dominant genetic effect is relatively small,
we neglect the dominant genetic effect and turn to fit the
ACE-fm model. However, if the dominant genetic effect can-
not be ignored, we could apply the CDE-fm or ACDE model
depending on the relative effect size of the dominant effect.
Therefore, according to the two stage strategy, the ACDE
model is preferable for the AOD data. It should be noted
that biases still exist in the proposed two stage approach
since it is impossible to avoid the bias issue due to the lack
of identifiability for the full model.

5. DISCUSSION

In this article, we illustrate how to analyze complex
model of twin and family data in the mixed model frame-
work. An advantage of the mixed models is that the gen-
eral methodology and theory are well established. In addi-
tion, it is straightforward to accommodate the covariates,
consider nonparametric trends of the covariates, and in-
corporate variable selection strategy. Taking advantages of
the well established statistical theory for mixed models, we
made two contributions to the understanding of cultural
transmission with parent-twin data. First, we characterized
the conditions for the identifiability for the ACE-fm mod-
els. Second, we derived the asymptotic distributions of the

likelihood ratio test statistics for testing the common en-
vironment effect. We should note that the naive χ2

3 would
produce a conservative p-value [3, 27, 28].

We illustrated the bias problem when using ACE-fm
model for twin-family data through both theory and sim-
ulation. Specifically, the estimates of cultural transmission
in ACE-fm model is always underestimated and the bias
becomes more severe when the dominant genetic effect is
relatively large. If the dominant genetic effect plays an im-
portant role in the total variation, the analysis based on the
ACE-fm model can lead to a misleading conclusion for the
existence of the cultural transmission. This problem can be
overcome if the families can be extended to include more
relatives, especially after the data were already collected.
However, in reality, this may not be feasible. Due to the lack
of identifiability, we have to make a trade off, and decide on
a case by case basis. In the simulation section, we proposed
a reasonable two stage approach. We first fitted the ACDE
model to the data. In the next step, according the relative
effect sizes of additive and dominant genetic effect obtained
in the first step, we would apply the ACE-fm, CDE-fm or
ACDE to the data and get an updated result for the data.
One of the anonymous referees suggested that we first es-
timate the dominant effect with the ACDE model and then
estimate the cultural transmission effect in the ACDE-fm
model by plugging in the estimated dominant effect from the
first stage. This approach is appealing due to its control of
type I error, but its power may be compromised. A thorough
evaluation of this approach warrants further investigation.

In our real data analysis part, even we detected a sig-
nificant cultural transmission effect for the AOD data. Due
to the large amount of dominant genetic effects obtained in
the ACDE model, this result is unreliable and more research
is needed.To our best knowledge, despite the perceived in-
fluence of culture, it is rare to observe a large amount of
cultural transmission effect [1, 2, 4, 7, 14, 16, 18]. There
could be a number of reasons. Firstly, the parents and chil-
dren are measured at different ages, resulting in changed
cultures. Secondly, the characteristics in parents may not
directly affect the same characteristics in children or par-
ents may pass only their environmental aspect to their off-
spring [2]. Thirdly, the children may be more sensitive to
their peers than to their parents. Finally, from the theoret-
ical point, the ignored dominant effect may play an impor-
tant role in the phenotype, which reduces power in detecting
the cultural transmission effect. In any case, this issue is not
well understood.

Appendix 1: Proof of the asymptotic
distribution of the likelihood ratio statistic
for testing lies on the boundary of the
parametric space [0,+∞)

According to [26], the asymptotic distribution of the like-
lihood ratio statistics for testing H0 : f = m = σ̃2

C = 0 is
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the equivalent to the distribution of

U = inf
θ∈Ω0

‖ Z − θ ‖2 − inf
θ∈Ω1

‖ Z − θ ‖2

where Ω0 = (0, 0, 0) represents the parameter space under
null hypothesis H0 : f = m = σ̃2

C = 0 ,Ω1 = (0,+∞) × R2

denotes as parameter space under the alternative hypothesis
and Z = (Z1, Z2, Z3)

′ ∼ N(0, I3). The formula of U can be
simplified as

U = inf
θ∈Ω0

‖ Z − θ ‖2 − inf
θ∈Ω1

‖ Z − θ ‖2

= Z2
1 + Z2

2 + Z2
3 − inf

θ1∈(0,+∞)
(Z1 − θ1)

2.

When Z1 ≥ 0, U reduces to Z2
1 + Z2

2 + Z2
3 , which fol-

lows χ2
3. However, if Z1 ≤ 0, U is equal to Z2

2 + Z2
3 , which

follows χ2
2. Therefore, U follows a mixture distribution of

χ2
2 : χ2

3 with mixing probabilities 0.5 : 0.5.

Appendix 2: Proof of f + m ≤ 2

For the ACE-fm model, firstly, according to the Cauchy-
Schwartz inequality, we have

S2 = (cov(A,C))2 ≤ var(A)var(C) = σ2
Aσ

2
C .

On the other hand, depending on equation (3), it follows

σ2
C = (f2 +m2)σ2

Rp
+ σ̃2

C

= (σ2
A + σ2

C + σ2
E + 2S)(f2 +m2) + σ̃2

C .

Assume f +m > 2.
Since S = f+m

2−f−mσ2
A together with S2 ≤ σ2

Aσ
2
C , we obtain

σ2
A = ( 2−f−m

f+m )S and S ≥ ( 2
f+m − 1)σ2

C ; therefore,

σ2
C ≥ (σ2

A + σ2
C + σ2

E + 2S)(f2 +m2)

=

{(
2

f +m
+ 1

)
S + σ2

C + σ2
E

}
(f2 +m2)

≥
{(

2

f +m
+ 1

)(
2

f +m
− 1

)
σ2
C + σ2

C

}
(f2 +m2)

=
4(f2 +m2)

(f +m)2
σ2
C

> 2σ2
C ,

which is a contradiction. In conclusion, we obtain f+m ≤ 2.

Proof of Theorem 2.1

A genetic model is identifiable if and only if the covariance
matrix of Y is identifiable, since the phenotype Y follows
a multivariate normal distribution. For twin-parent quartet
data with both MZ twins and DZ twins, there are 5 distinct
elements in the covariance matrix: V1(θ) = σ2

A + σ2
C + σ2

D +
σ2
E +2S, V2(θ) = f(σ2

A +σ2
C +σ2

D +σ2
E +2S)+ (σ2

A +S)/2,
V3(θ) = m(σ2

A + σ2
C + σ2

D + σ2
E +2S) + (σ2

A +S)/2, V4(θ) =

σ2
A + σ2

C + σ2
D + 2S and V5(θ) = 1

2σ
2
A + σ2

C + 1
4σ

2
D + 2S,

where θ is a vector of parameters. Therefore, a model is
nonidentifiable if there are more than 5 parameters in the
covariance matrixes, implying that the ACDE-fm model is
nonidentifiable.

Furthermore, for ACE-fm model with θ = (σ2
A, σ

2
C , σ

2
E ,

f,m)T and σ2
D = 0, we can show that (V1(θ1), V2(θ1),

V3(θ1), V4(θ1), V5(θ1))
T = (V1(θ2), V2(θ2), V3(θ2), V4(θ2),

V5(θ2))
T is equivalent to θ1 = θ2, and thus the ACE-fm

model is identifiable. To confirm this statement, first we
note that fi + mi ≤ 2 where i = 1, 2. Then we solve the
equations

σ2
RP1 = σ2

RP2,(4)

f1σ
2
RP1 + (σ2

A1 + S1)/2 = f2σ
2
RP2 + (σ2

A2 + S2)/2,(5)

m1σ
2
RP1 + (σ2

A1 + S1)/2 = m2σ
2
RP2 + (σ2

A2 + S2)/2,(6)

σ2
A1 + σ2

C1 + 2S1 = σ2
A2 + σ2

C2 + 2S2,(7)

1

2
σ2
A1 + σ2

C1 + 2S1 =
1

2
σ2
A2 + σ2

C2 + 2S2,(8)

with σ2
RPi = (σ2

Ai+σ2
Ci+σ2

Ei+2Si) and Si = (fi+mi)σ
2
Ai/

(2−fi−mi), i = 1, 2. Combining (4), (7) and (8), we can get

σ2
A1 = σ2

A2 and σ2
E1 = σ2

E2.

Based on (6) and (7) and after some calculations, we have

σ2
RP1(f1 +m1 − f2 −m2)(9)

+ σ2
A1

(
f1 +m1

2− f1 −m1
− f2 +m2

2− f2 −m2

)
= 0.

A trivial solution to (4)–(8) is θ1 = θ2. The other solution is

f1 +m1 = 2 +
2σ2

A1

σ2
RP1(2− f2 −m2)

,

which is larger than 2 and contradicts with the necessary
condition for the ACE-fm model, i.e., fi + mi ≤ 2. Hence
the proof is completed.

Proof of Theorem 3.1

Under the ACE-fm model, the log-likelihood is

l(λ) =− (nMZ + nDZ) log(2π)−
nMZ

2
log |ΣMZ(λ)|

− ΣMZpairs

(
1

2
(yi − μ)′Σ−1

MZ(λ)(yi − μ)

)

− nDZ

2
log |ΣDZ(λ)|

− ΣDZpairs

(
1

2
(zi − μ)′Σ−1

DZ(λ)(zi − μ)

)
,
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where

ΣMZ(λ) =

⎡
⎢⎢⎣

λrp 0 λft λft

0 λrp λmt λmt

λft λmt λrp λMZ

λft λmt λMZ λrp

⎤
⎥⎥⎦

and

ΣDZ(λ) =

⎡
⎢⎢⎣

λrp 0 λft λft

0 λrp λmt λmt

λft λmt λrp λDZ

λft λmt λDZ λrp

⎤
⎥⎥⎦

with λrp = λ2
A + λ2

C + λ2
E + 2S, λft =

2λfλrp+λ2
A+S

2 , λmt =
2λmλrp+λ2

A+S
2 , λMZ = λ2

A + λ2
C + 2S, λDZ = 1

2λ
2
A + λ2

C + 2S
and S = (λf + λm)λ2

A/(2− λf − λm).
The maximum likelihood estimations of λ2

A, λ
2
C , λ

2
E , λf

and λm are unbiased estimates from the solutions of equa-

tions E[∂l(λ)
∂λ2

A
] = 0, E[∂l(λ)

∂λ2
C
] = 0, E[∂l(λ)

∂λ2
E
] = 0, E[∂l(λ)∂λf

] = 0

and E[∂l(λ)∂λm
] = 0. It is easy to obtain that λ̃2

E = σ2
E ,

λ̃2
A = σ2

A + 3σ2
D/2. Therefore, we have λ̃2

E
P−→ σ2

E and

λ̃2
A

P−→ σ2
A + 3

2σ
2
D. By the same reasoning, λ̃2

C , λ̃f and λ̃m

can be calculated, but the expressions are very complicated.
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