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Modeling of mean-covariance structures in
generalized estimating equations with dropouts

JIANXIN PAN*, TAPIO NUMMI AND KUN LiU

Within the framework of joint mean-covariance models,
we study the effects of dropout missing at random (MAR) on
the estimation of mean and covariance structures for longi-
tudinal data using generalized estimating equations (GEE).
It is evidential that the MAR dropout has more severe influ-
ences on the estimation of variance-covariances relative to
the mean estimation, as the former involves the estimation
of the second moments. We propose to use the inverse prob-
ability weighted generalized estimating equation (WGEE)
method to model the mean and covariance structures, si-
multaneously, in order to accommodate the effects of MAR
dropout. The proposed WGEE approach produces unbiased
estimators of parameters in both the mean and covariances
for longitudinal data with MAR dropout. Simulation stud-
ies are conducted to assess the performance of the proposed
approach and a real data analysis for the PANSS data [7] is
made to illustrate the effectiveness of the proposed method.

KEYWORDS AND PHRASES: Dropout, Joint mean and co-
variance model, Longitudinal data, Missing at random,
Weighted generalized estimating equation.

1. INTRODUCTION

Longitudinal studies frequently involve dropouts in re-
sponse data. A subject is called dropout when the response
variable is not observed through a certain visit and is then
missing for all the subsequent visits [6]. Different factors
may have impact on the accessibility of the observations of
response at a certain occasion, such as happenstance, an ad-
verse event, lack of efficacy on the drug, etc. Problems arise
if the mechanism of the dropout is not independent of the
observations of response that are either observed or not ob-
served. It is well known that statistical inference based only
on complete cases can lead to a very biased result. The gen-
eralized estimating equations (GEEs) approach of Zeger and
Liang [22] extends the generalized linear model and yields
more efficient and unbiased regression parameter estimators
relative to ordinary least squares regression. Under a miss-
ing completely at random (MCAR) mechanism [11], con-
sistent and unbiased estimators of parameters in the mean
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are produced by GEEs. However, when the dropout is miss-
ing at random (MAR) or missing not at random (MNAR),
GEEs may produce very biased results and lead to ineffi-
cient estimation [1]. Robins and Rotnitzky [17] and Robins,
Rotnitzky and Zhao [18] proposed a class of weighted gener-
alized estimating equations (WGEEs) to handle longitudinal
or clustered data with MAR, and their approach provides
consistent estimators of the mean parameters.

The MAR issue in the GEE framework has been stud-
ied for a long time period. However, the literature research
has primarily focused on the mean estimation and little re-
search was done to study the effects of MAR dropout on
the variance or covariance estimation. It is anticipated that
such an influence may be more severe relative to the mean
estimation as it involves the estimation of the second mo-
ments. Any small deviation of the model may lead to a sub-
stantial impact on the estimation of variance or covariance
components. Recently there is an increasing number of re-
search work in the area of joint mean and covariance models
for longitudinal data, including Pourahmadi [14, 15], Ye and
Pan [21] and Leng, Zhang and Pan [10], among others. How-
ever, most existing work does not readily accommodate the
effects of MAR dropout. In this article, we concentrate on
studying the effects of MAR dropout on variance-covariance
parameter estimators, and aim to develop a new approach
which is able to eliminate the bias, not only in the mean
estimation, but also the variance-covariance estimation due
to MAR dropout. The proposed method introduces three
estimating equations that accommodate the effects of MAR
dropout on the mean, generalized autoregressive parameters
and log-innovation variances, simultaneously. The key idea
is to use the inverse probability weighted GEE approach [18]
to estimate parameters, not only in the mean, but also the
variance-covariances. It is shown that the proposed method
can significantly improve the mean and covariance estima-
tion in contrast to the GEE method of Ye and Pan [21]
which does not adjust the effects of MAR dropout.

The rest of this paper is organized as follows. In Section 2
we first introduce the notation, and describe some concepts
of joint mean and covariance models and the reparameteri-
zation of the covariance matrix through a modified Cholesky
decomposition. In Section 3 we briefly review the conven-
tional joint mean-covariance model introduced by Pourah-
madi [14] and the GEE approach for joint mean-covariance
models by Ye and Pan [21]. We then provide an empirical
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analysis based on Kenward’s [8] cattle data to illustrate the
impact of MAR dropout on Ye and Pan’s [21] GEE method.
In Section 4 we propose a joint mean and covariance model
using inverse probability weighted GEE and provide the de-
tails of the estimation method. Section 5 assesses the per-
formance of the methodology by simulation studies. In Sec-
tion 6 we conduct a real data analysis for the PANSS data [7]
to illustrate the proposed method. Section 7 provides further
discussions of the proposed method.

2. NOTATION AND MODIFIED CHOLESKY
DECOMPOSITION

Let y;; be the jth of m; measurements on the ith of n
subjects. Assume t;; is the time at which the measurement
yi; is made. Denoted by Y; = (yi1, %2, ..., ¥im,) and t; =
(ti1,ti2y -y tim,), the (m; X 1) vectors of responses and
times of the ith subject. It is assumed that

EY;))=p; and Var(y;)=25%;
where p; = (fi1, fi2s - - - 5 fim; )" 18 the (m; x 1) mean vector
and ¥; is the (m; x m;) positive definite covariance matrix
of the responses Y;.

The expectation p; may depend on some covariates X;
(m; x p) of interest, for example, g(u;) = X;5 where j is
a (p x 1) vector of parameters and g(+) is the link function.
It is usually assumed that the covariance matrix 3; has the
form ¥; = ¥;(t;,0) where 6 is a low-dimensional parame-
ter vector characterizing the dependence on t;. The ‘best’
covariance structure may be selected from a class of can-
didate structures containing, for example, compound sym-
metry and AR(1), using certain information criteria such as
AIC or BIC [13]. However, a potential problem is that it
may select a wrong covariance structure, even if the class of
candidate structures is broad. For example, the true covari-
ance structure may not be included in the class for various
reasons. A typical example is that the true covariances may
depend on covariates of interest in addition to times. As
a result, misspecification of the covariance structure occurs
which in turn leads to inefficient estimation of the mean. In
some circumstances, for example, when missing data (MAR)
are present, it may severely bias the estimators of regression
coefficients [4].

Using the modified Cholesky decomposition (e.g.,
Pourahmadi [14, 15]), for any ¢ (1 < ¢ < n), X; can be
diagonalized by a unique lower triangular matrix 7; with
1’s as diagonal elements, i.e.,

(1)

where D; is a unique diagonal matrix with positive diago-
nal elements. The elements of T; and D; have a very nice
statistical interpretation in terms of least squares regres-
sions. In fact, the lower-diagonal entries of T; = (—¢;;x) are
the negatives of the regression coefficients of §;; = pi; +

T;%T] = D,
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i;ll ®ijk(Yi — Mik), the linear least squares predictor of
yi; based on its predecessors y;1, . . ., ¥i j—1, and the diagonal
entries of D; = diag(c7,...,0%,. ) are the prediction error
variances J?j = Var(y;; —9i;) for 1 <i <n,1 < j <m,;. The
new parameters ¢;;;’s and o7;’s are called generalized au-
toregressive parameters (GARP) and innovation variances
(IV), respectively. Thus the decomposition (1) converts the
constrained entries of {¥; : i = 1,...,n}, due to the posi-
tive definiteness constraints, into two sets of unconstrained
‘regression’ and ‘variance’ parameters given by {i;k
i=1,...,m7=2...,mik=1,...,j— 1} and {logo?,
..o dogo?  ii=1,...,n}.

im;

3. JOINT MEAN-COVARIANCE MODEL

The unconstrained parameters f;;, ¢;5, and log afj can

be modelled using linear regression models:
9(pij) = 3,8, bijk = Zijrs log 07 = hij;A,

where 3, v and A are p-, ¢- and d-dimensional vectors of
parameters associated with the covariates x;;, z;;, and hyj,
respectively, and g(-) is the link function. When modeling
stationary growth curve data using polynomials in time, for
example, the covariates may take the form:

— !

CCij = (Ltij,t?ja N ,tfj 1) s

zige = (L, (tij — tan), (tig — tae)®, -, (tig — taw) ")
— !

hij = (L tij 5t 1)

These models were considered by Pourahmadi [14, 15] and
Pan and Mackenzie [13] for balanced and unbalanced longi-
tudinal data, respectively. Note that the resulting estimators
Y; are guaranteed to be positive definite, see [14] for details.

Under the normality assumption, Pourahmadi [14, 15]
and Pan and Mackenzie [13] obtained the maximum likeli-
hood estimators of the parameters 3, v and A\. Without any
distributional assumptions, Ye and Pan [21] proposed three
generalized estimating equations

S [Op; ] o1
S1(8) = ]z Y — ),
{0 =275
Ly T
Sa(y) = —Z]Dil(ﬁ—ﬂ),
=2 |7
500 =3[ 2| Wit - o)

=1

to estimate (3, v and A. In the 2nd equation above, r; and 7;
are (m; x 1) vectors with the jth components r;; = y;; — i,
and 7;; = ch;i dijerik (3 = 1,...,my), respectively, and
D; = Var(r; — #;) = diag(a?l,...,afmi). In the 3rd equa-
tion above, ¢ and o? are (m; x 1) vectors with the jth

K3
components ¢3; and o7; (j = 1,...,m;), respectively, where

ij



€ij = Yij — Uij. Furthermore, E(e?) = o7 and Var(e?) = W,.
When Y;’s are normally distributed, it can be shown that
W; = 2 diag(c}y,0%,...,0},,). In this case, these equa-
tions reduce to the estimating equations of Pourahmadi
[14] for balanced data and Pan and Mackenzie [13] for un-
balanced data. In general, the variance matrix W; of &2
is no longer diagonal and remains unknown. Ye and Pan
[21] proposed to use a sandwich ‘working’ covariance struc-
ture to approximate W;, i.e., W; = A;/2R,~(p)A;/2 where
A; =2 diag(o}y, ..., 0}, ) and R;(p) mimics the correlation
between sfj and 5121: (i # k) by introducing a new parameter
p. Typical examples for R;(p) include compound symmetry
and AR(1). It was shown that the parameter p has little
impact on the estimators of v and A [21].

Note that the method of Ye and Pan [21] is very different
from the GEE2, a second-order extension of generalized es-
timating equations proposed by Zhao and Prentice [23] and
Prentice and Zhao [16]. In the approach of Ye and Pan [21],
the estimating equations Sa(7y) and S3(\) avoid the use of
the cross-product terms (y;; — ;) (ysj7 — ftsj7) that are used
by the GEE2, due to the appealing property of the modi-
fied Cholesky decomposition in terms of the GARP and IV.
More importantly, GEE2 can yield substantial bias in the
estimators of parameters in the mean and covariances if as-
sumptions about second moments are misspecified [16, 23].
In contrast, the approach of Ye and Pan [21] produces con-
sistent estimators of parameters in both the mean and co-
variances. See Ye and Pan [21] for more details.

Missing data problems arise very often in longitudinal
studies. A particular type of missingness that is quite com-
mon in longitudinal studies is dropout. To assess the effects
of MAR dropout on the GEE method of Ye and Pan [21],
we conduct an empirical study using Kenward’s cattle data.
Kenward [8] analyzed an experiment in which cattle were
assigned randomly to two treatment groups A and B, and
their weights were recorded over time. Thirty animals re-
ceived treatment A and another thirty received treatment
B. The animals were weighed 11 times over a 133-day period
at 0, 14, 28, 42, 56, 70, 84, 98, 112, 126 and 133 days and thus
the longitudinal data are balanced. Zimmerman and Niinez
Antén [24] rejected the equality of the two within treatment-
group covariance matrices using the classical likelihood ratio
test. Thus, it is advisable to study each treatment group’s
covariance matrix separately.

To observe the impact of MAR dropout on the joint mean
covariance model, we conduct a data analysis based on group
B of Kenward’s cattle data. We set up a MAR dropout pro-
cess as follows. 100% of cattle have their first four repeated
measurements of weight. And then we assume that there is
a certain chance that one particular cow can quit the study
(dropout) after the fourth measurement is taken, for exam-
ple, if the weight at the fourth measurement time is below a
certain threshold. The threshold value of weights is chosen
such that a fixed rate of MAR dropout is achieved. Table 1
below gives such threshold values of weights and the asso-
ciated subject dropout rates ranging from 10% to 90%. We

Table 1. Dropout details

Dropout Threshold Dropout Total data
rate (in %) weights cattle left
10 210 3 309
20 220 6 288
30 230 9 267
40 240 12 246
50 250 15 225
60 260 18 204
70 270 21 183
80 280 24 162
90 290 27 141

aim to study how the MAR dropout affects the estimators
of the mean, GARP and IV within the framework of GEE
approach by Ye and Pan [21], where each parameter is mod-
eled by a cubic polynomial in time and R;(p) in W is set as
an AR(1) structure with p = 0.2.

In Figure 1, we display the estimated polynomials in lag
for the GARP (Panel (a)) and in time for log-IV (Panel (b))
for the cattle data, by varying the rate of dropout from 10%
to 90%. To save space, we choose not to display the esti-
mated curve for the mean here. In the meantime, it is al-
ready well known that the GEE-based mean estimation is
affected by the MAR dropout. For the GARP, the GEE ap-
proach for the data with a small rate of dropout may give an
estimation with mild bias. However, the bias increases with
the dropout rate and the estimated curve with a relatively
large rate of dropout does not follow the same pattern as the
one without dropout. For the log-1V, a small rate of dropout
may lead to a substantial bias of the estimation. The esti-
mated curve for the log-IV does not display the same pattern
as that based on the complete data, in particular, when the
rate of dropout is relatively large. It indicates that the MAR
dropout has a substantial impact on the estimation of the
innovation variance.

4. WEIGHTED GENERALIZED
ESTIMATING EQUATIONS

4.1 Dropout model estimation

To introduce a model for dropout, we define a missing
value indicator R;; as

@) Ry = {1 if yi; is. observed,
0 otherwise.

Dropout gives rise to a monotone missing data pattern in
the sense that if y;; is missing, then y;(j11), ..., Yim, are also
missing. Equivalently, when expressed in terms of the miss-
ing value indicator, dropout refers to the case where if R;; =
0 then Ri(j+1) = = Rzml = 0. Let pij(Oé) = PT’[Rij =
0|R;(j—1) = 1,91, - - -, ¥i(j—1), Xi; @] denote the ith subject’s
probability of dropout at occasion j, given the history of all
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Figure 1. Panels (a) and (b) are the GEE estimated curves of the GARP and log-1V for the cattle data with different rates of
dropout.

available data of response observed up to occasion (j — 1),
where X; and « are vectors of covariates and regression co-
efficients, respectively. We usually assume that all subjects
are observed at their first occasion, in other words, R;; = 1,
which in turn implies p;1(«) = 0. In general p;;(a) is not
known but can be estimated from observed data by fitting a
logistic regression model logit{p;;(a)} = Z;;a. Equivalently,

exp(Z;;a)

3) T 1+ exp(Z};a)

pij(a)

where Z;; is a vector of covariates which may contain X;
and the observed responses before the dropout. The log
partial likelihood function has the form

n m;

> > Rii-1)log{pi; (@) [1 — pij ()]~ Fu ).

i=1 j=2

(4)

Differentiating (4) with respect to « leads to the estimating
equations

n m;

So(@) =D Rig—)[Rij — pij ()] Ziy.

i=1 j=2

(5)

Setting (5) equal to zero yields an estimator &. We therefore
obtain the estimator p;;(&) of p;;(a). The asymptotic vari-
ance of n'/2(& — ) is given by [Var{Sp}]~'. More details
may refer to Robins, Rotnitzky and Zhao [18]. Under the
MAR dropout assumption, the probability of remaining in
the study at occasion j can be calculated through

mij(a) = Pr(Ri; = 1|Rij—1) = 1,4, ...

= T =i}

yYiG—1)s Xi, @
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Accordingly, the corresponding estimator of m;;(a) can be
obtained by m;;(&) = [[72,{1 — pi;(a)}.

4.2 Weighted generalized estimating
equations

We apply the inverse probability weights to the above
three GEEs in order to correct the bias caused by MAR
dropout. The idea behind this is that, if the observation y;;
is observed with the probability m;;, then this observation
should be given a certain of weight w;; in the GEE in order
to reduce the bias due to MAR dropout. The weight w;; for
the ith subject at occasion j can be assigned as the inverse
of the cumulative product of the fitted probabilities, i.e.,

wij(@) = (mia (@) X mia(a) x -+ x mij(a)) !
fori=1,2,...,n and j = 2,...,m;. Note that we assume
w;1 = 1. It is clear that w;;(a) can be estimated by w;; =
Wi j (d) Let Wz* = diag(Rﬂwil, Rig’uA)iQ, ey Rimiwimi). We
then propose the following inverse probability weighted gen-
eralized estimating equations

S1(8) = fj(a“é)zm ),

i=1 aﬁ
S3(1) = Z(av)Di (ri = #4),
i=1
* - 6012/ 1%
5500 = Y- (%1 )Wt — o),
i=1

to estimate the parameters 3, v and A\ in the mean,
GARP and log-1V, where & = W25 w2 pr =

?

W_*l/zD;1Wi*1/2 and Wi* _ Wi*l/QWlei*l/Z-

Solving the equations
51(8) =0,

S5(v) =0, and S3(\) =0
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Figure 2. Panels (a) and (b) are the estimation for the GARP and log-1V for the simulated data sets by WGEE (dashed curve)
and GEE (dot-dashed curve). The solid curve is the true curve.

gives the estimators of § = (5,7, \')". In the spirit of Ye
and Pan [21], it can be shown that the quasi-Fisher informa-
tion matrix of 8 is of block diagonal, so that the parameter
estimators must be of the forms

_ —1
S VA AN B A A A
o= _;(86)2i<85>] [Z<66>Ei :

[ n

or, o\l o
= IS B (2 pr (2 9% D |
! Zi (m) (fh)H ? ) 1
-1

. " (80 \~, (00’ " (002 \ =,

A= E( o )Wi(ax)] l;( B )Wiei
where §; = (y; — i) + auz/aﬁ B, ? = (e2—0?)+ D;logo?
and logo? = (logo?,...,log sz ) If g(-) is the identity

link, then we have y; = y;.

The consistency and asymptotic normality of the gener-
alized estimating equations estimators 5, 4 and A can be
proved in a similar manner to Ye and Pan [21], and Robins,
Rotnitzky and Zhao [18]. It is noted that in order to en-
sure the consistency and asymptotic normality, the regular-
ity conditions provided by Ye and Pan [21], such as unbi-
asedness of the estimating equations and existence of the so-
lution to the estimating equations, are required. In addition,
the WGEE approach also needs to assume that the dropout
process is a MAR mechanism and the dropout probability
pij(a) in (3) satisfies p;;(a) > ¢ > 0 for all & and some
¢ > 0. Further regularity conditions on the dropout model
can be found in Robins, Rotnitzky and Zhao [18].

5. SIMULATION STUDIES

To assess the performance of the proposed approach, we
conduct simulation studies. The simulation setup we adopt
has the same design protocol as that used in the real cattle

data analysis. We generate N = 100 random samples from
a Normal distribution, where each sample has 30 cattle and
each subject has 11 repeated measures of bodyweight taken
at the same observation times as these in the real data. The
Normal distribution we used is N(u;, %;) (@ = 1,...,30),
where p; and X; are formed using the parameter estimators
obtained by Ye and Pan [21] for the real data, involving
the use of three polynomials in time with the triple degrees
(p,q,d) = (4,4,4). We also use an AR(1) covariance struc-
ture for R;(p) in W; with p = 0.2. We assume all the cattle
have complete observations for their first four measurements
of weight, so that the dropout can only happen from the
fifth repeated measurement. It implies that if one has the
fifth measurement observed then there is no dropout any-
more. Note that each simulated data set with dropout uses
the missing value indicators R;1, ..., Rin,, where we assume
R;1 = Ris = Ri3 = R,y = 1 and set Ri,4+k =0 (k‘ > 1) if
R;5 = 0, so that an intermittent missing data pattern does
not occur. The MAR dropout model we used is of the form

logit(pi;) = ao + a1yi,j—1

fori =1,...,30 and j = 5,...,11, where a = (ap, 1) =
(—11,0.05). The values of ap and «; are chosen such that
the maximum probability of dropout at the 5th repeated
measurement, among the 100 simulated sets, is about 50%.
The actual rate of subject dropout for the 100 simulated
data ranges from 30% to 80% with a mean 55.90%.

We now use the proposed WGEE method with the esti-
mated dropout probability p;; = p;;(&) to analyze each sim-
ulated data set, where & = (&o, &1)’. We compare the pro-
posed WGEE method to the ordinary GEE approach by Ye
and Pan [21]. In Figure 2 (a) and (b) we report the average
of the trajectory estimation for the GARP and log-IV over
the 100 simulations, represented by the dashed curve. We
also present the ordinary GEE estimation (the dot-dashed
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curve) along with the true structure (the solid black curve).
From Figure 2, it is clear that the ordinary GEE estimation
is substantially biased due to the lack of consideration of the
effects of the dropout. The impacts of dropout on the esti-
mation of the GARP and log-IV are even more substantial
than those on the estimation of the mean. The participation
of the fourth moments in the parameter estimation leads to
more challenges than the standard GEE estimation for the
mean [21], which explains the large discrepancy from the
true curve for both the GARP and log-IV estimation. In
contrast, the proposed WGEE method can successfully alle-
viate and even eliminate the bias of estimation in both the
GARP and log-IV. The estimation for the mean has a sim-
ilar explanation and has been discussed in the vast amount
of literature, and hence is not presented here.

We note that the average of the estimated regression co-
efficients in the dropout model, over the 100 simulations, is
given by (&g,d1) = (—11.068,0.047)’, and the associated
simulated standard errors are 0.984 and 0.007, respectively.

6. ANALYSIS OF PANSS SCHIZOPHRENIA
DATA

The Positive and Negative Syndrome Scale (PANSS) is a
measurement for schizophrenia patients with a range from
30 to 210. PANSS reflects the severity of someone’s condi-
tion. The larger PANSS is, the poorer the mental status the
patient is in. The PANSS schizophrenia data was collected
in the process of a clinical trial and was first studied by Kay,
Flszbein and Opfer [7] and Chouinard et al. [3]. The aim of
the trial was to compare different treatments for schizophre-
nia. 517 schizophrenia patients were randomly assigned to
six different treatment groups: placebo, haloperidol and four
different dose levels of risperidone. PANSS of patients were
measured at —1, 0, 1, 2, 4, 6 and 8 weeks from the start of
treatment. A particular patient was chosen to enter the trail
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(a) WGEE fitted values for mean.

if their PANSS at week —1 (before they enter the random-
ized trail) exceeded the level of 90. Of the 517 participants,
248 did not complete the trial because of dropout. Although
risperidone was dosed at four different levels, Diggle [5] com-
bined the data for all different dose levels because dosage
was seen to have little effect on the response. The resulting
numbers of the patients who were randomized to placebo,
haloperidol and risperidone became 85, 87 and 345 respec-
tively.

In our analysis, we are interested in the performance of
the proposed model in dealing with dropout. Risperidone
treatment data at week 0, 1, 2, 4, 6 and 8 are analyzed
for this purpose since this arm contains the most patient
information and also because risperidone treatment is the
novel treatment in the trial. There are 345 patients in the
risperidone treatment arm contributing 1,696 PANSS mea-
surements.

Table 2 summarizes the details of the dropout informa-
tion. Kurland and Heagerty [9] checked the missing data
mechanism and confirmed that it is a MAR dropout pro-
cess. In fact, Kurland and Heagerty [9] used the logistic
model logit(p;;) = oo + 1¥ij—1 + 2y; j—2 to model the
dropout probability. In our analysis of the WGEE, we also
use the same MAR dropout probability model as the one
by Kurland and Heagerty [9]. Based on the regressogram of
[14], we propose to model the mean, GARP and log-IV using
three cubic polynomials in time. In other words, the covari-
ates x;j, Zijk, hij take the same forms as those in Section 3
with p = ¢ = d = 4. We also set an AR(1) as the correlation

Table 2. The details of the dropout information

Treatment Number of non-dropouts at week
0 1 2 4 6 8
Risperidone 345 340 307 276 229 199
Fitted curves for log-innovation variances
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(b) WGEE fitted values for log-innovation variances.

Figure 3. Estimation for the mean and log-1V for the PANSS schizophrenia data using the ordinary GEE and WGEE methods.
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structure of R;(p) in the working covariance matrices W;.
Since p has little impact on the estimators of 3, and A [21],
we choose p = 0.5, which is helpful for producing reasonable
confidence interval estimators for the parameters v and .
In Figure 3, we display the estimated curves for the mean
and log-IV for the PANSS schizophrenia data, by the ordi-
nary GEE (the dot-dashed curve) and the proposed WGEE
(the solid black curve) methods. This time we choose to
present the estimated mean curve so that the effects of MAR
dropout on the mean estimation can be observed. In fact,
the mean estimation by the WGEE approach, see Figure
3(a), is very similar to that found by Diggle [5] and Kurland
and Heagerty [9] where the within-subject covariance struc-
ture was pre-specified. It is clear that the ordinary GEE
method by Ye and Pan [21] provides a quite low level of
PANSS measures during the observational time period. In
contrast, the WGEE approach leads to a clearly high level
of PANSS measures, which drops sharply in the first two
weeks and then varies almost constantly after the second
week. In Figure 3(b), the estimated curve for the log-IV by
the WGEE approach is observed to have a decreasing trend.
It is clear that there is a sharp decrease from week 0 to week
2, and again from week 6 to week 8 with leveling off in be-
tween. A confidence interval for the WGEE estimated curve
is also provided. The ordinary GEE method yields an esti-
mated curve for the log-IV that differs substantially from
the WGEE estimation. The estimation for the GARP has a
similar explanation and is not presented here to save space.

7. CONCLUSION

The GEE estimators of the parameters in the mean and
particularly in the covariances are affected substantially by
dropout that is missing at random. The proposed inverse
probability weighted GEE method works well to handle the
MAR dropout for both the mean and covariance param-
eter estimation. It can help to eliminate the bias of the
GEE-based estimation of the mean and covariances due to
MAR dropout. Note that the proposed method requires a
correctly specified dropout model, and this then substan-
tially improves the effectiveness of the proposed method.
If the dropout model is misspecified, it may not only cost
the effectiveness of the method but also affect the asymp-
totic normality and consistency of the parameter estimators
[2, 12, 19, 20]. In principle, as long as the model for missing
data is correctly specified, the proposed method is applica-
ble to the case of intermittent missing data. However, there
must be additional challenges to correctly specify the miss-
ing mechanism as MAR.
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