STATISTICS AND ITS INTERFACE Volume 6 (2013) 79-89

On permutation procedures for strong control in
multiple testing with gene expression data

GRZEGORZ A. REMPALA* AND YUHONG YANGT+

We consider two popular, permutation-based, step-down
procedures of p-values adjustment in multiple testing prob-
lems known as min P and max 7 and intended for strong
control of the family-wise error rate, under the so-called sub-
set pivotality property (SPP). We examine key but subtle
issues involved in ascertaining validity of these methods, and
also introduce a new, slightly narrower notion of strong con-
trol which ensures proper bounds on the family-wise error
rate in min P and max T without SPP.
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1. INTRODUCTION

Over the last decade, permutation-based methods for
strong control of the family-wise error rate have received
considerable attention in genomic applications (e.g., mi-
croarray data analysis under treatment and control) in the
context of multiple testing. Naturally, one may test the dif-
ference between control and treatment separately for each
gene. However, since typically a large number of genes (thou-
sands or more) are investigated in a modern microarray-
based or other genomic experiment, the simple-minded ap-
proach of conducting the tests one at a time is bound to
have enormous probability of type I error due to the famil-
iar problem of multiple testing. This is why the multiple-
testing-adjusted statistical procedures have received much
attention in genomic data analysis. For a general introduc-
tion to the topic, see, e.g. the recent monograph by Dudoit
and van der Laan (2008).

The familiar single-step Bonferroni procedure and the
likes provide strong control of the error rate, but they are
typically too conservative. Westfall and Young (1993) pro-
posed less conservative step-down min P and max7 pro-
cedures (see Appendix) intended to properly take the de-
pendence between tests into account in a non-specific way.
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Westfall and Young (1993) also pointed out that since un-
der most circumstances the joint and marginal null distribu-
tions of test statistics are unknown, a practical way of im-
plementing proper family-wise error control is via the usual
permutation (or randomization) approximation to these null
distributions.

One of the widely debated issues (see e.g., Westfall and
Troendle 2009 and references therein) is the precise na-
ture of the family-wise error rate control provided by these
permutation-based, multiple-testing adjustment procedures
and the appropriate assumptions which are required for such
control. As pointed out in Chapter 2 of Dudoit and van
der Laan, in order to properly control the rate of type I
errors, whether in a multiple testing problem or not, one
needs to specify the joint distribution of the test statis-
tics. Hence, the key idea seems to lie in the specification
of the appropriate test statistic null distribution (as op-
posed to the data generating distribution) which ensures
the control of the error rates under the true null distri-
bution (often partially unknown). Whereas in their mono-
graph Dudoit and van de Laan (2008 Chapter 2) consid-
ered the asymptotic control properties of the min P and
max T procedures under the null dominance assumption,
Westfall and Young (1993) argued that min P and maxT
provide exact (non-asymptotic) strong control under the
null distributions of the test statistics having the subset
pivotality property or SPP (see, Westfall and Young 1993,
Chapter 2; Dudoit and van der Laan Chapter 2, as well as
Definition 3 below). Seemingly, there has been some con-
fusion/misunderstanding/debate surrounding the SPP con-
cept itself as well as its validity in the specific context of
the microarray data. For example, it was stated in the lit-
erature that if each individual test on a gene depends only
on the observations on that gene, then SPP holds. It seems,
however, that the issue is quite subtle, and the above state-
ment may or may not be correct, depending on the setup
of the hypotheses. In particular, as we demonstrate herein,
a strange paradox about this requirement seems to be at
work when considering permutation-based methods in pur-
suit of strong control. On one hand, we can argue that SPP
does not hold generally in the gene expression data context;
but on the other hand, we can also argue that it does not
really matter if subset pivotality holds or not. This casts
some doubt on the validity of the permutation-based meth-
ods, which is further supported by our examples. However,
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as we show in the current paper, despite these difficulties,
it turns out that for adjusting p values based on marginal
tests, the min P and max T always provide strong control in
a weaker sense exactly (not just approzimately), whether or
not SPP holds.

In the current paper, for the sake of clarity and simplic-
ity, we focus on one specific setting, that is, the microarray
experiment comparing a treatment condition with a control
one. We first illustrate some subtle issues/difficulties sur-
rounding the problem of multiple testing in this setting and
subsequently propose potential remedies and offer several
clarifications. In the next section (Section 2) we introduce
our notation and briefly review the main concepts. Section
3 of the paper discusses the meaning of the multiple testing
null hypotheses and points to some difficulties with applying
the notion of partial null hypothesis in permutation-based
step-down procedures. In Section 4, we address SPP and
the issue of its validity in microarray data. In particular,
we give a general result on broad existence of families with
SPP (Theorem 1). In Section 5 we show that the permuta-
tion min P and max T procedures do provide strong control
in a less strict sense. To make this concept rigorous we in-
troduce a notion of partial strong control and give a formal
result as Theorem 2. Finally, in Section 6, some concluding
remarks are given. The relevant proof and auxiliary results
are deferred to the appendix.

2. FAMILY-WISE ERROR RATE

Throughout the paper we shall use the following nota-
tion. Let X, = (X1jy---,Xnj), 1 < j < ng be iid obser-
vations of gene expression levels (possibly after a suitable
transformation of the raw data) of N genes under the ex-
perimental (treatment) condition and Y; = (Y15,...,Yn;),
1 < j < ngy be iid observations of the expression levels
of the same genes, in the corresponding order, but under
the control condition. Herein X and Y are always assumed
to be independent. Note that N is typically much larger
than n, and ny. We are interested in whether the treat-
ment affects the gene expression relative to the control con-
dition.

Let X; and Y; denote the random expression levels for
gene ¢ under the treatment and under the control, respec-
tively. A gene i (1 < i < N) is said to be differentially
expressed if the distribution of X; is different from that of
Y;. Note that a more restrictive definition is also often used:
gene ¢ is differentially expressed if the mean of X; is differ-
ent from that of Y;. Clearly, the latter definition addresses
only the difference in mean. In this work, we will focus on
the former definition.

Let #H; denote the hypothesis that gene i is not differ-
entially expressed and let H; € {0,1} be the corresponding
indicator function, i.e., H; = 0 when the null hypothesis
H; is true and H; = 1 otherwise. Following Ge, Dudoit
and Speed (2003) in the sequel we shall use H; and H; in-
terchangeably. For testing H; (or H;) a test statistic T; is
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proposed, and large values of |T;| or large (small) values of
T; provide evidence against H;, depending on the specifica-
tion of the alternative hypothesis as two-sided or one-sided.
Herein we assume that T; depends only on the observations
on gene i, that is, 7; is a function of (X;1,...,X;n,) and
(Yi1,...,Yin,). We call such a test statistic a marginal one.
Examples of T; include two-sample t-statistic, F-statistic
and many other test statistics (e.g. Wilcoxon and Mann-
Whitney statistic, see, for instance, Bain and Engelhardt
1992). The main statistical issue in analyzing microarray
data stems from the fact that, since many tests are per-
formed, the size of the critical set for an individual test may
no longer be a meaningful quantity for characterizing the
confidence level associated with the set of genes declared to
be differentially expressed based on the individual tests.

Let My = {i : H; = 0} be the collection of indices cor-
responding to true null hypotheses and M; = {i : H; = 1}
be its complement (i.e., the false null hypotheses). We let
M ={i:1< i< N} and note that M = M; U My and
M; N My = (). For a given multiple testing procedure, if
any hypothesis in Mj is rejected, a type I error occurs. The
associated probability is called the family-wise error rate
(FWER).

Following Ge et al. (2003) (with some abuse of notation,
see below), let Hpy, = Nienr,{H; = 0} denote the state that
all the null hypotheses in M, are true but all the hypothe-
ses in M, are false. Let Hyy = Njep{H; = 0} denote the
complete null hypothesis (i.e., the state of nature when all
the gene-specific null hypotheses are true). We note that
Hypy, with M\ M # () is also referred to in the sequel as the
partial null hypothesis.

Let 0 be a multiple testing procedure with (i) indicating
the decision on gene i: 6(i) = 0 if H; is accepted (or not
rejected) and 0(i) = 1 if H; is rejected. Thus the family-
wise error rate of 4 is

FWER(S) = Pr (6(i) = 1 for at least one ¢ € Mo|Hpy,) -

Deferring the discussion of the meaning of the above con-
ditional probability to the next section, we note also the fol-
lowing definitions (see Ge et al. 2003, Westfall and Young
1993, p. 10, Hochberg and Tamhane 1987, p. 3, Dudoit and
van der Laan 2008, p. 95). Throughout the paper we assume
O<ax<l

Definition 1 (Weak control). A multiple testing procedure
0 is said to weakly control the FWER at level « if

Pr(6(i) =1 for at least one i € M |Hpr) < a.
Definition 2 (Strong control). A multiple testing proce-
dure ¢ is said to strongly control the FWER at level « if for

every possible choice of My C M, we have

Pr(6(i) =1 for at least one i € My |Hpy, ) < o



It is obvious that the strong control implies the weak con-
trol. The concept of strong control, at first glance, seems to
be well-defined in the context of microarrays and elsewhere.
However, in a rigorous sense, the definitions are not com-
pletely clear since, as discussed e.g. in Dudoit et al. (2004)
and Pollard and van der Laan (2004), each subset My of
null hypotheses corresponds to a family of possible null dis-
tributions of the test statistics. As we argue below, the issue
seems fundamental for interpreting correctly the outcomes
of any permutation-based analysis intended for strong con-
trol.

3. ISSUES WITH H)y,,

3.1 Joint or marginal distributions?

Peter Westfall in his discussion of the paper by Ge, Du-
doit and Speed (Ge, Dudoit and Speed 2003, p. 63), brings
up the issue of how to interpret the joint null hypotheses
Hyr and Hyy, (see also Westfall and Troendle 2008). He
points out that there are two interpretations. One is that
Hyy, and Hps do not address the joint distributions of the
expressions of the genes. That is, Hyy, (or similarly Hyy)
means that the marginal distributions of X; and Y; are the
same for each i € My (or ¢ € M) but nothing else can
be said about the joint distributions of {X;,i € My} and
{Yi,i € My} (or {X;,s € M} and {Y;,i € M}). This in-
terpretation matches the interest of comparing the treat-
ment and control marginally over the genes. As expected,
there can be infinitely many different joint distributions of
{Xi,1 € Mp} and {Y;,i € My} that yield the same marginal
distribution for X; and Y; for i € M.

An alternative interpretation of Hyy, is that the joint dis-
tribution of {X;,7 € My} is the same as that of {Y;,7 € Mp}.
Westfall views that in order to ensure the validity of the pro-
cedures min P and max 7" this latter interpretation of Hyy,
should be adopted, and even though not explicitly stated,
Ge, Dudoit and Speed (2003) seem to share this view. While
not disagreeing with this, our main point of this subsection
is that each interpretation above has some undesirable con-
sequences, and adopting the joint interpretation does not
necessarily solve the problem. In fact, under joint inter-
pretation a permutation-based procedure may wrongly find
“differentially expressed” genes with high probability due to
the difference of the joint distributions of {X;,7 € My} and
{Yi,7 € My}. Thus, with the second interpretation of Hyy,,
the nature of the problem is no longer that of the usual
multiple testing (i.e., finding the marginally differentially
expressed genes in our context of microarray analysis). This
point may be illustrated in the following computer simula-
tion example.

Example 1. Consider N = 10 genes and two sets of mi-
croarray replicates under treatment and control, with n; = 2
and ng = 3. We shall compare the max T permutation pro-
cedure for the nominal control of FWER = a = 0.1 under

two scenarios in which the marginal distributions of gene ex-
pressions in both conditions are the same, but their joined
distributions differ. Under the first scenario, we take X,
1 = 1,2 as two independent vectors of replications of two
generated standard normal variables X7, Xs respectively,
and take Y,, ¢ = 1,2,3 as three independent vectors of
independent standard normal variables. Under the second
scenario, all five vectors are iid with iid standard normal
components. In both cases the one-sided t¢-statistic is used
for the max T procedure. In this setting, the number of pos-
sible permutations is 10 and hence the permutation pro-
cedure can be performed exactly for o = 0.1. By repeat-
ing each of the scenarios a large number of times, we com-
pare the nominal and empirical FWER in the strong con-
trol problem in a one-sided test for both scenarios. The re-
sults of the analysis performed with the help of R software
(http://cran.r-project.org/) and the associated Bioconduc-
tor library “multtest” are presented in the last section of
the Appendix. As we can see from the computer output,
under the 100,000 replicates of our first scenario, the empir-
ical rate is seen to be about 20% above the nominal oo = 0.1
rate, with the difference exceeding the size of the simula-
tion error. This is in contrast to our second scenario where
the empirical error rate is seen to agree well with the nom-
inal one, based on the same number of replicates. It seems,
therefore, that in the first scenario the max T procedure im-
plemented in the “multest” library does not really strongly
control FWER, even in the approximate sense.

As seen in the next example, the difference between the
nominal and true FWER for step-down permutation proce-
dures may be even more pronounced in some specific cir-
cumstances.

Example 2. Suppose that X; and Y; all have the same
continuous distribution with mean px; and py; respec-
tively and unit variance. We assume that the common
distribution has an unbounded support on (—o0,00). We
are interested in testing Ho, : ux,; = pys: < Mo Versus
Hy; @ py,; > max(uo, x ;) for the genes for a given con-
stant pg. For illustration purposes, suppose that there is
only one observation for each of the treatment and control.
Consider the test statistic T; = Y; — max(uo, X;) which pro-
vides evidence against Hy; when T; > ¢ for some constant
c. As we briefly outline below, in this setup and with large
N, the permutation-based methods reject at least one gene
with very high probability, even when none of the genes are
differentially expressed.

Suppose that, similarly to Example 1, the true distribu-
tions of the observations are given by X; = Xo = --- =
Xn with X7 normally distributed with mean p; and unit
variance and Yi,...,Yy independent and identifiably dis-
tributed with mean uo and unit variance. Consider max T
step-down procedure with @ = 0.5. For the permutation
distribution of the two observations, there are only two pos-
sibilities: the original data or the switch of X and Y each
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occurring with equal probability of 1/2. Let Tihax denote the
maximum of the test statistics over all the genes. Then it
has the value maxY; — max(uo, X1) under the original ob-
servations, or the value X7 — min{Y; : Y; > po} otherwise
(define min{Y; : Y; > uo} to be pg when Y; < po for all
i). Clearly X7 — min{Y; : Y; > po} < X1 — po and maxy;
is large with high probability when N is large. Therefore,
under the null hypotheses p1 = pg, with large enough N,
for any given € > 0 the value of Ty,,x under the original
observation is greater than that under the switch of X and
Y with probability > 1 — €. Thus for a« > 0.5, with the
permutation approach, we will make type I error with prob-
ability close to one when N is large. In other words, the
permutation-based approximations to the adjusted p-values
for the maxT procedure are not trustworthy in this case,
and a similar argument can be also made for the min P pro-
cedure.

The above examples illustrate the following point. In gen-
eral, with the dependence structure unaccounted for, the
permutation approach to the multiple testing problem can
perform very poorly and wrongly declare genes to be differ-
entially expressed, due to the changes of the genes depen-
dence structure across the experimental conditions, rather
than due to the changes of the marginal distributions. As
seen in Example 1, even in the case when there are multi-
ple observations for both the treatment and the control, the
problem still exists to some degree. The difficulty is com-
pounded by the nature of the gene expression data, which
makes it unclear if the standard asymptotic analysis that as-
sumes a large sample size (n1,ny — oo relative to V) would
be practically useful/relevant.

The problem described in Examples 1 and 2 also indicates
that if one is interested in marginal testing, the permuta-
tion approach does not serve that purpose correctly. If one
conducts a permutation procedure, its conclusion seems to
be about the joint distributions under the control and treat-
ment. Thus the permutation approaches intrinsically are not
quite in line with multiple marginal testing.

From the literature, one may get the impression that the
permutation procedures min P and max T are less conserva-
tive compared to the Bonferroni method (or the like). Based
on the discussion above, this may not be correct. In fact,
Bonferroni method does control the FWER in the multiple
marginal testing sense (note that our use of the term “multi-
ple marginal testing” is to emphasize that each test concerns
a “marginal” distribution in the sense that there is no real
interest in the relationship between the tests, even though a
“marginal” distribution can be multi-dimensional), but the
permutation procedures do not necessarily control FWER
in that sense, as shown in the examples.

Clearly, the definitions of weak and strong controls still
make sense when we follow the first interpretation of Hyy,.
However, in that direction, to our knowledge, there is no
multiple marginal testing method with strong control of

82 G.A. Rempala and Y. Yang

FWER that goes much beyond the Bonferroni-type proce-
dures (like, e.g., the method introduced in Holm 1979). This
considerably weakens the usefulness of the concept of strong
control of FWER. Intuitively, this is not too surprising, be-
cause with large N and small n; and no it seems unlikely
that one can get very far without additional restrictions on
the joint distribution of X and Y.

In defense of the permutation procedures, one can argue
that the multiple marginal testing may not be the correct
objective in the first place. Ultimately, if possible, one wants
to know the difference between the joint distributions under
the control and treatment. However, since genes are often
related to one another in nontrivial manners, the statement
that the treatment and control are different, by itself may
not be very useful, and searching for marginally differentially
expressed genes is a constructive way to proceed. It seems
that even though challenging, understanding how treatment
affects genes both marginally and jointly is an important
direction in microarray data analysis.

3.2 What is the state of nature?

Another difficulty with the definition of strong control
under the joint interpretation of Hjyy, is that the state of
nature may not be uniquely defined or even cannot be de-
fined at all. This obviously makes the joint interpretation
somewhat problematic. Let’s consider two examples.

Example 3. Suppose N = 2 and that X; and Xs are iid
with N(0,1) distribution and Y3 = Y2 also with N(0,1)
distribution. Then what is the state of nature? When the
marginal distributions are concerned, clearly, we have H; =
Hy; = 0. Thus, following the first interpretation of Hyy,,
My = {1,2}. With the second interpretation, however,
what is Hjps,?7 Actually, we see clearly that Hpz, cannot be
{H; = 0, Hy = 0}. Further, it cannot be {H; = 0} because
otherwise for gene no. 2, the distributions of X5 and Y5
would have to be different (recall that M is the collection
of the false null hypotheses), and the same argument applies
to {Hs = 0} as well. Thus My is not well-defined.

Example 4. Let X, X, X3, Y7, Y5 be iid with Unif[0, 1]
distribution, and Y3 = Y7 + Y2 mod 1 (ie., Y3 = Y1 + Y5
ifY1+Y, <1and Y3 =Y + Y5 — 1 otherwise). Then, like
in Example 3, marginally we have H; = Hs = Hs = 0.
Again, under the second interpretation of Hyy,, the state of
nature is unclear. Obviously Hjs, cannot be {H; =0, Hy =
0, H3 = 0}, but how about {H; = 0,H; = 0}, or {H; =
0, Hs = 0}, or {Hy = 0, H3 = 0}? Apparently, Hy;, cannot
be any of them because otherwise there is only one gene left
in M; yet the distributions under the two conditions are not
different for that gene. Similarly H)y, is none of {H; = 0},
{Hy = 0}, {Hs = 0},

From the above two examples, we see that My (for the
concept of strong control) is not properly defined when
Hyy, (the state of nature) is interpreted in terms of the



joint distribution instead of marginally. For Example 3,
{H; = 0}, {H3 = 0} hold separately, but their intersection
{H; =0, Hy = 0} does not hold in terms of the joint inter-
pretation. Thus the approach of adding a joint distribution
requirement on top of marginal assumptions for conducting
a permutation test has an essential difficulty, related to the
very validity of the permutation approach.

One may consider two ways in an attempt to overcome
the aforementioned problem. One is to define My to be the
largest collection of the unaffected genes in the sense that
the genes in the set have the same joint distribution of ex-
pressions under both the treatment and control conditions
but adding any additional gene in the set would make the
joint distributions different. This ensures that Hjs, does al-
ways exist, but it is not hard to see that Mj is not necessar-
ily unique. Indeed, with this definition, in Example 3, M
can be both {1} and {2}. Another thought may be to re-
interpret Hys, and Hjys, to mean that the genes in M, have
the same joint distribution under the two conditions and
that the genes in M; have non-identical joint distributions
under the two conditions. Then, in both examples, My = ()
is the only choice for the state of nature (which does not
seem to agree well with intuition). However, in general, if
a choice of My is not empty, then moving any member to
M still satisfies the requirement. Even if one puts a maxi-
mal requirement on M, one still cannot overcome the non-
uniqueness of the state of nature.

In any event, due to undefiniteness or non-uniqueness
of Hps,, when one performs the permutation procedures,
it is unclear how one should interpret the outcome, which
is, obviously, undesirable and challenges the usefulness of
permutation-based methods for strong control. One might
consider putting some restrictive conditions on the joint dis-
tributions, so that the state of nature is well defined. This,
however, moves away from one’s desire of not making strong
assumptions on the joint distributions of the test statistics
in the multiple test problems.

4. SUBSET PIVOTALITY

Strong control of the FWER, in theory, can be obtained
by using the so called closed testing method of Marcus,
Peritz and Gabriel (1976) (see also Hochberg and Tamhane
1987, p. 54 and Hsu 1996, p. 137). To implement this
method, however, one must have a size « test for every pos-
sible intersection of the individual hypotheses. In the con-
text of gene expression data, it seems difficult (to say the
least) to construct a meaningful size « test for an inter-
section hypothesis in which many genes are involved, with-
out restrictive assumptions on the dependence among the
genes.

Westfall and Young (1993) proposed two permutation
based procedures, min P and max 7, designed to control
the family-wise error rate without modeling the dependence
among the individual tests. For readers convenience, the de-
tails of these procedures are presented in the appendix. For

understanding min P and max 7T properties, it is critically
important to make a clear distinction between the theoreti-
cal probability distributions of the minimal p-value statistics
and the permutation distributions. It seems that failing to
do so when arguing for strong control property in the liter-
ature contributed much to the confusion on the validity of
the permutation-based methods. When the theoretical ad-
justments of the p-values are done by min P and max T pro-
cedures (by assuming that the distributions of the minimal
p-value statistics are known), it is quite clear that the meth-
ods are closed without any additional assumptions, like e.g.
SPP (see below). Nevertheless, when the implementations
of these methods are done via permutations, the matter be-
comes complicated and subtle. It is not hard to see that the
methods are closed with respect to the permutation distri-
butions, this however, may not be sufficient for the strong
control in min P and max 7. Indeed, the permutation dis-
tribution depends on the data and when the state of nature
of the data is not the complete null (that X and Y have the
same distribution), the conditional permutation distribution
may have little in common with the true state of nature.
Thus the min P and max T procedures when practically im-
plemented via permutations, are not really necessarily closed
methods in the sense of Marcus, Peritz and Gabriel (1976)
since the sizes for all the tests are not necessarily properly
controlled under the true data distributions.

The strong control properties of the permutation-based
min P and max T procedures are stated under a critical as-
sumption, namely, the subset pivotality property (SPP) de-
fined below. In a sense, SPP seems to be an attempt to ob-
tain the closed testing method in a practical way. Let us now
consider SPP assumption and examine whether it is likely
to be satisfied or not, in the context of gene expression data

analysis.
Let Py,..., Py be the p-value statistics of the test statis-
ties Ty, ...,Tn. Let P = (Py,..., Py). The following defini-

tion is given in Westfall and Young (1993, p. 42). (We note
that the concept is revisited on p. 115 of the book in a less
formal fashion.)

Definition 3 (Subset pivotality). The distribution of P has
the subset pivotality property if the joint distribution of the
sub-vector {P; : i € M{} is identical under the restrictions
Hyyy and Hyy, for all subsets My = {i1,...,i;} of true null
hypotheses.

The definition may seem to be quite clear, but there are
subtleties in its statement. Actually, we are aware of two
understandings of the definition and the part in question is
“for all subsets My = {i1,...,i;} of true null hypotheses”.
One interpretation of the requirement in the definition is
that the joint distribution of the sub-vector {P; : i € M{}
is identical under the restrictions Hyy; and Hpy for all sub-
sets M{ = {i1,...,4;} (see Ge, Dudoit, Speed 2003, p. 14).
Another interpretation is that there is a fixed true Hyy, and
the definition requires that the joint distribution of the sub-
vector {P; : i € Mg} is identical under the restriction H
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and H) for all subsets M) of My. Obviously the first inter-
pretation is more stringent. We will focus on the first inter-
pretation in the following discussion (however we note that
some of the difficulties described below are also encountered
under the second interpretation).

From the definition, the property is pertaining to the dis-
tribution of P. Of course, the joint distribution of X and Y
and the test statistics are also in the picture through their
effects on P. Given the choice of the test statistics, is it
a property for the single joint distribution of X and Y or
for a family of distributions? Apparently the answer should
be the latter, because in the statement, different choices of
M are allowed (and obviously they correspond to different
distributions of X and Y'). But then the meaning of the def-
inition is not quite clear. Does it mean that we start with a
collection of the joint distributions of (X,Y’) and the con-
dition is required on the corresponding set of distributions
of the test statistics? Or can we start with all possible joint
distributions of (X,Y) and just consider the subset of the
distributions that satisfy the requirement?

The first interpretation seems to be legitimate. The sec-
ond one may look legitimate at first sight, but it is actu-
ally misleading since the restriction to a set of distributions
that satisfy SPP cannot be verified in any meaningful way
in practical settings. With the understanding that SPP re-
ally is a property of a given (verifiable) collection of joint
distributions of (X,Y), let Q denote such a collection. An
important question then is: Under what conditions on {2 and
T=(T1,...,Tn), can we expect SPP to hold?

With H; clearly defined, but nothing specifically said oth-
erwise, one may think about interpreting the setup in Ge,
Dudoit and Speed (2003) as one with € including all possi-
ble joint distributions of (X,Y’) (of course, we still assume
that X and Y are independent). In their argument on why
SPP is usually satisfied for the case of gene expression data
analysis, they appeal to the fact that 7T; depends only on
gene i. However, without further assumptions on the joint
distributions of genes, this generally seems unlikely be true,
as will be seen.

4.1 Is SPP typically satisfied for gene
expression data?

As before, let My denote the set of genes that have the
same marginal distributions under the treatment and con-
trol. According to Definition 3, SPP requires that the joint
distribution of {P; : i € My} stay unchanged under Hjy,
and Hp;. However, when the treatment and control condi-
tions have complicated effects on the dependence structure
between the genes expressions, even though the tests are
done with one gene at a time, one cannot expect SPP to
hold in general. To see this, let us consider a simple setting
with only three genes.

Example 5. Suppose that Y7,Y5,Ys; are iid standard-
normally distributed (thus, under the control condition, the
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expression levels of the genes are independent). The treat-
ment may or may not change this distribution. Under the
complete null hypothesis, X7, X5, X3 are also iid with stan-
dard normal distribution. Now suppose that one possible
effect of the treatment is that X; equals in distribution to
B11Y1 + P12Ys + B13Ys + p1, Xo equals in distribution to
B21Y1 + PoaYa + BasYs + pa2, and X3 equals in distribution
to B31Y1 + B32Y2 + B33Y3 + u3, where py, po, 3, and the 3
parameters are real numbers. Then one can easily arrange
the constants so that X7, X5, X3 all have mean zero and
variance one, marginally. However, their joint distribution
is not necessarily the same as that of Y7, Y5, Y3.

Note again that in the above example true My may not
be well-defined when the joint interpretation of Hyy, is used
and it is then not meaningful to consider SPP under the
joint interpretation. On the other hand, under the marginal
interpretation of My it is clear that in this family of dis-
tributions, SPP fails. Conceptually, this is quite possible to
happen in gene expression: the treatment can make some
genes co-expressed. This simple example indicates that for
a general family of distributions SPP in the gene expression
context may not hold without imposing restrictions that are
hard to verify /justify (e.g., the assumption that the genes
in My are independent among themselves, regardless of the
treatment conditions, or that the treatment and control dis-
tributions differ only by location parameter shifts).

4.2 A sufficient condition for SPP

If the control and treatment differ in the gene expres-
sions only in terms of location-shift, then SPP holds for
the location family. More precisely, consider the following.
Let g(z1,...,2N) be a given joint probability density func-
tion. Assume that the joint distribution of (Xi,...,XxN)
is qu(z1,...,aen) = ql@r — p1,...,xny — pn) for p =
(p1,- -, un) € RN and the joint distribution of (Y1,. .., Yy)
is of the form of g; for some 1 € RN . Then we say that the
treatment and control differ in location-shifts. In this case,
SPP obviously holds. For related discussion and more ex-
amples in other multiple testing scenarios, see Chapter 3 of
Westfall and Young (1993).

4.3 A paradox?

In the discussion of the previous sub-section we pointed
out that for a given family of marginal distributions of the
observations, with no additional assumptions made on their
joint dependence structure across the experimental condi-
tions, SPP does not hold generally. We emphasize that here
we have a fixed family to begin with (which is required for
considering SPP). Very surprisingly and interestingly, how-
ever, when we somewhat change the angle of looking at the
problem, it seems that we may claim that in a sense SPP al-
ways holds for permutation-based methods via the following
result which is argued in the appendix.



Theorem 1. Let Fy; be a true joint distribution of all the
genes under both treatment and control, i.e., the true dis-
tribution of the vector (X,Y) where X = {X;,i € M} and
Y ={Y;,i € M} as well as M = My U My with My # 0.
Under joint interpretation of Hyy, there exists a collection
Q of joint distributions of (X,Y) which contains Fp; and
satisfies SPP.

The result of Theorem 1 leads to a paradox in the jus-
tification of the use of the permutation-based procedures
when pursuing strong control via the step-down adjusting
methods. If we start with a given family of the joint dis-
tributions of X and Y, we are told that we need SPP for
the permutation-based procedures to work. As already men-
tioned, when the treatment and control conditions give rise
to different dependence structure among the genes, SPP
does not hold generally. This suggests that the permuta-
tion procedure may not be valid (if SPP is really relevant).
On the other hand, if one starts from whatever the true
joint distribution of (X, Y') is, one can construct a “friendly”
family in which SPP always holds. The key point here is
that the permutation-based step-down procedures (min P
and maxT) do not in any way depend on the specification
of the family of the joint distributions and thus it doesn’t
matter whether the “friendly” family is known explicitly or
not. Consequently, any properties of the permutation proce-
dure for approximating type I error probabilities that hold
under the true distribution in the “friendly” family have to
hold in the original family (whatever it might be) as well.
Therefore, in our context, when using the permutation pro-
cedures, it seems that one does not need SPP after all under
whatever state of nature!

The issue of general utility of SPP seems somewhat un-
clear and we leave its resolution to more studies. For in-
stance, as is apparent from the proof of Theorem 1, when
the test statistics involve multiple genes the construction of
the family with SPP fails and, in general, some aspects of
the multiple testing procedures in such circumstances differ
from our present setting.

In the next section, we argue that for the step-down
permutation-based methods the control issue becomes much
easier with a slight modification of the original definition of
strong control.

5. PARTIAL STRONG CONTROL

The resampling-based methods for p-value adjustment
were thought to provide approximations to the joint dis-
tributions of the p-value statistics. Consequently, the strong
control property was not expected to hold exactly. This was
clearly stated, for instance, in Ge, Dudoit and Speed (2003,
Section 4). Westfall and Young (1993, Chapter 2) made gen-
eral statements that when the adjustments of the p-values
cannot be done without error, the resampling methods only
approximately control the FWER in the strong sense. How-
ever, as seen in our Examples 1 and 2 in Section 3, even the

approximate control may be questionable, and therefore the
understanding of the accuracy of the permutation-based ap-
proximations to min;eps, P; (or max;ep, T;) appears to be
key for the understanding of the strong control properties
of the permutation-based methods. Unfortunately, it seems
that too-often the accuracy issue is brushed aside in dis-
cussing the practical aspects of implementing the strong con-
trol algorithms. In fact, at first glance, one might not be very
optimistic about the accuracy of the approximations. Imag-
ine, for example, that M is of size 150 and ny; = ny = 30
(which may not be atypical in the gene expression context
for the time being). Together with the complexity of the
dependence between the genes, it seems perhaps unrealistic
to expect the distribution of min;eay, P; to be well approx-
imated.

In Section 4 we have made an attempt to illustrate the po-
tential problems regarding the strong control property (or
lack of strong control) of the permutation-based methods
and the nature of SPP. All these seem to cast some doubt
on the permutation-based methods for strong control. Sev-
eral other researchers (see, for instance, Storey 2003) had
expressed some concerns about the satisfaction of SPP re-
quirement for gene expression data.

It is then perhaps surprising to find out that the is-
sues surrounding SPP are actually largely irrelevant and
the Westfall and Young procedures with permutation do
strongly control the FWER in a certain sense.

The essence of an idea behind a permutation test is
in exploiting the symmetry between the observations from
treatment and control conditions under the null hypothesis
(i.e. identification of the appropriate permutation group).
In the setting of gene expression data, this means that un-
der the null hypothesis of no difference between treatment
and control, the observations under the two conditions are
exchangeable in distribution. More precisely, under this null
hypothesis, conditionally on the observed values of XY,
all subjects have exactly the same probability to be asso-
ciated with any given vector of expression levels from both
experimental conditions. Consequently, the control of the
type I error probability conditional on the observed values
of X,Y ensures the control of the unconditional error prob-
ability.

The key for obtaining strong control for the permutation-
based adjustment is to understand the distribution of
min;e Pi, where Pi is the adjusted p-value. There is no
need to require the accuracy of the permutation approxima-
tion for the genes which are not in M. Therefore, at the
heart of the matter is really the issue of whether or not, un-
der the partial null H)y,, there is still the desired symmetry
on the set of null genes M, that guarantees the validity of
the permutation approach. It turns out to be the case under
a bit more restrictive definition of strong control given in
the following

Definition 4 (Partial strong control). A multiple testing
procedure ¢ is said to partially strongly control the FWER
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at level « if for every possible choice of My C M, when the
joint distribution of X;, i € Mj is the same as that of Y;,
1 € My, we have

Pr(6(i) =1 for at least one i € My |Hp, ) < o

The following result then holds. The proof is presented
in the appendix.

Theorem 2. The Westfall and Young’s min P and maxT
permutation procedures partially strongly control the family-
wise error rate at the exact nominal level «.

Theorem 2 formally justifies the use of min P and max T
procedures for strong control in a bit more restrictive sense
(partial strong control instead of strong control). This re-
sult is noteworthy for two reasons: (i) despite the prevail-
ing belief that min P and max T procedures provide strong
control only approximately (and with little ability to assess
the accuracy of the approximation), they actually provide
(partial) strong control exactly; (ii) there is no need for the
subset pivotality assumption (nor for considering a distri-
bution family to which the true distribution is assumed to
belong).

As mentioned already, with the definition of My as the
collection of all the genes ¢ such that X; and Y; have the
same distribution marginally, in general the condition that
the joint distribution of X;, i € My is the same as that
of Y;, i € My may not hold. Then there is no guarantee
that the probability of type I error is under the desired level
for the permutation-based min P and max T procedures (see
Example 1). To have a better understanding of Theorem 2,
we introduce the following definition.

Definition 5 (Maximal joint null set). For a subset of
{1,..., N}, say S, if the joint distribution of X;, i € S is
the same as that of Y;, i € S, we call S a joint null set. If
a joint null set S is such that when any additional gene is
added to the set, the enlarged set is no longer a joint null
set, then we call S a maximal joint null set.

Note that as shown already in Section 3, there may
be multiple maximal joint null sets. Obviously S has to
be a subset of My. In any case, consider a maximal joint
null set S* and let S be the complement of S* in M,
(ie., 8 = My \ S*). We call S the set of individual null
genes.

Theorem 2 means that for the min P and maxT proce-
dures, the probability of making any false discovery in a
maximal joint null set S* is always under the intended con-
trol. When there are multiple maximal joint null sets, the
probability control is for each of them separately (but not
necessarily jointly). In general, the type I error in s’ may
not be well controlled. In the extreme case that S* has size
1 (i.e., all the null genes are actually individual null genes),
Theorem 2 is not useful at all.

In applications, it may be proper to envision that some-
times a treatment leaves most genes completely unaffected
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or practically unaffected in terms of their joint distribution.
Then a maximal joint null set S can be chosen to be this
set. Among the rest of genes, even though the treatment
has changed their joint distribution, there may still be some
whose marginal distributions under treatment happen to be
the same as under the control (or almost the same in a prac-
tical sense). If the number of individual null genes in S is
much smaller compared to the size of S*, i.e., |S'|/]S*] is
small, say upper bounded by 3, then the number of false
discoveries is properly bounded for the permutation based
methods. The corollary below follows immediately from the
above considerations.

Corollary 1. Assume that ratio of the number of individual
null genes and the size of the maximal joint null set is upper
bounded by B. Let « be the chosen test size when applying
the Westfall and Young’s min P or maxT procedure. Then
with probability at least 1 — ., the proportion of the genes in

My declared to be significant is at most %

Remarks:

1. The proof of Theorem 2 follows the spirit of Westfall
and Young’s (1993) idea of FWER control in step-down
procedures, even though the original proof there does
not lead to Theorem 2. There are subtleties that are
easily confusing in the derivation. It is crucially impor-
tant to do the conditioning right. In the complete null
case, the conditioning is straightforward and one does it
right away and presents the whole argument in terms of
the conditional probability. However, under the partial
null, working with the conditional/unconditional prob-
abilities is trickier, and seems to be a major cause of
the confusion on the validity of the permutation-based
methods for strong control. If one starts by condition-
ing on the expressions of all the genes, then the argu-
ment cannot go through. The clever adjustment of the
Westfall and Young procedures allows one to formally
drop the irrelevant genes before making a conditional
argument.

2. As mentioned already, the permutation implementation
in the min P and max T procedures were viewed as ap-
proximations to the theoretical distributions of the min-
imal p-value statistics. From the proof, it is clear that
whether and how well the permutation distributions ap-
proximate the unconditional distributions of the mini-
mal statistics are not directly relevant for bounding the
type I error probability.

3. As pointed out in Ge, Dudoit and Speed (2003), the
marginal distributions of the test statistics for the genes
do not need to be the same, and additionally the test
statistics can be completely different across the genes
(if desirable).

6. CONCLUSIONS

It seems that the notion of strong control of FWER in
gene expressions analysis, even though appealing, has some



challenging difficulties to overcome. Beyond the Bonferroni
and Holm’s methods, the only known methods intended for
(partial) strong control without assuming additional con-
ditions on the distributions of the p-value statistics (e.g.,
independence) rely on permutation in their implementa-
tion. This approach, however, moves away from the starting
point of the usual multiple testing problems because it con-
cerns the joint distributions of the test statistics rather then
the marginal ones. Consequently, it could happen with high
probability that some genes might be declared differentially
expressed simply because the joint distributions of the ex-
pression levels of the genes under the treatment and control
are different even though the respective marginal distribu-
tions remain identical (or practically identical). In addition,
under the joint interpretation of the null hypotheses of no
difference between treatment and control, the state of the
nature may be no longer properly defined.

When one considers a family of joint distribution for the
gene expression levels, since the treatment often has effects
on the relationship between the genes (e.g., changing in-
dependently expressed genes into co-expressed genes), the
SPP requirement may be restrictive. Interestingly enough,
the step-down methodology utilizing permutations to ad-
just the p-values, i.e., the Westfall and Young’s min P and
max T procedures actually do ensure strong control in a
partial sense without SPP. The difference between partial
strong control and strong control is that whereas for the
latter we require the appropriate probability to be bounded
for all subsets of My, for the former we only require this for
subsets for which the joint distributions of {X;} and {Y;}
are the same. It seems that the partial strong control, al-
though weaker than strong control, can still be practically
very useful. If a treatment leaves a large collection of genes
totally unaffected (and thus their joint distribution is the
same as that under the control), then the min P and max T
procedures will not falsely pick up any of those genes with
a desirably high probability.

7. BIBLIOGRAPHICAL NOTE

The idea of min P and maxT was introduced in Chap-
ter 2 of Westfall and Young (1993) monograph along with
the concepts of a subset pivotality and a partial null set. The
permutation based approximations were discussed by West-
fall and Young in quite a general setting and not necessarily
with gene expressions analysis in mind. The paper of Ge Du-
doit and Speed (2003) gave a more computationally feasible
implementation of the min P procedure for gene expression
data. The recent discussion of the issues related to apply-
ing permutation tests in step-down procedures was given in
Kropf et al. (2004). Some of the points raised herein were
also discussed in Westfall and Wolfinger (1997) and Westfall
and Troendle (2008).

Finally, we also note that some results intended to control
strongly FWER in an asymptotic sense under conditions
weaker than SPP were presented by Pollard and van der
Laan (2004) in the context of single parameter hypothesis.

APPENDIX A
A.1 Step-down max T and min P methods

For completeness and readers’ convenience, we present
here, in our particular context, the Westfall and Young’s
min P and maxT procedures for p-values adjustments in
multiple testing problems (see Westfall and Young 1993,
Chapter 2).

Let p1,...,pn be the raw p-values of the genes based on
test statistics T; which depend only on gene % respectively.
Let t1, to, ..., tn be the realized values of the test statistics
from the data. Let the ordered p-values be p,, < p,, <
-+ < ppy and the ordered values of the statistics be ts, >
ts, > -+ > ts,. Note that the p-values may or may not be
based on resampling. Note also that there may be ties in
the p-values (which can happen with a positive probability,
e.g., when the p-values are discrete or when some genes are
perfectly correlated with each other). In such cases we could
choose any reasonable tie breaking method known in the
literature.

Let J be the total number of (ny + mng)! per-

mutations of the subjects. For each permutation
7 = 1,...,J compute the corresponding p-values p(lj ),
R p%) and the  test statistic values tgj )7
téj), . ,t%). Then let f)fajl) = minlSiSNpl(-j), i)(rjz) =
min;,, pgj), . ,;5{,{) = min#{rlrumfl}pgj), .. ,;B{TJA? =
png); Similarly, let %Ejl) =  maxi<i<n t,Ej), %?2)
maxi£s, tz(-j), - ,Zﬁ{) = MaX;2£{s, . s 1} tl(j), A ,ZEJN) = thA?
Now, denote l; = #{p,, > ;Bi?,l <j<J}hly=#{pr, >

o= #{te, ST 1 <G< T} hy = e, <10 1< <
T} oohy = #H{te, ST, 1< < T}

Finally, for the min P procedure, let the adjusted p-
values be p,, h/J,p,, = max(l2/J,D,,), - Pry
max(Iy/J, ETN—l); and for the max T procedure, let the ad-
justed p-values be p,, = hi/J, b,, = max(ha/J, Dy, ),---,
Psy = max(hy/J, D, _,)- Inorder to control the test FWER
at level a, each adjusted p-value needs to be now compared
with a.

A.2 Proof of Theorem 1

We first note that under the joint interpretation of Hyy,,
the joint distribution of {X;,i € My} is the same as that
of {Yi,i € Mp}. In order to construct our family of dis-
tributions which satisfies SPP, let M’ C M be any sub-
set of M and consider a joint distribution, say Fj;s, of
the sub-vector of (X,Y) consisting only of the components
{Xi,i € M'} and {Y;,i € M'}. We first modify these sub-
vectors into {X;,i € M'} and {Y;,i € M’} by replac-
ing for i € M'\My the corresponding components with
the mutually independent, standard Gaussian variables in-
dependent of each other and of both original sub-vectors.
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We then augment the sub-vector {X;,i € M’} by an in-
dependent vector of mutually independent standard Gaus-
sian components {Z¥,i € M\M'}. Similarly, we augment
the sub-vector {Y;,i € M’} by an independent sub-vector
{Z!,i € M\M'} of mutually independent, unit-variance
Gaussian components with mean one which are addition-
ally independent of {Z7,i € M\M'} as well as {X;,i € M'}
and {Y;,i € M'}. Let Fy be the joint distribution of a
2N-vector obtained from the sub-vectors { X;,i € M’} and
{Y:,i € M'} by the described above replacement and aug-
mentation procedure. With all subsets M’ C M, we consider
a family of distributions given by {Fyy : M’ C M}. Finally,
when My # M, we also add to this family an additional dis-
tribution, namely that of the sub-vectors {X;,i € My} and
{Y;,i € My} augmented to 2N vector by adding to each one
of them a vector of mutually independent standard Gaus-
sian components. As above, these added Gaussian vectors
are taken to be independent of each other as well as of the
original sub-vectors {X;,i € My} and {Y;,i € My}. Note
that this latest distribution corresponds to a complete null
hypothesis.

With our construction, we now have a family of distri-
butions of (X,Y). Note that for each M’ C M there is a
member of the family which has M’ as exactly the set of
genes which are not differentially expressed. Furthermore,
it is not difficult to see that SPP holds for this new family.
This completes the proof.

A.3 Proof of Theorem 2

We focus on the min P procedure. The maxT can be
handled similarly.

Suppose that S = {k1, ko, ..., km} is a joint null set, m >
1 (obviously, when m = 0, there cannot be any type I error).
We want to show that the probability of at least one of the
null genes in S being declared to be significant is no greater
than a, i.e., that

Pr (;72 < « for at least one 7 € S) < a.

Let pi~ be the smallest p-value in py,, ..., pg,, . When there
are ties, we follow the same order asin p,, < pp, < -+ < pry

to break the ties. Then the above requirement is Pr(p,. <
a) < a. Now by the definition of p;,

~(7)
~ = < Dy
Pr (ﬁk* < a) < Pr <M < a)

. ()
. <
< Pr <#{pk < minges py’ } < a) ’

J

where the second inequality holds because by construction
the values pg ) for k € S are included in the minimization

used for obtaining ﬁ{kj*). Notice that for the last probability

above, only the genes in S are involved, and since each test
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statistic 7T; involves only single gene 4, the last expression
depends on the set S only. Now, because the distribution of
X;, 1€ S is the same as that of Y;, 7 € S, conditional on the
values of expression of the genes in S for all the subjects,
due to symmetry, each permutation of the subjects to be as-
sociated with the given values of the expression has exactly
the same probability. Then it follows directly that the con-
ditional probability of the event “pg+ < mingcg p,(j ) for no
more than a fraction of @ x 100% times” is no greater than
«. Since the upper bound « does not depend on the expres-
sion values, obviously, the unconditional probability of the
type I error is also upper bounded by «. This completes the
proof of the theorem.

A.4 R code

The following code was used to conduct the numerical
simulation for Example 1. The output below was obtained
from R software version 2.13.1 (with ‘multtest’ library ver-
sion 2.8.0) running on the Mac Pro with dual quad-core
Intel Xeon processor. The Monte-Carlo error of the simula-
tion (“err bounds” in the output below) was estimated by
computing the corresponding lower and upper bound in the
law of the iterated logarithm for B = 100,000 replicates.
In this particular setting, the difference between the empiri-
cal and the nominal FWER was considered to be within the
simulation margin of error if the lower value in “err bounds”
fell below the nominal FWER = a = 0.1.

require(’multtest’)
B=100000;

n=10;
cl<-c(0,0,1,1,1);

test=function(k=1,classlab=cl) {

sink(’teka’); #re-direct irrelevant output
cnt=0;

for (i in 1:B){

data=cbind (rnorm(k) ,rnorm(k) ,rnorm(n) ,rnorm(n),
rnorm(n)) ;

+ mt.maxT(data,classlab,test=’t.equalvar’,
side=’lower’)->res;
cnt=cnt+ifelse(sum(res[,4]1<.11)>0,1,0);

} #compare to nominal level of 1/10

sink(); #return output to comsole
cat(’emp.FWER=’,cnt/B,’\n’);

a=sqrt (2*(1-cnt/B)*cnt/B) *log(log(B))/sqrt(B);
cat(’err bounds=’,c(cnt/B-a,cnt/B+a),’\n’);

}

>#Dataset One: Marginal t-Stat Equidistribution
> test(k=1);

+ + + + V V V V VYV

+ + + + + + +

emp.FWER= 0.12025
err bounds= 0.1166958 0.1238042
>

>#Dataset Two: Joint t-Stat Equidistribution
> test(k=n);



emp.FWER= 0.09926
err bounds= 0.09599255 0.1025274
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