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A note on robust kernel inverse regression
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As a useful tool for sufficient dimension reduction, kernel
inverse regression (KIR) can effectively relieve the curse of
dimensionality by finding linear combinations of the predic-
tor that contain all the relevant information for regression.
However, KIR is sensitive to outliers, and will fail when the
predictor distribution is heavy-tailed. In this paper, we dis-
cuss robust variations of KIR that do not have such limita-
tions. The effectiveness of our proposed methods is demon-
strated via simulation studies and an application to the au-
tomobile price data.
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1. INTRODUCTION

High-dimensional data are becoming more and more
prevalent nowadays due to the development of science and
technology. How to reduce the dimensionality of the data
while keeping the relevant information poses challenges for
statisticians. Let X be a p-dimensional predictor and Y be
a 1-dimensional response. [16] considered Y = g(βTX, ε),
where g(·) is an unknown link function, β ∈ R

p×d con-
tains information about the relevant predictors, and ε is the
random error independent of X. Many useful semiparamet-
ric models fall within this framework, such as single/multi-
index models, logistic regression, general additive models,
Cox’s proportional hazard model, etc. An important feature
of this model is that Y is independent of X conditioning on
βTX. To find β with the smallest column space such that
Y X|βTX, [1] introduced the notion of sufficient dimen-
sion reduction (SDR). This smallest column space is called
the central space, and denoted as SY |X . The dimension of
SY |X is called the structural dimension.

Without loss of generality, assume E(X) = 0 and
Var(X) = Ip. Denote β as the basis of SY |X . In the seminar
paper of sliced inverse regression (SIR; [16]), it was shown
that the conditional mean of the inverse regression belongs
to the central space, or E(X|Y ) ∈ SY |X . Thus we can ef-
fectively reduce the predictor dimensionality without know-
ing the form of the link function g(·). Instead, the so-called
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linear conditional mean (LCM) assumption is imposed on
thepredictor distribution, which requires E(X|βTX) to be
a linear function of βTX. When X is elliptically-distributed,
the LCM assumption is satisfied [8]. Without knowing true
β in practice, [3] suggested transformation or reweighting
of the predictor such that the predictor becomes approxi-
mately elliptical. For non-elliptically distributed predictor
X, please refer to [14, 7].

We will focus on elliptically-distributed predictor in this
paper. The density function of an elliptically contoured pre-
dictor X ∈ R

p has the form of

(1) f(X) = |Γ|−1/2�
(
‖X − μ‖2Γ

)

for some function �(·), where ‖X−μ‖2Γ = (X−μ)TΓ−1(X−
μ), μ ∈ R

p, and Γ ∈ R
p×p is positive definite. For the stan-

dardized predictor Z = Γ−1/2(X−μ), it has density �(‖Z‖2)
with ‖Z‖2 = ZTZ, which only depends on the length of Z.
Because Y Z|ηTZ and Y X|(Γ−1/2η)TX imply each
other, we may first find the Z-scaled central space SY |Z and

then transform it back to theX-scale by SY |X = Γ−1/2SY |Z .
Kernel inverse regression (KIR; [26]) suggests using ker-

nel method to estimate the central space. It is an alternative
to the popular method SIR, which estimates the inverse re-
gression mean by slicing the response Y . [10] have shown
that a single outlier can seriously distort the estimation of
SIR. [21] demonstrated that SIR will fail when the distri-
bution of X is elliptical with heavy tails. We suspect KIR
will inherit these limitations. Our motivation is to propose
robust procedures that perform as well as the classical KIR
when the predictor X is multivariate normal, and keep up
the good performances when X is contaminated by outliers
or has distributions with heavy tails.

Three algorithms for robust KIR are proposed in this
paper. One naive proposal is to use robust estimates of μ
and Γ to standardize the predictor, and then implement ro-
bust PCA instead of PCA in the classical KIR algorithm.
In our second proposal, by noticing that KIR essentially
implements the local inverse mean, we suggest using the no-
tion of multivariate local inverse median. Our third proposal
suggests downweighting the effect of potential outliers. It is
shown that while the improvement of the naive proposal
over the classical KIR is limited, robust KIR can be effec-
tively facilitated by either using a local inverse median or
downweighing the outliers.

Through a newly defined sample influence function, we
can detect influential points for the classical KIR estimation.
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Our one-step robust procedure is demonstrated to work as
well as a two-step procedure, where we first detect and delete
the influential points, and then perform classical KIR in
the second step. Determination of the structural dimension
d may also be distorted in the presence of outliers. One
contribution is that our robust estimator of the the central
space SY |X naturally leads to better estimation accuracy of
the structural dimension.

The rest of the paper is organized as follows. In Section 2,
we review the algorithm of KIR and propose three robust
variations. Simulation studies and real data analysis are car-
ried out in Sections 3 and 4 respectively. We conclude the
paper with some discussions in Section 5.

2. KERNEL INVERSE REGRESSION AND
ITS ROBUST VARIATIONS

We first briefly review the idea of kernel inverse regres-
sion. Given an i.i.d. sample (X1, Y1), . . . , (Xn, Yn), the lo-
cation parameter μ and the dispersion parameter Γ in (1)
can be estimated by μ̂ =

∑n
i=1 Xi/n and Γ̂ =

∑n
i=1(Xi −

μ̂)(Xi − μ̂)T /n respectively. Denote Ẑi = Γ̂−1/2(Xi − μ̂).
For kernel function K(·) and bandwidth h, [26] proposed to
estimate E(Z|Yj) by

Êj =

n∑

i=1

Ẑiwij , where wij =
K[(Yi − Yj)h

−1]∑n
i=1 K[(Yi − Yj)h−1]

.

(2)

These local inverse mean estimates are stacked together to
get Ê = {Ê1, . . . , Ên}. The eigenvectors corresponding to
the largest eigenvalues of Mn = ÊÊT /n are then used to
estimate the central space SY |Z . Please refer to [26] for the√
n-consistency of Mn. The estimate of E(Z|Yj) in (2) is a

weighted average, and the observations with Y values closer
to Yj have larger weights. The estimate in (2) is also the
solution to the following optimization problem:

Êj = argmin
m∈Rp

n∑

i=1

‖Ẑi −m‖2wij ,(3)

where ‖Ẑi −m‖2 = (Ẑi −m)T (Ẑi −m).

2.1 A naive algorithm for robust kernel
inverse regression

[10] studied the influence function of SIR and suggested
that SIR may be seriously affected by a single outlier. KIR
has the same limitation for the following reasons. First of all,
using sample mean and sample variance to estimate μ and Γ
is problematic with potential outliers. This can be addressed
by using robust estimators of the location and dispersion pa-
rameters instead. A less obvious reason is that when Yj has
a large distance from all the other responses, the weights wij

are very small for i �= j and will be dominated by wjj . This

means E(Z|Yj) is essentially estimated by Ẑj , which may be
very large as Xj is a potential outlier. Thus the jth column

of Ê may be unduly large, and will distort the eigenvalue
decomposition of Mn = ÊÊT /n. To address this concern,
we can use a robust version of PCA. The discussions above
suggest the following naive robust KIR algorithm.

1. Find robust estimators μ̂ and Γ̂ of the location and
dispersion parameters in (1).

2. For i = 1, . . . , n, calculate Ẑi = Γ̂−1/2(Xi − μ̂).
3. For j = 1, . . . , n, calculate Êj =

∑n
i=1 Ẑiwij with wij

defined in (2).
4. Estimate E = {E(Z|Y1), . . . , E(Z|Yn)} by Ê =

{Ê1, . . . , Ên}. Use robust PCA to calculate the eigen-
vectors η̂1, . . . , η̂d of Mn = ÊÊT /n, which correspond
to the d largest eigenvalues of Mn.

5. Transform back to the X-scale central space
and estimate SY |X with the column space of

{Γ̂−1/2η̂1, . . . , Γ̂
−1/2η̂d}.

Many robust covariance estimators exist in the literature,
among which the minimum covariance determinant estima-
tor is one of the most popular. Please refer to [17] for a
nice summary. For our purpose in step 1 above, we use the
covMcd function from R package “robustbase”. The imple-
mentation of covMcd uses the Fast MCD algorithm and the
details can be found in [19]. For robust PCA in step 4, we
use the PCAgrid function in R package “pcaPP”, which
computes robust principal components via projection pur-
suit [6, 11].

In step 4 above, we assume the structural dimension d of
SY |X is known a priori. We will discuss how to estimate d
in the numerical studies in Section 3. The estimator from
the above algorithm will be referred to as KIR-R1.

2.2 A modified algorithm via local inverse
median

In steps 1 and 4 of the algorithm in Section 2.1, we re-
place the original KIR algorithm with corresponding robust
procedures. In step 3, however, the inverse mean E(Z|Y ) is
still estimated by classical kernel method without adjusting
for the effect of potential outliers. A natural idea here is
to replace the inverse mean estimate with a robust location
parameter estimate, such as the inverse median.

[9] proposed a robust version of the SIR algorithm, where
they suggest replacing the intra slice mean with intra slice
L1 median. Given Ẑ1, . . . , Ẑn ∈ R

p, the L1 median [22] is
defined as

argmin
m∈Rp

n∑

i=1

‖Ẑi −m‖.

It is obvious that if we replace the norm ‖ · ‖ in the above
definition by the squared norm ‖·‖2, the corresponding min-
imizer will be the sample mean of Ẑi. This leads us to con-
sider replacing step 3 of the algorithm in Section 2.1 by
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3′. For wij defined in (2), j = 1, · · · , n, calculate

Êj = argmin
m∈Rp

n∑

i=1

‖Ẑi −m‖wij .(4)

If we replace the norm with the squared norm in (4), we
will get (3) as described in Section 2.1. Instead of using the
local inverse mean, we now use the local inverse median as
the estimate of E(Z|Yj). As there is no explicit solution
for (4), we use optim function in R to implement numeri-
cal minimization. We denote this second robust variation as
KIR-R2.

Robust estimation of the location and scatter parameters
in the multivariate case has been well-studied in the litera-
ture. For example, one can refer to [12]. Our estimator in (4)
is different from the classical multivariate L1 median, and
can be viewed as a localized L1 median. While L1 median is
the point that minimizes the sum of the Euclidean distances
to all points in the data set, (4) is minimizing a weighted
sum, and data points with Y coordinates closer to Yj have
larger weights. When p = 1, our proposal (4) becomes a
univariate local median regression, which is a special case of
local quantile regression studied in [23].

2.3 A modified algorithm by downweighting
potential outliers

[21] pointed out that when predictor X has elliptically-
contoured distribution in (1), the inverse mean may not al-
ways exist. Contour projection was suggested in [21], where
sliced inverse regression was implemented based on the
weighted predictor. A similar idea of downweighting poten-
tial outliers was also considered under the setting of canoni-
cal correlations in [25]. Following these ideas, we modify (2)
in Section 2.1 and define weights w∗

ij

w∗
ij =

‖Ẑi‖−1K[(Yi − Yj)h
−1]

∑n
i=1 ‖Ẑi‖−1K[(Yi − Yj)h−1]

.(5)

Step 3 of the algorithm in Section 2.1 is modified to be

3′′. For j = 1, . . . , n, calculate Êj =
∑n

i=1 Ẑiw
∗
ij with w∗

ij

defined in (5).

This modified algorithm will take into account the length of
the standardized predictor, and observations further away
from the center of the data cloud are given less weights. Our
proposed weight is different from contour projection, which
would perform classical KIR based on Ẑi/‖Ẑi‖. The result-
ing estimator from this modified algorithm will be denoted
as KIR-R3.

3. SIMULATION STUDIES

Consider the following models:

Model I : Y =
X1

0.5 + (1.5 +X2)2
+ .2ε,

Model II : Y = (X1 + 0.5)3 +X2 + .1ε,

where ε is standard normal independent of X. The central
space for both models is then spanned by {e1, e2}, where
ei ∈ R

p is a vector with ith component 1, and 0 otherwise.
Let X = (X1, . . . , Xp)

T = W/
√
χ2
ν/ν. Here W ∈ R

p is stan-
dard multivariate normal, χ2

ν is a chi-squared distribution
with ν degrees of freedom, andW is independent of χ2

ν . Thus
X follows a multivariate t distribution [13], which belongs
to the elliptically-contoured distribution family in (1). We
consider four scenarios for the distribution of X: (i) ν = ∞,
or X is multivariate normal; (ii) ν = 3, or the predictor has
a heavy tail with finite first moment; (iii) ν = 1, or the pre-
dictor is multivariate Cauchy with no finite moments; (iv)
ν = ∞ with a single outlier, where we artificially distort
the first observation in a multivariate normal sample and
multiply it by 100.

Let β be the orthogonal basis of SY |X and Pβ =
β(βTβ)−1βT be the orthogonal projection onto the column

space of β. Denote β̂ as an orthogonal estimate and Pβ̂

as its corresponding projection matrix. We follow [15] and
measure the accuracy of the central space estimators by
Δ = ‖Pβ − Pβ̂‖2. Smaller Δ implies a better estimator. To
compare the performance of classical KIR with the robust
proposals in Section 2, we summarize the results in Table
1 based on 100 repetitions. Fix p = 4 and consider sam-
ple sizes n = 50, 100, 200. Kernel method is not sensitive
to the choice of density function K(·) but may be sensi-
tive to the window width. We use Gaussian kernel and set
h = .1, .5, 1, 2. Within each repetition, we choose the window
width that corresponds to the smallest Δ for each method.

We make the following observations from Table 1. When
X is multivariate normal in case (i), all three robust propos-
als have similar performances with classical KIR in Model
I, and are slightly worse than KIR in Model II. In case (ii)
when X is multivariate t with 3 degrees of freedom, all three
robust methods improve over KIR. Such improvement be-
comes even more significant when X is Cauchy in case (iii).
In case (iv), X is multivariate normal with a single outlier.
KIR will fail, while the robust methods perform similarly to
case (i) when X is normal with no outliers. Furthermore, in
cases (i) and (ii), all four methods improve with increasing
sample size. In cases (iii) and (iv), three robust procedures
will keep improving as sample size increases. However, clas-
sical KIR is no longer consistent, and will not necessarily
become better with larger sample sizes.

Among the three robust procedures, the naive algorithm
in Section 2.1 has limited improvement over the classical
KIR, and the modified algorithm in Section 2.3 based on
downweighting outliers has the most significant overall im-
provement. Because the modified algorithm in Section 2.2
does not have an explicit solution for the minimization prob-
lem (4), numerical minimization is involved to calculate
the local inverse median, which can be instable and time-
consuming. This may explain why KIR-R2 is not as good
as KIR-R3. To make this point clearer, we plot in Figure 1
the averages of Δ = ‖Pβ − Pβ̂‖2 based on 100 repetitions

A note on robust kernel inverse regression 47



Table 1. Averages and standard errors of Δ = ‖Pβ − Pβ̂‖2 based on 100 repetitions

Model X n KIR KIR-R1 KIR-R2 KIR-R3

I

(i)
50 .256(.026) .205(.017) .243(.021) .193(.017)

100 .119(.012) .112(.010) .145(.014) .113(.011)
200 .043(.004) .048(.003) .065(.006) .050(.004)

(ii)
50 .778(.055) .459(.036) .365(.031) .304(.024)

100 .702(.055) .257(.023) .205(.017) .172(.015)
200 .581(.057) .126(.012) .090(.007) .065(.006)

(iii)
50 1.583(.068) 1.311(.057) .706(.046) .550(.041)

100 1.612(.054) 1.148(.065) .372(.029) .293(.021)
200 1.823(.064) 1.188(.065) .196(.021) .144(.012)

(iv)
50 1.062(.057) .904(.059) .289(.024) .215(.016)

100 1.057(.065) .631(.050) .145(.012) .110(.009)
200 .950(.059) .457(.043) .070(.005) .052(.004)

II

(i)
50 .377(.040) .510(.045) .560(.047) .510(.044)

100 .138(.019) .336(.035) .411(.036) .263(.026)
200 .081(.011) .282(.031) .263(.025) .230(.024)

(ii)
50 .671(.057) .810(.054) .755(.051) .597(.051)

100 .590(.057) .541(.043) .457(.038) .355(.035)
200 .518(.051) .312(.029) .219(.023) .185(.023)

(iii)
50 .858(.065) .901(.062) .765(.054) .766(.053)

100 .886(.065) .783(.055) .519(.043) .443(.040)
200 .934(.066) .534(.044) .308(.029) .293(.027)

(iv)
50 .882(.068) .558(.048) .574(.049) .505(.046)

100 .986(.063) .346(.028) .393(.034) .292(.032)
200 1.036(.067) .261(.031) .246(.028) .168(.015)

against window width h = .1, .5, 1, 2. The plots focus on
Model I with n = 200. When X is normal, the robust pro-
cedures are comparable with KIR for h values other than
h = .1. When X is contaminated by outliers or has distri-
butions with heavy tails, the overall performances seem to
be ordered from worst to best as: KIR, KIR-R1, KIR-R2,
and KIR-R3.

Many methods exist in the SDR literature to determine
the structural dimension d. Recall that we recover SY |Z by

the column space of Ê = {Ê1, . . . , Ên}. Thus estimating d
is equivalent to estimate the number of nonzero eigenvalues
of Mn = ÊÊT /n. Denote λ̂1 ≥ · · · ≥ λ̂p as the eigenvalues
of Mn. A sequential test can be carried out as follows. For
working structural dimension �, test H0 : d = � versus Ha :
d > � for � = 0, 1, . . . , p− 1. Reject H0 in favor of Ha if test
statistic Λ̂� =

∑p
i=�+1 λ̂i is larger than a certain threshold.

The structural dimension is then estimated by d̂ = � for the
first � such thatH0 is not rejected. The threshold used in [16]
relies on the asymptotic distribution of Λ̂�, which depends
on the normality of X and is not directly applicable in our
case. We use a permutation test instead, which is free of the
distribution of X. Please refer to [5] for details. For the ease
of presentation, we focus on Model I with n = 200, and only
compare classical KIR with KIR-R3.

The results of the permutation test based on 100 repe-
titions are summarized in Table 2. The proportions of cor-
rectly identifying d = 2 are highlighted in boldface. When

X is multivariate normal in case (i), permutation test for
KIR works well for all h. Permutation test for robust KIR
works well except when h = .1. This agrees with what we
observed from the first panel of Figure 1. When X has heavy
tails in cases (ii) and (iii), or when X is contaminated by a
single outlier in case (iv), permutation test for robust KIR
does reasonably well for determining d with h = 1 or h = 2,
and yields much better results than permutation test for
classical KIR.

4. EMPIRICAL STUDIES

In this section, we analyze the 2004 automobile price
data set, which can be downloaded from the Journal
of Statistics Education data archive (www.amstat.org/
publications/jse/jse data archive.htm). Due to the fact
that KIR-R3 enjoys the best overall performance among all
the robust proposals in the simulation studies, we will fo-
cus on comparisons between the classical KIR and KIR-R3.
Originally, there are 428 cases, 16 predictor variables and
there are some missing values. After removing the categori-
cal variables and missing values from the original data, the
remaining data contains n = 387 observations and p = 8
continuous predictors: Engine Size, Horsepower, City mpg,
Highway mpg, Weight, Wheel Base, Length and Width. We
standardize each predictor using its mean and standard de-
viation. The scatterplot matrix of the standardized predic-
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Figure 1. Comparison of different h under Model I.

tors does not reveal strong violation of the elliptical distri-
bution assumption.

To study the factors that affect the prices of automobiles,
we take the manufacturer suggested retail price (MSRP) as
the response. First we plot the histogram of the standard-
ized MSRP in Figure 2. We see that the distribution of the
response is highly skewed, suggesting some potential outliers
exist in this data set. Next we use permutation tests to esti-
mate the structural dimension d. For this data set, different
choices of window width lead to consistent results in terms
of estimating d. The permutation test based on KIR implies
d = 3, while the test based on KIR-R3 suggests d = 2. As
we have seen in Table 2, the permutation test based on KIR
may be distorted when there are potential outliers. Thus we
use d = 2 as the working structural dimension.

To estimate the central space, we use h = .25 for KIR
and h = 1.5 for KIR-R3, which are chosen so that the
corresponding estimators have the highest sample corre-

Figure 2. Histogram of standardized MSRP.

lation with the response. These choices agree with pre-
vious findings in Figure 1 that KIR-R3 prefers larger h
values. Denote the estimators from KIR and KIR-R3 as
β̂KIR = (β̂1st

KIR, β̂
2nd
KIR), β̂KIR−R3 = (β̂1st

KIR−R3, β̂
2nd
KIR−R3) re-
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Table 2. Permutation test to estimate the structural dimension of Model I. Proportions based on 100 repetitions are reported

X (i) (ii) (iii) (iv)
method KIR KIR-R3 KIR KIR-R3 KIR KIR-R3 KIR KIR-R3

h=.1

d̂ = 0 0 0 .03 0 .97 .12 .12 0

d̂ = 1 0 .56 .50 .75 .03 .82 .72 .48

d̂ = 2 .92 .40 .28 .24 0 .06 .10 .44

d̂ > 2 .08 .05 .19 .01 0 0 .06 .08

h=.5

d̂ = 0 0 0 .02 .01 .94 .04 0 0

d̂ = 1 0 .03 .28 .16 .06 .59 .28 .02

d̂ = 2 .91 .92 .41 .83 0 .37 .65 .90

d̂ > 2 .09 .05 .29 0 0 0 .07 .08

h=1

d̂ = 0 0 0 .03 .01 .88 .04 0 0

d̂ = 1 0 0 .24 .03 .12 .33 .21 0

d̂ = 2 .94 .98 .45 .94 0 .62 .68 .95

d̂ > 2 .06 .02 .28 .01 0 .01 .11 .05

h=2

d̂ = 0 0 0 .01 .01 .89 .03 0 0

d̂ = 1 0 0 .09 0 .10 .25 .14 0

d̂ = 2 .95 .93 .59 .96 .01 .69 .74 .96

d̂ > 2 .05 .07 .31 .03 0 .03 .12 .04

Table 3. Coefficients estimation of the automobile price data

X Engine Size Horsepower City mpg Highway mpg Weight Wheel Base Length Width

β̂1st
KIR .009 .828 −.077 .288 .403 −.170 −.018 −.183

β̂2nd
KIR .095 .281 .572 −.328 −.393 −.483 .290 .074

β̂1st
KIR−R3 −.198 .588 −.411 .298 .483 .230 −.183 −.196

β̂2nd
KIR−R3 .324 .362 .788 −.099 .234 .093 −.143 −.223

spectively, and we summarize them in Table 3. Each row
of Table 3 provides the coefficients of the predictors, and is
used to create a score. For example, the first KIR score is

XT β̂1st
KIR = .009×Engine Size + .828×Horsepower

− .077×City mpg + .288×Highway mpg + .403×Weight

− .170×Wheel Base− .018×Length− .183×Width.

The dominating factors for the above score is Horsepower
and Weight with positive coefficients. Its sample correlation
with the response is corr(XT β̂1st

KIR, Y ) = .857, which agrees
with the intuition that larger Horsepower and larger Weight
correspond to more expensive cars. In Figure 3, we plot the
price against XT β̂1st

KIR and clearly see an increasing trend.
The plot of the price versus the first KIR-R3 score reveals a
similar trend. Actually, XT β̂1st

KIR and XT β̂1st
KIR−R3 is highly

correlated with sample correlation .891. On the other hand,
the second scores of KIR and KIR-R3 turn out to be some-
what different with corr(XT β̂2nd

KIR, X
T β̂2nd

KIR−R3) = .364.
We use the following scheme to compare the seemingly

different KIR and KIR-R3 estimators. The full data set is
randomly split into two subsets with approximately equal
sample sizes (n1 = 193 and n2 = 194 to be exact). Denote

β̂
(n1)
KIR as the estimator of KIR based on the first subset, and

β̂
(n2)
KIR is based on the second subset. Then we calculate

Figure 3. Sufficient plot of Y v.s. XT β̂1st
KIR.

δKIR =
∥∥∥P

β̂
(n1)

KIR

− P
β̂
(n2)

KIR

∥∥∥
2

,(6)

which measures the difference between the two subset esti-
mators. Ideally, this distance should be small as the two sub-
sets are from the same data source. The difference δKIR−R3

is calculated in a parallel fashion. Based on 100 repetitions,
the average of δKIR is 1.243, and the average of δKIR−R3

improves to .725. The estimator based on KIR-R3 is more
robust, and thus corresponds to smaller differences between
the subsets.
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Figure 4. SIF values versus the top five influential points.

Following the suggestions of an anonymous referee, we
now study the sample influence function of KIR. Recall that
β̂KIR denotes the KIR estimator based on the full data set.
Denote β̂(i),KIR as the KIR estimator based on the data with
the ith observation deleted. We define the sample influence
function of the ith point as follows

SIF (i) =
∥∥∥Pβ̂KIR

− Pβ̂(i),KIR

∥∥∥
2

.(7)

This definition is similar to Cook’s distance in the regression
setting [4], and it measures the effect of deleting a given ob-
servation. Next we use SIF to detect the influential points in
the automobile data set. After ordering the observations by
their SIF values, we plot the SIF for the top five influential
points in Figure 4. The SIF values of the remaining points
are all below .015, and are thus excluded. It is not really
surprising that these particular points turn out to be influ-
ential. Benz CL600, Benz S500 and Porshe 911 GT2 are all
high-end luxury cars. Honda Insight and Toyota Prius are
both electric cars and are extremely fuel efficient. These five
most influential points are also highlighted in Figure 3 for
easy visualization.

We have seen that KIR-R3 is more robust than KIR
in terms of the difference measure (6). To get a better
understanding about how KIR is affected by a few influ-
ential points, we delete the five most influential points,
and recalculate δ∗KIR and δ∗KIR−R3 based on the remaining
n∗ = 382 observations. The boxplots of δKIR, δKIR−R3, δ

∗
KIR

and δ∗KIR−R3 are summarized in Figure 5. With n = 387
complete observations, we see from the left panel that KIR-
R3 is significantly better than KIR. The right panel repre-
sents a common two-step procedure, where we detect and
delete the outliers in the first step, and then carry out
dimension reduction subsequently. This is a viable strat-
egy as KIR greatly improves. We clearly see from Figure 5
that KIR is sensitive to the influential points. On the other
hand, KIR-R3 performs as well as KIR when the outliers
are deleted, and is much better in the presence of potential
outliers.

Figure 5. δ and δ∗ based on 100 repetitions. Left panel: all
complete cases with n = 387. Right panel: n∗ = 382 after

deleting the top five influential points.

5. DISCUSSIONS

In this paper, we discuss robust variations of kernel in-
verse regression for sufficient dimension reduction. Our ro-
bust proposals work as well as classical KIR when the predic-
tor is multivariate normal, and become significantly better
whenX has heavy-tailed distributions or whenX is contam-
inated by outliers. Both local inverse median and weighted
KIR are demonstrated to be effective. Because local inverse
median involves heavy computation and may not be stable
when p is large, we prefer weighted KIR. Our experience in-
dicates that weighted KIR works very well in both the sim-
ulation setting and the empirical studies. Better accuracy
of estimating SY |X can lead to better accuracy of estimat-
ing d. Our robust estimators together with the permutation
test can estimate the structural dimension effectively in the
presence of potential outliers.

[2] suggested that predictor contributions can be tested
without knowing the link function under the SDR frame-
work, extensions of which have been studied in [20, 24].
When X is heavy-tailed or contaminated by outliers, tests
based on classical SDR methods will be likely to fail. De-
velopment of tests based on robust procedures is warranted.
We use sample influence function (7) to detect influential
points in the classical KIR estimation. Population level in-
fluence function as well as break-down point properties of
sliced inverse regression have been studied in [10, 18], and
the corresponding development for kernel inverse regression
is currently under investigation.
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