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A Bayesian analysis of generalized latent curve
mixture models
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Latent curve models for longitudinal data have received
increasing attention in medical, educational, psychological,
and behavioral sciences. In these applied areas of research,
heterogeneous longitudinal data are common. This paper
proposes the use of generalized latent curve models for ana-
lyzing heterogenous longitudinal data. The basic model fea-
tures a mixture of trajectories. It also employs a multinomial
logit model for assessing the influence of fixed covariates and
explanatory latent variables on the class membership proba-
bility within the mixture model. This broad class of models
also handles non-normal data from the exponential family
distributions. A Bayesian approach is implemented for data
analysis. We report a simulation study that proves the sat-
isfactory performance of the proposed approach. Further-
more, we analyzed a real data set extracted from the Na-
tional Longitudinal Survey of Youth to illustrate the prac-
tical value of the proposed model and methodology.
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1. INTRODUCTION

Longitudinal data, which comprise repeated measure-
ments of the same individuals on different periods, arise
frequently in a wide range of fields, such as psychology, edu-
cation, medicine, and public health. Latent curve modeling
(LCM) [3, 23, 24, among others], which applies structural
equation modeling (SEM) concepts and techniques to tra-
ditional growth curve analyses, has received increasing at-
tention as a useful longitudinal technique in the analysis of
change patterns. LCM can incorporate information about
group and individuals. More importantly, LCM can be used
to analyze and explain changes. For example, LCM relates
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growth factors to an individual’s contextual data by extract-
ing latent growth factors from individual trajectories. Based
on the pioneer work of Meredith and Tisak [23, 24], several
scholars demonstrated that LCM is a useful tool for studying
developmental trends from both inter- and intra-individual
perspectives [see, for example, 3, 8, 22, 26, 27, 29, 37, 41,
among others].

Heterogeneity is an important issue in the analysis of
longitudinal data. Statistical inference would be seriously
distorted when a heterogeneous population is analyzed as
homogeneous. Observed heterogeneity can be captured by
fixed-effects models, including multi-group models (e.g., age
groups). However, other types of heterogeneities such as het-
erogeneous trajectory classes cannot be handled by fixed-
effects models because an individual’s membership in a tra-
jectory class is unknown in advance. In statistics, a discrete
or continuous mixing distribution is often used to model
heterogeneity. When a discrete mixing distribution is de-
ployed, the model is often termed a finite mixture model.
In longitudinal studies, the usefulness of mixture models
has been increasingly recognized for identifying meaning-
ful classes of individuals according to their developmental
trends. Recently, Muthén et al. [see, for example, 26, 28,
among others] extended the classical LCM to finite-mixture
LCMs and proposed a growth mixture modeling (GMM) un-
der which a population of interest is regarded as a mixture
of classes, each defined by its distinct developmental tra-
jectory. In their models, probabilities of class membership
can be directly related to covariates through a multinomial
logit model. Hence, the model for membership belonging to
a specific trajectory class is enhanced with the information
derived from the covariates. For instance, if male students
are more likely to belong to a trajectory class of faster learn-
ers in mathematics, then the predictive power of the mixture
model can be improved by including gender as a covariate.

There are two significant methodological challenges for
applying GMMs to real data analysis, especially in the so-
cial and behavioral sciences. First, explanatory variables are
often measured indirectly. Thus, the concept of a latent ex-
planatory variable is useful when multiple indicators are
used to describe a specific construct. Second, in practice,
the makeup of multiple indicators for a specific construct is
almost always multimodal. For example, binary and contin-
uous (including normal and non-normal distributions) data
could be present. Sometimes, ad hoc methods are used to
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create single-mode data. For example, cutoffs are set for con-
tinuous data. However, direct models for mixed-mode data
would greatly increase the flexibility of the analytic tool. To
the best of our knowledge, limited work has been conducted
to fully address these practical issues within the context of
GMMs.

To illustrate the aforementioned statistical challenges, we
used an example from the National Longitudinal Surveys of
Youth (NLSY79) in the U.S. This example was also used to
illustrate our proposed solution. NLSY79 is a nationally rep-
resentative sample of young men and women 14 to 22 years
of age at the time of the first survey in 1979. These individ-
uals were interviewed annually until 1994 and are currently
interviewed on a biennial basis. Their scores for the Peabody
Individual Achievement Tests (PIATs) [10] in mathematics
and other subjects were recorded at each period. The data
analysis was conducted to investigate the longitudinal be-
haviors of the mathematics achievement of young students
from 1990 to 1994 and to identify whether different classes
of developmental trends exist. The effects of some impor-
tant determinants on academic achievement were also de-
termined. Unlike gender, which is directly observed, other
explanatory variables of growth trajectory such as behavior
problems and home environment are indirectly measured us-
ing the five indicators of the Behavior Problem Index (BPI)
[43] and the three indicators of the Home Observation for
Measurement of the Environment (HOME) Inventory [5].
The indicators of these latent constructs do not necessar-
ily belong to a single data type. For example, the latent
explanatory variable “home environment” is described by
binary variables such as “live with mother” and by contin-
uous variables such as “cognitive stimuli score”. Although
this example concerns a social survey, the two challenges–
explanatory latent variables and mixed-mode indicators–
are common in other sciences, including health and busi-
ness/economics.

In this paper, we propose a generalized latent curve mix-
ture model (GLCMM) to analyze heterogeneous longitu-
dinal data. The proposed approach directly addresses the
aforementioned statistical challenges. By building upon ex-
isting work in GMM, our proposed model aims to fill the
following significant gaps in the literature by (1) incorporat-
ing explanatory latent variables for predicting latent growth
factors and probability of class membership, and by (2) in-
cluding a broad class of data types for indicators of the latent
variables through the exponential family distribution (EFD)
framework. We adopted a Bayesian approach, together with
Markov chain Monte Carlo (MCMC) techniques such as
the Gibbs sampler [15], the Metropolis-Hastings (MH) algo-
rithm [17, 25], and the permutation sampling [14], to analyze
GLCMM. A Bayesian model selection criterion, the modi-
fied deviance information criterion (DIC), was utilized for
model selection. The sampling-based Bayesian approach is
proposed for several reasons. First, the different types of la-
tent variables (categorical and continuous) and complicated

data structure make the statistical inference of GLCMM
through the maximum likelihood (ML)-based method dif-
ficult. By contrast, the sampling-based Bayesian approach
is powerful for analyzing complex models and data. Sec-
ond, the ML-based method is likely to encounter multiple
modes in a mixture likelihood, which could lead to uncer-
tainty in inference if all the modes are reached [12]. Our
proposed Bayesian approach employs permutation sampling
to fix the problem of label switching in a mixture likelihood
and to avoid getting trapped in a suboptimal mode. Finally,
the Bayesian approach allows the use of genuine prior infor-
mation and is less dependent on asymptotic theory, thereby
producing more reliable results even with small samples [11,
19, 32, 37, among others].

The remainder of this paper is organized as follows. Sec-
tion 2 describes GLCMM. Section 3 presents a Bayesian
analysis of the proposed model. An MCMC method coupled
with the permutation sampling is proposed to obtain the
Bayesian estimates of the unknown parameters. The modi-
fied DIC is used for model selection. Section 4 shows a simu-
lation study for the evaluation of the empirical performance
of Bayesian estimation and model selection. Section 5 illus-
trates the methodology with a real data set from NLSY79.
Section 6 concludes the paper with a discussion.

2. GENERALIZED LATENT CURVE
MIXTURE MODEL (GLCMM)

2.1 Basic latent curve model

LCMs are popular longitudinal techniques for analyzing
individual differences in changing patterns, which usually
involve random intercepts and slopes, with each pair form-
ing a different trajectory over time. The basic LCM can be
viewed as the following common factor analysis model or
trajectory equation by Bollen and Curran [3]:

(1) yi = Λyηi + εyi, i = 1, . . . , n

where yi = (yi1, yi2, . . . , yi,p1)
T is a p1×1 vector of continu-

ous repeated measures at p1 periods for the i-th individual,
Λy is a p1 × q1 matrix of sequentially known values of the
growth curve records, ηi is a q1×1 latent growth factor, and
εyi is a p1×1 vector of error measurements, which is assumed
to be independent of ηi and distributed as N(0,Ψy) with
a diagonal covariance matrix Ψy. The pattern of Λy can
be interpreted as a representation of a particular aspect of
change in yij across p1 periods. When q1 = 2, Equation (1)
for a linear LCM is expressed in the following matrix form:⎛

⎜⎜⎜⎝
yi1
yi2
...

yi,p1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 t1
1 t2
...

...
1 tp1

⎞
⎟⎟⎟⎠

(
ηi1
ηi2

)
+

⎛
⎜⎜⎜⎝

εyi1
εyi2
...

εyi,p1

⎞
⎟⎟⎟⎠ .
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The first column of Λy is used to define an intercept fac-
tor, which represents the initial status of change in yij . The
second column of Λy represents known times of measure-
ment. The values of tj (j = 1, . . . , p1) reflect the spacing
between measurement periods, and the latent growth fac-
tor ηi contains the random intercept (initial status) ηi1 and
random slope (rate of change) ηi2. The two-factor LCM in
this case is specified so that the intercept factor serves as
the starting point for any growth across time and the slope
factor captures the rate of change in the trajectory over
time. The values of tj (j = 1, . . . , p1) can be specified using
either fixed value restrictions (e.g. 0, 1, . . . , p1 − 1) that rep-
resent a straight-line growth or unspecified value restrictions
(t1 = 0 and t2 = 1 are fixed for model identification, and
the remaining t3, . . . , tp1 are freely estimated) that allow es-
timation of an optimal pattern of change over measurement
periods [24]. However, the method of unspecified value re-
strictions does not produce a straightforward interpretation
of the resulting model parameters; see [3] for more details.
In this article, we only consider the fixed value restrictions
method.

To examine variabilities across individuals, the latent
growth factor ηi is further modeled by

(2) ηi = μ+ δi, i = 1, 2, . . . , n,

where μ is a q1 × 1 vector of the population mean of latent
individual growth factors, δi is a q1 × 1 random vector of
residuals that reflect differences between the mean growth
factors and the individual growth factors, and δi is assumed
to be distributed as N(0,Ψδ) with a diagonal covariance
matrix Ψδ. The diagonal elements ψδj measure the degree
of diversity in individual latent growth factors from their
means.

For instance, in the study of NLSY79 described in Sec-
tion 1 for investigating the longitudinal behavior of math-
ematics achievement of young students, we aim to spec-
ify an LCM to represent changes in math scores. To ob-
tain a rough idea about the trajectory model, we plot-
ted the average PIAT math scores across all individuals at
different periods. Figure 1 shows that a linear trajectory
model is adequate. We denote yij (j = 1, 2, 3) as the PIAT
scores [10] in mathematics in 1990, 1992, and 1994, during
which the measurements were conducted. A linear LCM for
yi = (yi1, yi2, yi3)

T is⎛
⎝yi1
yi2
yi3

⎞
⎠ =

⎛
⎝1 0
1 1
1 2

⎞
⎠(

ηi1
ηi2

)
+

⎛
⎝εyi1
εyi2
εyi3

⎞
⎠ ,(3)

(
ηi1
ηi2

)
=

(
μ1

μ2

)
+

(
δi1
δi2

)
,(4)

where the known times of measurement are set to 0, 1, and
2 to reflect the equal spacing between measurement periods
from 1990 to 1994, and the subject developmental trend of

Figure 1. Trajectory of average PIAT math scores across all
individuals at three measurement periods.

mathematics score is described by a linear trajectory with
the random intercept ηi1 and random slope ηi2.

In some circumstances, a linear LCM may not be flexible
enough to model practical situations. The use of a polyno-
mial would help capture a nonlinear trajectory. For instance,
a quadratic LCM is defined by⎛
⎜⎜⎜⎝

yi1
yi2
...

yi,p1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
1 0 02

1 1 12

...
...

...
1 p1 − 1 (p1 − 1)2

⎞
⎟⎟⎟⎠

⎛
⎝ηi1
ηi2
ηi3

⎞
⎠+

⎛
⎜⎜⎜⎝

εyi1
εyi2
...

εyi,p1

⎞
⎟⎟⎟⎠ ,

⎛
⎝ηi1
ηi2
ηi3

⎞
⎠ =

⎛
⎝μ1

μ2

μ3

⎞
⎠+

⎛
⎝δi1
δi2
δi3

⎞
⎠ ,

where ηi3 is the quadratic component for revealing the cur-
vature presented in individual trajectories. In practice, a
model selection procedure may be conducted to determine
whether the inclusion of additional nonlinear terms leads to
a significant improvement in model fit.

2.2 Generalized latent curve model

In substantive research, the longitudinal patterns of in-
dividuals may be influenced by other observed and latent
explanatory variables. Moreover, the latent growth factors
in ηi may be inter-correlated. To assess these effects and
inter-relationships, Equation (2) in the basic LCM can be
extended to

(5) ηi = μ+Awi +Πηi + ΓF(ξi) + δi,

where μ is a q1×1 vector of intercepts, wi is an r1×1 vector
of fixed covariates that may follow either continuous or dis-
crete distributions, and ξi is a q2 × 1 vector of explanatory
latent variables. F(ξi) = (f1(ξi), . . . , fh(ξi))

T is an h × 1
vector-valued function that contains nonzero differentiable
functions f1, . . . , fh, the forms of which are given and may
need to be tested. Furthermore, A and Γ are q1 × r1 and
q1×h matrices of unknown parameters reflecting the effects
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of wi and F(ξi) on ηi, and Π is a q1 × q1 matrix of un-
known coefficients specifying the inter-relationships among
the latent growth factors in ηi. We assume that the distri-
bution of δi is N(0,Ψδ) with a diagonal covariance matrix
Ψδ and that δi is independent of ξi. Let Π0 = I − Π, in
whichΠ0 is assumed to be non-singular and |Π0| is assumed
to be independent of the elements of Π. Li and Wang [21]
reported that the violation of this assumption would cause
a nonstandard and complex full conditional distribution of
Π, thereby requiring a tedious step for drawing observations
from p(Π|·) in the MCMC algorithm. In this article, we as-
sume that |Π0| is a constant independent of Π for the sake
of simple computation. This assumption can be relaxed with
a modification of the posterior sampling [21].

In the NLSY79 study, how “behavior problems” influence
the developmental trend of PIAT mathematics score is of
particular interest. However, “behavior problems, ξi” is a
latent variable because it is measured by the multiple items
of BPI [43]. A model incorporating the effects of ξi on the
latent growth factors is(

ηi1
ηi2

)
=

(
μ1

μ2

)
+

(
γ1
γ2

)
ξi +

(
δi1
δi2

)
,(6)

which is a special case of Equation (5) with A = 0, Π =
0, and F(ξi) = ξi. The regression coefficients γ1 and γ2
represent the effect of behavior problems on the initial status
and rate of change in mathematics score, respectively.

The latent vector ξi in Equation (5) can be measured as
follows:

(7) xi = Λxξi + εxi, i = 1, 2, . . . , n,

where xi is a p2 × 1 vector of observed indicators, Λx is
a p2 × q2 factor loading matrix, and εxi is a p2 × 1 ran-
dom vector of error measurements. Here, εxi is assumed
to be independent of ξi, ηi, εyi, and δi, and distributed
as N(0,Ψx) with diagonal Ψx, and ξi is assumed to be
distributed as N(0,Φ). Note that Models (1) and (7) are
confirmatory factor analysis (CFA) models because the pat-
terns of their factor loading matrices can be pre-specified
according to background data.

In the study of NLSY79 data, “behavior problems, ξi” is
measured by the indicators, xi1, xi2, xi3, xi4, and xi5, which
are the BPI [43] subscales for antisocial, anxious, peer con-
flict, headstrong, and hyperactive behaviors, respectively.
Equation (7) is then defined with p2 = 5 and q2 = 1:⎛

⎜⎜⎜⎜⎝
xi1

xi2

xi3

xi4

xi5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1.0
λx21

λx31

λx41

λx51

⎞
⎟⎟⎟⎟⎠ ξi +

⎛
⎜⎜⎜⎜⎝
εxi1
εxi2
εxi3
εxi4
εxi5

⎞
⎟⎟⎟⎟⎠ ,(8)

where 1.0 is fixed to identify the model and to introduce
a scale to the latent variable ξi. Figure 2 depicts the path
diagram of LCM for analyzing the NLSY79 data.

Figure 2. Path diagram of the generalized linear LCM for
analyzing the NLSY79 data.

Although we only cope with the linear effect of ξi on ηi in
Figure 2, Equation (5) is flexible enough to assess the effects
of the observed covariates in wi on ηi, the interrelationships
among the growth factors in ηi, and the nonlinear effect of
ξi on ηi. For example,(

ηi1
ηi2

)
=

(
μ1

μ2

)
+

(
a11 a12
a21 a22

)(
w1

w2

)
+

(
0 0
π21 0

)(
ηi1
ηi2

)

+

(
γ11 γ12 γ13
γ21 γ22 γ23

)⎛
⎝ ξi1

ξi2
ξi1ξi2

⎞
⎠+

(
δi1
δi2

)
,

where π21 reveals the interrelationship between ηi1 and ηi2,
and γ13 and γ23 examines the interaction effects of ξi1 and
ξi2 on ηi1 and ηi2, respectively. The incorporation of non-
linear F(ξi) in Equation (5) is important to provide a gen-
eral model that reflects the true relationships among latent
variables. The distribution of yi is non-normal because of
the nonlinearity of F(ξi). Hence, the conventional computer
packages developed based on the normal assumption of yi

cannot be directly applied to the current analysis.
As mentioned above, in Equation (5), |Π0| = |I − Π| is

independent of the elements of Π. In some circumstances,
this assumption may be violated. For example,(

ηi1
ηi2

)
=

(
μ1

μ2

)
+

(
0 π12

π21 0

)(
ηi1
ηi2

)
+

(
δi1
δi2

)
,

where |Π0| = |I − Π| = 1 − π12π21. The nonconstant |Π0|
causes a nonstandard posterior distribution of p(Π|·). The
MCMC method developed by Li and Wang [21] can be ap-
plied to sampling from p(Π|·).
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The generalized LCMs defined by Equations (1), (5), and
(7) are not identified without imposing appropriate identi-
fication constraints. For instance, an equivalent form of (7)
is xi = Λ∗

xξ
∗
i + εxi, where Λ∗

x = ΛxR, ξ∗i = R−1ξi, and R
is an arbitrary nonsingular matrix. One common method of
solving this problem is to fix appropriate elements in Λx at
fixed known values so that the only possible choice of R is
the identity matrix [2, 18, 33]. In Equation (8), for example,
we fix λx11 at 1.0 for the purpose of identification. Similarly,
appropriate elements in Λy, Π, and/or Γ may also be fixed
at known values if necessary.

CFA models (1) and (7) can be synthesized into a unique
model framework. Assuming that ui = (yT

i ,x
T
i )

T , Λ =(
Λy 0

0 Λx

)
, ωi = (ηT

i , ξ
T
i )

T , and εui = (εTyi, ε
T
xi)

T , then (1)

and (7) can be combined as

(9) ui = Λωi + εui, i = 1, 2, . . . , n,

where ui (p × 1) consists of p1 repeated measurements in
(1) and p2 multiple indicators in (7), ωi (q × 1) consists
of q1 latent growth factors in ηi and q2 explanatory latent
variables in ξi, where p = p1 + p2, and q = q1 + q2. With
this synthesis, the generalized LCM can be simply defined
by Equations (5) and (9).

2.3 Generalized latent curve mixture model

To accommodate possible heterogeneity in longitudinal
data, we further introduce a latent allocation variable to the
model described in Section 2.2. The model consists of two
parts. The first part (the upper panel of Figure 3) defines a
mixture model with latent trajectory classes, in which the
probability of an individual belonging to a trajectory class
is predicted by explanatory latent variables in ζ and ob-
served covariates in b through a multinomial logit model.
The second part (the lower panel of Figure 3) is a within-
class LCM that examines how explanatory latent variables
in ξ and observed covariates in w affect latent growth fac-
tors in η within a trajectory class. Each part is presented in
the following sections.

2.3.1 Mixture modeling for latent trajectory classes

Suppose that K different trajectory classes are present in
a random sample of size n, where K is the number of tra-
jectory classes and is usually determined based on a model
selection procedure. A mixture model for ui is defined as
follows:

(10) p(ui) =

K∑
k=1

πikpk(ui|θk), i = 1, 2, . . . , n,

where πik is the probability of the ith individual in the kth
class such that

∑K
k=1 πik = 1.0, and pk(·|·) is the density

function of ui with parameter vector θk. The probability
πik can be further modeled by the multinomial logit model:

Figure 3. Structure of GLCMM.

πik = p(ci = k|bi, ζi)(11)

=
exp

(
ϕk0 +ϕ

(1)T

k bi +ϕ
(2)T

k ζi

)
∑K

l=1 exp
(
ϕl0 +ϕ

(1)T

l bi +ϕ
(2)T

l ζi

) ,
where ci is a latent allocation variable, bi is an r2×1 vector
of fixed covariates, ζi is a q3×1 vector of explanatory latent

variables, and ϕk0, ϕ
(1)
k = (ϕk1, ϕk2, . . . , ϕk,r2)

T , and ϕ
(2)
k =

(ϕk,r2+1, ϕk,r2+2, . . . , ϕk,r2+q3)
T are class-specific unknown

parameters. To identify (11), ϕK0, ϕK1, . . . , ϕK,r2+q3 are
fixed at 0.0. The explanatory latent vector ζi in (11) is mea-
sured by multiple indicators:

(12) vi = Λvζi + εvi, i = 1, 2, . . . , n,

where vi is a p3×1 vector of observed indicators,Λv is a p3×
q3 factor loading matrix, and εvi is a p3×1 vector of random
errors with distribution N(0,Ψv), where Ψv is diagonal. In
the study of the NSLY79 data, p3 = 3 and q3 = 1. The
observed indicators are household variable, home cognitive
stimulation score, and emotional support score, which are
used to measure the latent variable “home environment”.
We assume that ζi is independent of εvi and distributed
as N(0,Φv), where Φv is an unknown covariance matrix.
Model (12) can be identified by fixing appropriate elements
in Λv at known values.
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Compared with the conventional multinomial logit
model, Model (11) involves fixed covariates and latent vari-
ables as predictors. The main goal of this extension is to
provide a more flexible model for better prediction of the
unknown probability of class membership. In Equations (5)
and (11), and (7) and (12), common variables between wi

and bi, vi and xi, and ξi and ζi may exist, respectively.
In the study of the NLSY79 data, “home environment”

and “gender” are of interest in predicting the probability of
class membership. Model (11) with p3 = 3 and q3 = r2 = 1
can be written as
(13)

πik = p(ci = k|bi, ζi) =
exp (ϕk0 + ϕk1bi + ϕk2ζi)∑K
l=1 exp (ϕl0 + ϕl1bi + ϕl2ζi)

,

where bi indicates the observed covariate “gender”, and ζi
indicates the latent variable “home environment”, which is
measured by the indicators of household variable, home cog-
nitive stimulation score, and emotional support score via
Equation (12).

2.3.2 Within-class generalized latent curve model

In Section 2.3.1, we defined a mixture model, in which ui

is assumed to come from K latent trajectory classes. In this
section, we further define the within-class model. Given that
ci = k, k = 1, . . . ,K, the within-class generalized LCM can
be defined as:

ui = Λkωi + εui, i = 1, 2, . . . , n,(14)

ηi = μk +Akwi +Πkηi + ΓkF(ξi) + δi,(15)

where all the components are defined in a similar manner as
those in Equations (5) and (9) except that the unknown pa-
rameters are class-specific. The models defined in Equations
(14) and (15) allow for heterogeneity both in the patterns of
trajectories and in the effects of explanatory latent and ob-
served variables on the latent growth factors. These models
are characterized by a form of invariance [42], that is, the
fixed parameters are fixed at the same locations in different
trajectory classes. For instance, in Equation (8), we fix the
element λx11 at 1.0 to identify the model in each trajectory
class.

2.3.3 Generalization from normal distribution to EFD

Model (14) is defined under the assumption that the con-
ditional distributions of observed variables in ui, given la-
tent variables, are normal. To handle non-normal data, we
generalized the conditional distribution of ui from normal
to EFD. This family includes discrete distributions such as
binomial and Poisson; it also includes continuous distribu-
tions such as normal and gamma.

We assume that the distribution of uij , j = 1, . . . , p con-
ditional on the kth class and ωi, is independent and comes
from the EFD with canonical parameter ϑkij [1, 31, 33]:

pkj(uij |ci = k,ωi)(16)

= exp {[uijϑkij − bj(ϑkij)] /ψεkj + cj(uij , ψεkj)} ,

where bj(·) and cj(·) are differentiable functions with the
dots denoting the derivatives, the forms of which depend
on the distributions of the response variables, E(uij |ci =

k,ωi) = ḃj(ϑkij), and V ar(uij |ci = k,ωi) = ψεkj b̈j(ϑkij).
Let ϑki = (ϑki1, . . . , ϑkip)

T , where ϑkij = gj(E(uij |ci =
k,ωi)), and gj(·) are link functions. Under the EFD frame-
work, The expectation of Equation (14) can be rewritten
as

(17) ϑki = Λkωi.

Similarly, the distribution of vi in Equation (12) can
also be generalized from normal to EFD. Let ϑvi =
(ϑvi1, . . . , ϑvip3)

T , where ϑvij = hj(E(vij |ζi)), and hj(·) are
link functions. Under the EFD framework, the expectation
of Equation (12) can be rewritten as

(18) ϑvi = Λvζi.

For instance, in the study of the NLSY79 data, the indi-
cators {vi1, vi2, vi3} for measuring the latent variable “home
environment, ζi” are discrete and continuous, in which vi1 is
a binary variable coded with {0, 1} representing “in house-
hold with father and other relatives” and “in household with
mother,” respectively, whereas vi2, home cognitive stimula-
tion score, and vi3, emotional support score, are continuous
and assumed to be normally distributed. Under the EFD
framework, the corresponding CFA model can be written as⎛

⎝ϑv1

ϑv2

ϑv3

⎞
⎠ =

⎛
⎝ 1.0
λv,21

λv,31

⎞
⎠ ζi,(19)

where ϑvj = hj(E(vij |ζi)), in which the link function h1 is
a logit link, and h2 and h3 are the identity links. The value
of 1.0 is fixed to identify the model and to introduce a scale
to the latent variable ζi.

In summary, the GLCMM proposed in this section in-
tegrates the following features: (i) continuous latent vari-
ables, including latent growth factors and explanatory la-
tent variables that may influence both latent growth curve
and latent class membership; (ii) a latent allocation variable
that accounts for latent trajectory classes; (iii) fixed and la-
tent effects in LCM and in the multinomial logit model;
and (iv) discrete and continuous data from EFD. Hence,
the proposed model is rather general and useful for reveal-
ing possible latent classes and class-specific change patterns
in the analysis of heterogeneous longitudinal data.

3. BAYESIAN ANALYSIS OF GLCMM

3.1 Bayesian estimation with MCMC
methods

3.1.1 Prior distributions

In a full Bayesian analysis, the unknown parameters are
treated as random. An important issue is to specify prior
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distributions for unknown parameters. Diebolt and Roberts
[9] and Roeder and Wasserman [30] pointed out that using
fully non-informative prior distributions in a mixture model
may lead to improper posterior distributions. Hence, follow-
ing the common practice in Bayesian mixture modeling [see,
for example, 18, 30, 33], we utilize the conjugate type prior
distributions in this analysis.

Let ΛT
km denote the m-th row of Λk, ψεkm denote the m-

th diagonal element of Ψεk, for m = 1, 2, . . . , p, and Λδk =
(Ak,Πk,Γk); let Λ

T
δkl denote the l-th row of Λδk, ψδkl de-

note the l-th diagonal element of Ψδk, for l = 1, 2, . . . , q1;
ΛT

vl denote the l-th row of Λv, and ψvl denote the l-th di-
agonal element of Ψv, for l = 1, 2, . . . , p3. The following
conjugate prior distributions are specified:

p(Λkm) ∼ N(Λ0εkm, ψεkmH0εkm),

p(ψ−1
εkm) ∼ Gamma(α0εkm, β0εkm),

p(Λδkl) ∼ N(Λ0δkl, ψδklH0δkl),

p(ψ−1
δkl) ∼ Gamma(α0δkl, β0δkl),

p(Λvl) ∼ N(Λ0vl, ψvlH0vl),

p(ψ−1
vl ) ∼ Gamma(α0vl, β0vl),(20)

p(μk) ∼ N(μ0k,Σ0k),

p(Φ−1
k ) ∼ Wishart(R0k, ρ0),

p(ϕk) ∼ N(ϕ0k,Σϕ0k),

p(Φ−1
v ) ∼ Wishart(R0v, ρ0v),

where Λ0εkm, Λ0δkl, Λ0vl, μ0k, ϕ0k, α0εkm, β0εkm, α0δkl,
β0δkl, α0vl, β0vl, ρ0 and ρ0v, and the positive-definite matri-
ces H0εkm, H0δkl, H0vl, Σ0k, Σϕ0k, R0k, and R0v are hy-
perparameters. In practice, values of hyperparameters are
adopted from previous studies or other sources. Given that
assigning conjugate prior distributions for unknown param-
eters usually leads to the same forms of posterior distribu-
tions [11, 13, 18], the resulting posterior distributions for
most of the unknown parameters in our proposed model are
standard, and simulating observations from them is efficient.

3.1.2 Posterior inferences with MCMC sampling

Let U = (u1,u2, . . . ,un) and V = (v1,v2, . . . ,vn) de-
note the observed data matrices, Ω = (ω1,ω2, . . . ,ωn) and

Ω̃ = (ζ1, ζ2, . . . , ζn) denote the matrices of continuous la-
tent variables, and C = (c1, c2, . . . , cn)

T denote the vector
of latent allocation variables. Moreover, let θk denote the
parameter vector that contains all the unknown parameters
in Λk, μk, Ak, Πk, Γk, Φk, Ψεk, Ψδk, Λv, Φv, Ψv, and ϕk,
where ϕk = (ϕk0, ϕk1, . . . , ϕk,r2+q3)

T , for k = 1, 2, . . . ,K.
Denote θ = {θ1,θ2, . . . ,θK}. Considering that the pos-
terior distribution of θ given U and V, p(θ|U,V), is in-
tractable, we performed data augmentation [40] by aug-
menting the observed data Fo = {U,V} with the latent

quantities Fl = {Ω, Ω̃,C} in the posterior analysis. The
Bayesian estimate of θ is obtained based on the observa-
tions drawn from p(θ,Fl|Fo) using MCMC tools such as

the Gibbs sampler and the MH algorithm. The Bayesian
analysis of the proposed model is complex. In particular,
the following issues should be addressed.

(1) Posterior distributions and sampling Given the com-
plexity of the model and data structure, some full condi-
tional distributions involved in the MCMC algorithm are
nontrivial. For instance, the EFD framework, the nonlin-
ear function F(·), and the multinomial logit model lead to
the posterior distributions that one cannot directly sample
from (see details in the Appendix). Simulating observations
from these distributions is a challenging task in implement-
ing the MCMC algorithm. We employed the MH algorithm
together with other MCMC techniques to achieve this pur-
pose. The full conditional distributions of other parameters
in θ are the normal, Gamma, and inverted Wishart distri-
butions. Simulating observations from these distributions is
straightforward.

(2) Label switching and permutation sampler A second is-
sue that needs to be addressed is the label switching problem
in Bayesian mixture modeling. For the proposed GLCMM
with K classes, the likelihood function is invariant with a
permutation of the class labels 1, 2, . . . ,K. So, the uncon-
strained posterior is also invariant to relabeling the states
under a symmetric prior. This condition induces a multi-
modal posterior, and may give rise to misleading results
in Bayesian estimation. Following Lee [18], the permuta-
tion sampler proposed by Frühwirth-Schnatter [14] is used
to solve the label switching problem. The details of permu-
tation sampler can be found in [14] and [18].

To conduct the posterior inference, a sufficiently large
number of random observations were simulated from the
joint posterior distribution p(θ,Fl|Fo) using the Gibbs sam-
pler [15] coupled with the MH algorithm [17, 25]. More
specifically, θ and Fl were simulated from their correspond-
ing full conditional distributions iteratively. Under mild reg-

ularity conditions, the joint distribution of (θ(j),F
(j)
l ) con-

verges at an exponential rate to the desired posterior distri-
bution p(θ,Fl|Fo), after a sufficiently large number of burn-
in iterations [15]. The required number of burn-in iterations
for achieving convergence can be determined by plotting the
simulated sequences of individual parameters. At conver-
gence, parallel sequences generated with different starting
values should mix well. Another method for monitoring con-
vergence is based on the estimated potential scale reduction
(EPSR) values [16], in which convergence is achieved when
the EPSR values are all less than 1.2. Based on a simulated
sample of observations after convergence, the Bayesian esti-
mates of θ can be obtained through the sample mean and
the standard error estimates can be obtained through the
sample covariance matrix.

3.2 Bayesian model selection

For the proposed GLCMM, the number of latent classes,
K, is usually unknown. A model selection procedure is
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needed to determine the most appropriate K. In this ar-
ticle, we adopted a modified DIC [38] for the model selec-
tion. DIC combines Bayesian measures of fit and model com-
plexity. The model with the smallest DIC value is selected.
However, DIC cannot be directly applied to the selection
of mixture models [18, 39]. Recently, Celeux et al. [6] have
proposed different DIC constructions for mixture models. In
this paper, the most current modification of DIC for mixture
model is used. This modified DIC is defined as follows:

DIC = −4Eθ,Fl
{log p(Fo,Fl|θ)|Fo}(21)

+ 2EFl

{
log p(Fo,Fl|Eθ [θ|Fo,Fl])|Fo

}
,

where log p(Fo,Fl|θ) is the complete data log-likelihood
function. The modified DIC can be approximated by

DIC

(22)

≈ − 4

T

T∑
t=1

log p(Fo,F
(t)
l |θ(t)) +

2

T

T∑
t=1

log p(Fo,F
(t)
l |θ̄(t)

),

where {(θ(t),F
(t)
l ); t = 1, . . . , T} are the simulated samples

from p(θ,Fl|·), and θ̄
(t)

is the sample mean calculated based

on the simulated samples from p(θ|Fo,F
(t)
l ).

4. SIMULATION STUDY

The objective of this simulation study is to examine the
empirical performance of the Bayesian estimation and model
selection for the proposed GLCMM. The data set was gen-
erated from a GLCMM with two trajectory classes (K = 2).
For k = 1, 2, and i = 1, 2, . . . , n, the probability of the ith
individual falling in the kth class was modeled through the
following multinomial logit model with r2 = 1, q3 = 2:

(23) πik =
exp (ϕk0 + ϕk1bi + ϕk2ζi1 + ϕk3ζi2)∑2
l=1 exp (ϕl0 + ϕl1bi + ϕl2ζi1 + ϕl3ζi2)

,

where (ϕ10, ϕ11, ϕ12, ϕ13)
T = (−0.5, 1.0, 0.8, 0.8)T , and

(ϕ20, ϕ21, ϕ22, ϕ23)
T is fixed to (0.0, 0.0, 0.0, 0.0)T for iden-

tifying the model; the fixed covariate bi was generated from
N(1.0, 1.0); and the explanatory latent variables (ζi1, ζi2)
were measured by six observed indicators via the following
CFA model:⎛

⎜⎜⎜⎜⎜⎜⎝

vi1
vi2
vi3
vi4
vi5
vi6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0 0.0
λv,21 0.0
λv,31 0.0
0.0 1.0
0.0 λv,52

0.0 λv,62

⎞
⎟⎟⎟⎟⎟⎟⎠

(
ζi1
ζi2

)
+

⎛
⎜⎜⎜⎜⎜⎜⎝

εvi1
εvi2
εvi3
εvi4
εvi5
εvi6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where 1’s and 0’s are fixed to identify the model,
(ζi1, ζi2)

T ∼ N(0,Φv), and εvij ∼ N(0, ψvj). The true pop-
ulation values of unknown parameters are λv,21 = λv,31 =

λv,52 = λv,62 = 0.8, φv,11 = φv,22 = 1.0, and φv,21 = 0.3,
and ψv1 = · · · = ψv6 = 0.36.

To define the within-class generalized LCM, we let ui =
(ui1, ui2, . . . , ui,14)

T = (yi1, . . . , yi8, xi1, . . . , xi6)
T . For j =

1, . . . , 4, yij were generated from a binomial distribution
B(1, pkij), with pkij = exp(ϑkij)/[1 + exp(ϑkij)], and ϑkij

satisfy the LCM⎛
⎜⎜⎝
ϑki1

ϑki1

ϑki3

ϑki4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1.0 0.0
1.0 1.0
1.0 2.0
1.0 3.0

⎞
⎟⎟⎠

(
ηi1
ηi2

)
.

For j = 5, . . . , 8, yij are continuous, and satisfy the LCM⎛
⎜⎜⎝
yi5
yi6
yi7
yi8

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1.0 0.0
1.0 1.0
1.0 2.0
1.0 3.0

⎞
⎟⎟⎠

(
ηi3
ηi4

)
+

⎛
⎜⎜⎝
εyi5
εyi6
εvi7
εvi8

⎞
⎟⎟⎠ ,

where εyij ∼ N(0, ψykj).
For j = 1, . . . , 6, xij relate to the explanatory latent vari-

ables (ξi1, ξi2) via the CFA model⎛
⎜⎜⎜⎜⎜⎜⎝

xi1

xi2

xi3

xi4

xi5

xi6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0 0.0
λxk,21 0.0
λxk,31 0.0
0.0 1.0
0.0 λxk,52

0.0 λxk,62

⎞
⎟⎟⎟⎟⎟⎟⎠

(
ξi1
ξi2

)
+

⎛
⎜⎜⎜⎜⎜⎜⎝

εxi1
εxi2
εxi3
εxi4
εxi5
εxi6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where 1’s and 0’s are fixed for the purpose of identification,
(ξi1, ξi2)

T ∼ N(0,Φk), and εxij ∼ N(0, ψxkj).
The effects of explanatory latent variables and covariates

on the latent growth factors, ηij , j = 1, . . . , 4 were assessed
through the structural equations with r1 = 1, q2 = 2, and
F(ξi) = (ξi1, ξi2, ξi1ξi2)

T as follows:

ηi1 = μk1 + ak,11wi + γk,11ξi1 + γk,12ξi2 + γk,13ξi1ξi2 + δi1,

ηi2 = μk2 + ak,21wi + γk,21ξi1 + γk,22ξi2 + γk,23ξi1ξi2 + δi2,

ηi3 = μk3 + ak,31wi + γk,31ξi1 + γk,32ξi2 + γk,33ξi1ξi2 + δi3,

ηi4 = μk4 + ak,41wi + γk,41ξi1 + γk,42ξi2 + γk,43ξi1ξi2 + δi4,

where the μ’s, a’s, and γ’s were unknown parameters. The
fixed covariate wi (i = 1, 2, . . . , n) was generated from
N(0.0, 1.0), and δij ∼ N(0, ψδkj).

Figure 4 depicts the path diagram of the within-class gen-
eralized LCM defined above.

In Figure 4, two linear LCMs were considered simultane-
ously. One was defined with latent growth factors {ηi1, ηi2}
and binary repeated measures yi1, . . . , yi4 under the EFD
framework (see Equation (17)). The other was defined with
latent growth factors {ηi3, ηi4} and continuous repeated
measures yi5, . . . , yi8.

The true population values of the unknown parameters
involved in the within-class LCMs are given as follows:
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Figure 4. Path diagram of within-class generalized LCM for simulation study.

At the first class (k = 1), λx1,21 = λx1,31 = λx1,52 =
λx1,62 = 0.8; (μ11, μ12, μ13, μ14)

T = (2.0, 1.0,−2.0,−1.5)T ;
(a1,11, a1,21, a1,31, a1,41)

T = (0.5,−0.5, 0.5,−0.5)T ; γ1,jm =
0.5, for j = 1, . . . , 4, m = 1, . . . , 3; ψy1j = 0.36, for j =
5, . . . , 8; ψx1j = 0.36, for j = 1, . . . , 6; ψδ1l = 0.36, for l =
1, . . . , 4; φ1,11 = φ1,22 = 1.0, and φ1,21 = 0.3.

At the second class (k = 2), λx2,21 = λx2,31 = λx2,52 =
λx2,62 = 0.4; (μ21, μ22, μ23, μ24)

T = (1.0, 1.5, 1.5, 0.5)T ;
(a2,11, a2,21, a1,31, a2,41)

T = (−0.5, 0.5,−0.5, 0.5)T ; γ2,jm =
−0.5, for j = 1, . . . , 4, m = 1, . . . , 3; ψy2j = 0.25, for
j = 5, . . . , 8; ψx2j = 0.25, for j = 1, . . . , 6; ψδ2l = 0.25,
for l = 1, . . . , 4; φ2,11 = φ2,22 = 1.0, and φ2,21 = 0.3.

The total number of unknown parameters in the proposed
model was 99. Given the number of parameters and the ex-
istence of binary data, a relatively large sample size was re-
quired to achieve accurate estimation result [18]. In this sim-
ulation study, sample sizes of n = 800 and n = 1, 600 were
used, and 100 replications were conducted for each sample
size.

To provide a sensitivity analysis of the Bayesian results to
the prior specification, the prior input in (20) was perturbed
as follows:

Type I: All elements in {μ0k,Λ0εkm,Λ0δkl,ϕ0k,Λ0vl}
were taken to be 1.0, α0εkm = α0δkl = 9, β0εkm = β0δkl = 4,
Σ0k, H0εkm, H0δkl, H0vl and Σϕ0k were identity matrices,

Figure 5. Plot of the estimated potential scale reduction
values against the iteration numbers in simulation study.

ρ0 = ρ0v = 5, R−1
0k and R−1

0v were taken as diagonal matrix
with diagonal elements 2.0.

Type II: All elements in {μ0k,Λ0εkm,Λ0δkl,ϕ0k,Λ0vl}
were taken to be 0.0, α0εkm = α0δkl = 10, β0εkm = β0δkl =
3,Σ0k,H0εkm,H0δkl,H0vl andΣϕ0k were diagonal matrices
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Figure 6. Three chains of observations corresponding to λ21, a11, γ11, γ13, μ1, φ11, ψ5 and ψδ1 of Class 1 in simulation study
generated by different initial values.

with diagonal elements 5.0, ρ0 = ρ0v = 8, R−1
0k and R−1

0v

were taken as diagonal matrices with diagonal elements 8.0.
Initially, we ran the random permutation sampler [14]

and found that μ13 < μ23 was an appropriate identifiabil-
ity constraint for the MCMC algorithm. A few test runs
were conducted to provide information about the number of
MCMC iterations required for achieving convergence. For
n = 800, Figure 5 shows that the MCMC algorithm con-
verged in less than 25,000 iterations, in which the EPSR val-
ues were stable below 1.2. Moreover, the plots of sequences
of observations corresponding to the parameters randomly
selected from Class 1 are displayed in Figure 6. Those cor-
responding to other parameters are very similar and are not
presented here. These trace plots show that MCMC chains
with different starting values mix very well. Hence, we col-
lected 10,000 observations after discarding 25,000 burn-in
iterations to obtain the Bayesian results at each replication.
Based on 100 replications, the bias of the estimates (Bias)
and the root mean squares (RMS) between the estimates
and the true values were computed. Tables 1 to 4 report the
results. The findings are summarized as follows: (1) Most of
the Bias and the RMS values are reasonably small. (2) The

estimates of the parameters associated with the binary ob-
served variables are not as accurate as those associated with
the continuous observed variables (i.e., their RMS values are
relatively larger) because binary variables usually provide
less information than continuous variables. (3) Under the
given sample sizes, the Bayesian estimates obtained under
the two different prior inputs have no substantial difference.
(4) As expected, a larger sample size produces better esti-
mates with smaller RMS values.

To access the performance of the modified DIC in de-
termining the number of classes, K, we denote Mk as the
GLCMM with k latent classes, k = 1, 2, 3. Here, M2 is the
true model defined above. For M1 and M3, the model set-
ting and prior specification in each class are similar to those
given in M2. The modified DIC values for M1 to M3 were
calculated from the simulated observations in the MCMC
iterations. Table 5 presents a summary of the modified DIC
values under different model settings and prior inputs. With
n = 800, the true model M2 was selected with the smallest
DIC value in 98 of 100 replications under Prior I and 96 of
100 replications under Prior II. With n = 1, 600, the true
modelM2 is selected with the smallest DIC value under each
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Table 1. Performance of the Bayesian estimates in the simulation study with Type I prior input under sample size n = 800

Class 1 Class 2 Class 1 Class 2

Par True Bias RMS True Bias RMS Par True Bias RMS True Bias RMS

λ21 0.8 0.012 0.044 0.4 0.024 0.044 ψy5 0.36 0.008 0.039 0.25 0.023 0.035
λ31 0.8 0.019 0.049 0.4 0.024 0.044 ψy6 0.36 0.007 0.032 0.25 0.015 0.028
λ52 0.8 0.013 0.049 0.4 0.015 0.048 ψy7 0.36 0.001 0.034 0.25 0.009 0.028
λ62 0.8 0.012 0.045 0.4 0.020 0.045 ψy8 0.36 0.025 0.061 0.25 0.046 0.058
μ1 2.0 −0.005 0.145 1.0 0.068 0.164 ψx1 0.36 0.059 0.093 0.25 0.063 0.078
μ2 1.0 0.033 0.175 1.5 0.233 0.305 ψx2 0.36 0.007 0.030 0.25 0.008 0.022
μ3 −2.0 −0.027 0.059 1.5 0.018 0.050 ψx3 0.36 0.009 0.032 0.25 0.010 0.025
μ4 −1.5 −0.043 0.062 0.5 0.015 0.045 ψx4 0.36 0.055 0.086 0.25 0.049 0.067
a11 0.5 −0.018 0.136 −0.5 −0.041 0.140 ψx5 0.36 0.012 0.031 0.25 0.012 0.023
a21 −0.5 −0.014 0.107 0.5 0.059 0.142 ψx6 0.36 0.006 0.035 0.25 0.008 0.021
a31 0.5 −0.004 0.043 −0.5 0.001 0.048 ψδ1 0.36 0.154 0.207 0.25 0.170 0.178
a41 −0.5 0.002 0.031 0.5 −0.004 0.035 ψδ2 0.36 0.129 0.163 0.25 0.145 0.160
γ11 0.5 0.007 0.161 −0.5 −0.042 0.192 ψδ3 0.36 0.015 0.050 0.25 0.019 0.039
γ12 0.5 −0.002 0.193 −0.5 −0.066 0.182 ψδ4 0.36 0.026 0.048 0.25 0.009 0.028
γ13 0.5 0.147 0.257 −0.5 −0.062 0.200 φ11 1.0 −0.038 0.113 1.0 −0.084 0.129
γ21 0.5 0.013 0.182 −0.5 −0.092 0.223 φ21 0.3 −0.009 0.051 0.3 −0.039 0.073
γ22 0.5 0.011 0.154 −0.5 −0.099 0.208 φ22 1.0 −0.019 0.094 1.0 −0.076 0.134
γ23 0.5 0.101 0.233 −0.5 -0.057 0.192 ϕ0 −0.5 0.016 0.120 0.0∗

γ31 0.5 0.015 0.063 −0.5 −0.011 0.059 ϕ1 1.0 −0.007 0.102 0.0∗

γ32 0.5 −0.007 0.058 −0.5 0.008 0.055 ϕ2 0.8 0.032 0.124 0.0∗

γ33 0.5 0.047 0.083 −0.5 −0.057 0.120 ϕ3 0.8 0.001 0.115 0.0∗

γ41 0.5 0.004 0.060 −0.5 0.000 0.050
γ42 0.5 0.001 0.065 −0.5 −0.004 0.050
γ43 0.5 0.068 0.095 −0.5 −0.047 0.099

Par True Bias RMS Par True Bias RMS

λv,21 0.8 0.005 0.034 ψv1 0.36 0.009 0.037
λv,31 0.8 0.004 0.036 ψv2 0.36 0.002 0.025
λv,52 0.8 0.012 0.035 ψv3 0.36 0.001 0.025
λv,62 0.8 0.003 0.035 ψv4 0.36 0.011 0.033
φv,11 1.0 0.000 0.078 ψv5 0.36 −0.001 0.020
φv,21 0.3 −0.003 0.041 ψv6 0.36 0.003 0.024
φv,22 1.0 −0.001 0.075
Note: The subscript k is suppressed for notational simplicity, and the 0’s with asterisk are fixed for identification purpose.

of the 100 replications and each of the prior inputs. The
above findings demonstrates that DIC is a valid Bayesian
model selection criterion.

5. AN ILLUSTRATIVE EXAMPLE

In this section, we applied the GLCMM to a data set
extracted from the NLSY79 data to illustrate our method-
ology. A subset of the NLSY79 data collected in 1990, 1992,
and 1994 was used in this example. After excluding missing
data, the sample size was n = 1, 674. We consider the con-
tinuous longitudinal variables y1, y2, y3, which represent the
PIAT scores [10] in mathematics in 1990, 1992, and 1994,
respectively. PIAT is one of the most commonly used age-
appropriate assessments of academic achievement, and it is
used as an indication of a child’s cognitive development.
This illustrative example has the following main objectives:
(1) investigate whether the trajectories of PIAT scores in
mathematics contain heterogeneous patterns, (2) examine

how “gender” and “home environment” influence the latent
class membership, and (3) examine how “behavior prob-
lems” influences the developmental trend of PIAT scores
in each trajectory class. A path diagram of the proposed
GLCMM is depicted in Figure 7. The covariate “gender,
b”, with “1” representing female, and an explanatory latent
variable “home environment, ζ” were used to model the class
probability via the multinomial logit model (13). Three ob-
served indicators, “the household variable, v1”, “the score
of home cognitive stimulation, v2”, and “emotional support,
v3”, were used to measure the latent variable “home environ-
ment, ζ” through Model (19). Among these indicators, v1 is
a binary variable coded with {0, 1} representing “in house-
hold with father and other relatives” and “in household with
mother,” respectively, whereas v2 and v3 are continuous vari-
ables. The within-class LCMs are defined by Models (3), (6),
and (8), in which the explanatory latent variable “behavior
problems, ξ” was measured by five BPI subscales for antiso-
cial (x1), anxious (x2), peer conflict (x3), headstrong (x4),
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Table 2. Performance of the Bayesian estimates in the simulation study with Type II prior input under sample size n = 800

Class 1 Class 2 Class 1 Class 2

Par True Bias RMS True Bias RMS Par True Bias RMS True Bias RMS

λ21 0.8 0.011 0.044 0.4 0.017 0.039 ψy5 0.36 0.007 0.035 0.25 0.025 0.036
λ31 0.8 0.018 0.049 0.4 0.018 0.039 ψy6 0.36 0.011 0.032 0.25 0.014 0.027
λ52 0.8 0.010 0.046 0.4 0.010 0.043 ψy7 0.36 0.001 0.037 0.25 0.009 0.028
λ62 0.8 0.010 0.045 0.4 0.019 0.040 ψy8 0.36 0.023 0.059 0.25 0.045 0.054
μ1 2.0 −0.032 0.158 1.0 0.064 0.162 ψx1 0.36 0.065 0.091 0.25 0.048 0.059
μ2 1.0 0.017 0.167 1.5 0.250 0.324 ψx2 0.36 0.008 0.028 0.25 0.007 0.020
μ3 −2.0 −0.024 0.053 1.5 0.009 0.043 ψx3 0.36 0.012 0.035 0.25 0.007 0.024
μ4 −1.5 −0.047 0.062 0.5 0.008 0.044 ψx4 0.36 0.069 0.098 0.25 0.037 0.050
a11 0.5 −0.034 0.135 −0.5 −0.044 0.147 ψx5 0.36 0.013 0.031 0.25 0.011 0.022
a21 −0.5 −0.011 0.097 0.5 0.064 0.138 ψx6 0.36 0.005 0.030 0.25 0.006 0.019
a31 0.5 −0.010 0.043 −0.5 0.001 0.046 ψδ1 0.36 0.176 0.215 0.25 0.175 0.180
a41 −0.5 0.002 0.031 0.5 −0.001 0.036 ψδ2 0.36 0.172 0.210 0.25 0.147 0.162
γ11 0.5 −0.022 0.186 −0.5 −0.051 0.229 ψδ3 0.36 0.020 0.054 0.25 0.022 0.040
γ12 0.5 −0.016 0.203 −0.5 −0.054 0.190 ψδ4 0.36 0.035 0.052 0.25 0.006 0.024
γ13 0.5 0.144 0.231 −0.5 −0.069 0.192 φ11 1.0 −0.027 0.101 1.0 −0.084 0.123
γ21 0.5 −0.014 0.174 −0.5 −0.103 0.253 φ21 0.3 −0.004 0.048 0.3 −0.052 0.081
γ22 0.5 −0.012 0.167 −0.5 −0.107 0.233 φ22 1.0 −0.014 0.091 1.0 −0.079 0.125
γ23 0.5 0.069 0.208 −0.5 −0.018 0.186 ϕ0 −0.5 0.044 0.130 0.0∗

γ31 0.5 0.011 0.062 −0.5 −0.004 0.058 ϕ1 1.0 −0.014 0.099 0.0∗

γ32 0.5 −0.004 0.060 −0.5 0.012 0.053 ϕ2 0.8 0.026 0.119 0.0∗

γ33 0.5 0.050 0.077 −0.5 −0.011 0.077 ϕ3 0.8 0.000 0.105 0.0∗

γ41 0.5 0.000 0.054 −0.5 0.006 0.047
γ42 0.5 0.005 0.069 −0.5 0.000 0.049
γ43 0.5 0.075 0.095 −0.5 −0.010 0.068

Par True Bias RMS Par True Bias RMS

λv,21 0.8 0.004 0.034 ψv1 0.36 0.004 0.034
λv,31 0.8 0.004 0.038 ψv2 0.36 0.003 0.024
λv,52 0.8 0.010 0.035 ψv3 0.36 0.000 0.024
λv,62 0.8 0.004 0.034 ψv4 0.36 0.010 0.033
φv,11 1.0 0.004 0.080 ψv5 0.36 0.000 0.020
φv,21 0.3 −0.002 0.041 ψv6 0.36 0.004 0.025
φv,22 1.0 0.002 0.076
Note: The subscript k is suppressed for notational simplicity, and the 0’s with asterisk are fixed for identification purpose.

and hyperactive behaviors (x5). Higher scores represent a
greater level of behavior problems. The scores used in this
study were normed; thus, they can be treated as continuous.
Given that the values of the continuous variables were quite
large, the longitudinal measurements y1 to y3 were divided
by 10 for readability, and the continuous observed indicators
v2, v3, and x1 to x5 were standardized before analysis. The
proposed GLCMM was used to fit the data set that involves
both continuous and binary data.

The modified DIC was used to determine the number
of trajectory classes, K. Let Mk denote the k-class model,
k = 1, . . . , 5. Given that we had little information about
the model and the parameters, we assigned the vague prior
inputs in (20) as follows: elements in {μ0k, Λ0εkm, Λ0δkl,
ϕ0k, Λ0vl} were fixed at 0.0, α0εkm = α0δkl = 9, β0εkm =
β0δkl = 4, Σ0k, H0εkm, H0δkl, Σϕ0k; H0vl were identity
matrices with appropriate orders, ρ0 = ρ0v = 5, R−1

0k and
R−1

0v were diagonal matrices with the diagonal elements 2.0.
The values of the modified DICs were DICM1 = 51, 883,

DICM2 = 51, 352, DICM3 = 52, 088, DICM4 = 53, 835,
and DICM5 = 55, 406. Therefore, the 2-class model, M2,
was selected.

Based on the random permutation sampler, we found that
μ11 < μ21 is an appropriate identifiability constraint. Fur-
thermore, our pilot study showed that the MCMC algorithm
converged within 20,000 iterations. Figure 8 shows the plot
of the EPSR values against the iteration numbers. After
discarding 20,000 burn-in iterations, we collected additional
20,000 observation to obtain the Bayesian estimates (EST)
of the unknown parameters and their corresponding stan-
dard error estimates (SE). Table 6 summarizes the results.
The main findings are as follows. First, more than one latent
trajectory class exist, each of which has a different trajectory
pattern. On average, the children in Class 1 have low ini-
tial PIAT scores in mathematics but a high rate of change
across time, whereas those in Class 2 present an opposite
pattern–high initial scores but low rate of change. In prac-
tice, there might be more classes of students, for example,
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Table 3. Performance of the Bayesian estimates in the simulation study with Type I prior input under sample size n = 1,600

Class 1 Class 2 Class 1 Class 2

Par True Bias RMS True Bias RMS Par True Bias RMS True Bias RMS

λ21 0.8 0.012 0.037 0.4 0.015 0.031 ψy5 0.36 0.008 0.028 0.25 0.012 0.027
λ31 0.8 0.014 0.033 0.4 0.021 0.035 ψy6 0.36 0.001 0.019 0.25 0.009 0.019
λ52 0.8 0.013 0.032 0.4 0.015 0.030 ψy7 0.36 0.002 0.024 0.25 0.006 0.022
λ62 0.8 0.009 0.030 0.4 0.016 0.030 ψy8 0.36 0.021 0.046 0.25 0.024 0.037
μ1 2.0 0.004 0.131 1.0 0.047 0.118 ψx1 0.36 0.034 0.048 0.25 0.045 0.059
μ2 1.0 0.036 0.154 1.5 0.181 0.231 ψx2 0.36 0.002 0.021 0.25 0.007 0.015
μ3 −2.0 −0.015 0.038 1.5 0.017 0.043 ψx3 0.36 0.007 0.022 0.25 0.003 0.015
μ4 −1.5 −0.020 0.034 0.5 0.012 0.031 ψx4 0.36 0.036 0.053 0.25 0.044 0.058
a11 0.5 −0.003 0.107 −0.5 −0.023 0.105 ψx5 0.36 0.000 0.021 0.25 0.005 0.016
a21 −0.5 −0.015 0.070 0.5 0.041 0.099 ψx6 0.36 0.004 0.020 0.25 0.007 0.016
a31 0.5 −0.004 0.027 −0.5 0.002 0.027 ψδ1 0.36 0.172 0.212 0.25 0.165 0.179
a41 −0.5 0.000 0.027 0.5 −0.005 0.026 ψδ2 0.36 0.119 0.171 0.25 0.125 0.140
γ11 0.5 0.007 0.136 −0.5 −0.038 0.132 ψδ3 0.36 0.006 0.033 0.25 0.013 0.030
γ12 0.5 0.010 0.141 −0.5 −0.045 0.130 ψδ4 0.36 0.015 0.032 0.25 0.009 0.023
γ13 0.5 0.106 0.201 −0.5 −0.005 0.154 φ11 1.0 −0.022 0.078 1.0 −0.062 0.098
γ21 0.5 −0.006 0.121 −0.5 −0.091 0.148 φ21 0.3 −0.008 0.042 0.3 −0.021 0.051
γ22 0.5 −0.001 0.117 −0.5 −0.076 0.162 φ22 1.0 −0.014 0.064 1.0 −0.064 0.103
γ23 0.5 0.042 0.139 −0.5 −0.047 0.155 ϕ0 −0.5 0.015 0.094 0.0∗

γ31 0.5 0.003 0.041 −0.5 −0.004 0.040 ϕ1 1.0 0.003 0.078 0.0∗

γ32 0.5 0.000 0.040 −0.5 −0.003 0.041 ϕ2 0.8 0.010 0.090 0.0∗

γ33 0.5 0.029 0.047 −0.5 −0.061 0.103 ϕ3 0.8 0.002 0.089 0.0∗

γ41 0.5 −0.001 0.039 −0.5 −0.009 0.040
γ42 0.5 −0.002 0.036 −0.5 −0.004 0.044
γ43 0.5 0.029 0.045 −0.5 −0.052 0.083

Par True Bias RMS Par True Bias RMS

λv,21 0.8 −0.003 0.023 ψv1 0.36 0.004 0.026
λv,31 0.8 0.000 0.024 ψv2 0.36 0.006 0.018
λv,52 0.8 0.001 0.023 ψv3 0.36 0.001 0.020
λv,62 0.8 −0.001 0.025 ψv4 0.36 0.004 0.023
φv,11 1.0 0.010 0.049 ψv5 0.36 0.004 0.020
φv,21 0.3 0.005 0.027 ψv6 0.36 0.003 0.016
φv,22 1.0 0.002 0.052
Note: The subscript k is suppressed for notational simplicity, and the 0’s with asterisk are fixed for identification purpose.

students with low (high) initial PIAT scores in mathematics
also have low (high) rates of change across time. However,
we did not identify such classes of students in the NLSY
data. Second, the influence of “behavior problems” on the
latent growth factors is significant in Class 2 but not in
Class 1. Third, in the multinomial logit model, ϕ1 and ϕ2

are significantly positive, indicating that girls and children
with a better “home environment” are more likely to belong
to Class 1. Finally, some of the other parameters, includ-
ing λ’s, ψε’s, φ’s, and ψδ’s, vary substantially across classes.
This finding confirms the existence of heterogeneity within
the NLSY data.

Using a single PC with an Intel Core i3 CPU 550@3.20
GHz and 4.00 GB RAM, the computing time for obtaining
the Bayesian estimates of parameters and the modified DIC
value under M2 was approximately 100 minutes. Our pro-
gram is written in C language and is available upon request.

To assess the sensitivity of the Bayesian estimation and
model selection to different prior inputs, the above anal-
ysis was repeated with some disturbances to the current

prior input. Still, the 2-class model was selected, and the
Bayesian estimates of the unknown parameters under the
selected model were close to those presented in Table 6. The
results are not reported here.

6. DISCUSSION
In this article, an integrated generalized mixture LCM

was established under the Bayesian framework. Unlike tra-
ditional LCMs, this integrated model can simultaneously
handle different kinds of latent and observed variables, such
as (1) continuous latent variables, including latent growth
factors and explanatory latent variables; (2) a latent alloca-
tion variable representing latent trajectory classes; (3) fixed
and latent effects in predicting latent growth factors and
probabilities of subjects’ class memberships; and (4) mixed
continuous and discrete observed variables that follow the
EFD. The proposed GLCMM represents a broad class of
statistical models flexible enough to detect the heterogene-
ity of a longitudinal trajectory pattern, explore fixed and la-
tent effects that influence both longitudinal change patterns
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Table 4. Performance of the Bayesian estimates in the simulation study with Type II prior input under sample size n = 1,600

Class 1 Class 2 Class 1 Class 2

Par True Bias RMS True Bias RMS Par True Bias RMS True Bias RMS

λ21 0.8 0.007 0.036 0.4 0.011 0.028 ψy5 0.36 0.004 0.032 0.25 0.004 0.022
λ31 0.8 0.008 0.030 0.4 0.012 0.027 ψy6 0.36 −0.003 0.021 0.25 0.002 0.015
λ52 0.8 0.013 0.036 0.4 0.005 0.030 ψy7 0.36 0.003 0.024 0.25 0.001 0.018
λ62 0.8 0.013 0.032 0.4 0.004 0.027 ψy8 0.36 −0.002 0.043 0.25 0.008 0.036
μ1 2.0 −0.028 0.112 1.0 0.030 0.109 ψx1 0.36 0.036 0.056 0.25 0.019 0.033
μ2 1.0 −0.029 0.138 1.5 0.123 0.185 ψx2 0.36 0.004 0.022 0.25 −0.001 0.014
μ3 −2.0 −0.010 0.030 1.5 0.008 0.031 ψx3 0.36 0.003 0.022 0.25 0.002 0.013
μ4 −1.5 −0.025 0.037 0.5 −0.001 0.026 ψx4 0.36 0.035 0.060 0.25 0.013 0.034
a11 0.5 −0.035 0.102 −0.5 −0.011 0.114 ψx5 0.36 0.002 0.026 0.25 0.000 0.017
a21 −0.5 0.005 0.066 0.5 0.006 0.072 ψx6 0.36 0.004 0.022 0.25 0.002 0.017
a31 0.5 −0.005 0.028 −0.5 −0.001 0.030 ψδ1 0.36 0.049 0.156 0.25 0.046 0.060
a41 −0.5 0.006 0.029 0.5 0.002 0.022 ψδ2 0.36 0.052 0.123 0.25 0.047 0.077
γ11 0.5 −0.011 0.139 −0.5 −0.002 0.128 ψδ3 0.36 0.004 0.036 0.25 0.006 0.027
γ12 0.5 −0.007 0.143 −0.5 −0.001 0.143 ψδ4 0.36 0.018 0.035 0.25 0.005 0.023
γ13 0.5 0.077 0.174 −0.5 −0.013 0.134 φ11 1.0 −0.024 0.075 1.0 −0.041 0.089
γ21 0.5 −0.028 0.114 −0.5 −0.074 0.145 φ21 0.3 −0.022 0.048 0.3 −0.029 0.055
γ22 0.5 −0.027 0.116 −0.5 −0.051 0.142 φ22 1.0 −0.025 0.074 1.0 −0.031 0.085
γ23 0.5 0.027 0.140 −0.5 −0.030 0.153 ϕ0 −0.5 0.013 0.091 0.0∗

γ31 0.5 0.003 0.041 −0.5 −0.008 0.039 ϕ1 1.0 0.006 0.075 0.0∗

γ32 0.5 0.003 0.037 −0.5 0.009 0.037 ϕ2 0.8 0.007 0.082 0.0∗

γ33 0.5 0.024 0.051 −0.5 −0.002 0.041 ϕ3 0.8 −0.010 0.087 0.0∗

γ41 0.5 −0.008 0.039 −0.5 0.001 0.039
γ42 0.5 0.006 0.041 −0.5 0.006 0.036
γ43 0.5 0.044 0.071 −0.5 −0.001 0.035

Par True Bias RMS Par True Bias RMS

λv,21 0.8 −0.002 0.022 ψv1 0.36 0.002 0.024
λv,31 0.8 −0.001 0.022 ψv2 0.36 0.000 0.017
λv,52 0.8 −0.001 0.024 ψv3 0.36 0.005 0.019
λv,62 0.8 0.001 0.022 ψv4 0.36 −0.003 0.024
φv,11 1.0 0.004 0.050 ψv5 0.36 0.001 0.019
φv,21 0.3 −0.007 0.030 ψv6 0.36 0.001 0.017
φv,22 1.0 0.004 0.049
Note: The subscript k is suppressed for notational simplicity, and the 0’s with asterisk are fixed for identification purpose.

Table 5. Performance of the modified DIC in model selection with Type I and Type II prior inputs under sample sizes n = 800
and n = 1,600 (the presented values are means and standard deviations)

n = 800 n = 1,600

Prior I Prior II Prior I Prior II

M1 50410.99 (340.27) 50029.04 (415.41) 101261.54 (545.98) 100995.04 (584.94)
M2 45979.87 (267.76) 45131.99 (315.20) 91574.05 (470.69) 90331.27 (490.70)
M3 47182.20 (1022.62) 48237.50 (2642.64) 100469.55 (6369.87) 99088.84 (7086.21)

and latent class membership, and accommodate mixed-data
types. Our proposed Bayesian approach, which includes the
Gibbs sampler, the MH algorithm, the permutation sampler,
and the modified DIC, solves computational challenges that
arise from the GLCMM modeling efforts. The NLSY exam-
ple demonstrates how the proposed GLCMM can be applied
to longitudinal data and how it can test hypothesis outcomes
that are generally not achievable using conventional meth-
ods.

The proposed GLCMM can be extended to several di-
rections. First, our model assumes that data are collected

with the same number of waves and the same spacing of
waves among individuals (i.e., balanced data). However, un-
balanced setting is common in longitudinal data. Hence, ex-
tending the current model to deal with unbalanced data is
worthy of further consideration. Second, the proposed model
can be extended to include longitudinal latent effects to pre-
dict latent growth factors and the probability of class mem-
bership. Third, given that ordered and unordered categorical
data are very common in practical research, the idea of pro-
bit (logit) regression or cumulative probit (logit) regression
methods [1, 4, 33, 36] could be applied to incorporate these
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Figure 7. Path diagram of proposed model in the illustrative example.

types of data in the current model. Finally, except for deter-

mining the number of latent trajectory classes, the modified

DIC can also be used to select appropriate linear or nonlin-

ear parametric functions f1, . . . , fh. Moreover, the paramet-

ric trajectory equation and parametric functions f1, . . . , fh
in the current model can be further extended to nonpara-

metric forms. The Bayesian P-splines approach [13, 34, 35]

is a promising candidate for the nonparametric modeling of

LCMs.

APPENDIX A. FULL CONDITIONAL
DISTRIBUTIONS

(a) The full conditional distribution of ϕk:

p(ϕk|U,V,Ω, Ω̃,C,θ)

∝
n∏

i=1

p(ci|ϕk,θ,ui,vi,ωi, ζi)p(ϕk)
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Table 6. Bayesian estimates and their corresponding standard
error estimates in the illustrative example

Class 1 Class 2

Par EST SE EST SE

μ1 2.613 0.036 4.321 0.209
μ2 1.076 0.013 0.462 0.104
γ1 −0.058 0.061 −0.687 0.147
γ2 −0.042 0.026 0.192 0.068
λx21 0.926 0.051 0.889 0.095
λx31 1.119 0.054 0.706 0.071
λx41 0.988 0.049 0.738 0.071
λx51 0.761 0.046 1.219 0.128
φx 0.435 0.034 1.987 0.456
ψε1 0.419 0.027 0.400 0.103
ψε2 0.336 0.021 0.659 0.171
ψε3 0.288 0.025 0.374 0.097
ψε4 0.457 0.026 0.766 0.187
ψε5 0.567 0.025 0.418 0.115
ψε6 0.439 0.024 0.337 0.069
ψε7 0.554 0.025 0.307 0.061
ψε8 0.574 0.026 0.824 0.217
ψδ1 1.035 0.049 0.674 0.170
ψδ2 0.067 0.006 0.218 0.045
ϕ0 2.118 0.284 0.0∗

ϕ1 4.321 0.209 0.0∗

ϕ2 0.462 0.104 0.0∗

Par. related to ζ

λv21 1.525 0.259
λv31 1.273 0.243
φv 0.114 0.025
ψv1 0.735 0.077
ψv2 0.816 0.056
Note: The subscript k is suppressed for notational simplicity, and
the 0’s with asterisk are fixed for identification purpose.

∝ exp
{ ∑

i:ci=k

ϕT
kG(ζi)−

n∑
i=1

log
[ K∑
j=1

exp(ϕT
j G(ζi))

]

− 1

2
(ϕk −ϕ0k)

TΣ−1
ϕ0k(ϕk −ϕ0k)

}
,

where G(ζi) = (1,bT
i , ζ

T
i )

T .

(b) The full conditional distribution of Ω̃:

p(ζi|ui,vi,ωi, ci = k,θ)

∝ p(vi|ζi,θ)p(ci = k|ζi,θ)p(ζi|θ)

∝ exp
{
− 1

2
(vi −Λvζi)

TΨ−1
v (vi −Λvζi)

− 1

2
ζT
i Φ

−1
v ζi +ϕT

kG(ζi)− log
[ K∑
j=1

exp(ϕT
j G(ζi))

]}
.

(c) The full conditional distribution of Ω:

p(Ω|U,V,C, Ω̃,θ) =

n∏
i=1

p(ωi|ui,vi, ci, ζi,θ), and

p(ωi|ui,vi, ci, ζi,θ)

Figure 8. Plot of the estimated potential scale reduction
values against the iteration numbers in the illustrative

example.

∝ exp
{ p∑

j=1

[uijϑkij − bj(ϑkij)] /ψεkj −
1

2
ξTi Φ

−1
k ξi

− 1

2
(ηi − μk −ΛδkG(ωi))

T

×Ψ−1
δk (ηi − μk −ΛδkG(ωi))

}
,

where Λδk = (Ak,Πk,Γk), G(ωi) = (wT
i ,η

T
i ,F(ξi)

T )T .
(d) The full conditional distribution of C:

p(C|U,V,Ω, Ω̃,θ) =

n∏
i=1

p(ci|ui,vi,ωi, ζi,θ), and

p(ci = k|ui,vi,ωi, ζi,θ)

=
p(ui|ci = k,ωi,θ)p(ηi|ci = k, ξi,θ)p(ξi|ci = k,θ)p(ci = k|ζi,θ)

∑K
j=1 p(ui|ci = j,ωi,θ)p(ηi|ci = j, ξi,θ)p(ξi|ci = j, θ)p(ci = j|ζi,θ)

.

(e) The full conditional distribution of Λkj : for j = 1, . . . , p,

p(Λkj |U,V,Ω, Ω̃,C,θ)

∝ exp
{
− 1

2
ψ−1
εkj(Λkj −Λ0εkj)

TH−1
0εkj(Λkj −Λ0εkj)

+
∑

i:ci=k

[uijϑkij − bj(ϑkij)] /ψεkj

}
.

The full conditional distributions of other parameters in θ
are the normal, Gamma, and inverted Wishart distributions.
They are not presented here.
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