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Parameter estimation for HIV ODE models
incorporating longitudinal structure

Yao Yu and Hua Liang
∗

We apply nonlinear mixed-effects models (NLME) to
estimate parameters in Perelson’s HIV dynamic model, a
system of mechanism-based ordinary differential equations
(ODE). The unknown parameters of the dynamic model and
the baseline of infected CD4+ T cells are estimated simulta-
neously. Meanwhile variance components for random-effects
and parameters for individuals are also estimated. Because
we solve the ODE directly without making any model ap-
proximations or fixing any parameters to obtain close-form
solutions as in literature, the drawing conclusion maintains
biological interpretability for dynamic parameters which is
critically helpful. Simulation studies are conducted to exam-
ine the performance of this approach, especially the influ-
ence of measurement errors and model assumptions under-
lying the parameter estimation method. Moreover, we apply
this approach to real data collected from an AIDS clinical
trial of HIV-1 study.

Keywords and phrases: HIV dynamic model, Measure-
ment errors, Nonlinear mixed-effects model, Variance com-
ponents, Random-effects.

1. INTRODUCTION

Over the past two decades, ordinary differential equation
(ODE) models have been used to examine HIV viral dy-
namics for the study of pathogenesis and the development of
new treatment strategies for AIDS clinical trials and patient
cares. As mechanism-based models, HIV dynamic models
are based on the process of HIV inflection on CD4+ T cells
[1–6]. Thus all parameters have biological meanings and can
effectively interpret the infection progress and treatment ef-
fects. Therefore a variety of statistical methods have been
proposed to estimate these parameters with the aim to guide
clinical decisions for individual treatment. For example, [2]
employed nonlinear least-square (NLS) regression to fit data
from each patient separately and obtained parameter esti-
mators for individuals, although NLS can’t account for the
between-patient variance and convergence problems may be
encountered when observations for each individual subject
are sparse.
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In order to efficiently use between-subject information,
mixed-effects models were introduced for parameter esti-
mation in the last two decades, for example, [6–8] for
linear mixed-effect models (LME) and nonlinear mixed-
effects models (NLME), and [9] for semiparametric nonlin-
ear mixed-effects models (SNLME). [10] did a comparison
of LME, NLME, SNLME and used them to study the re-
lationship between the viral load baseline and viral decay
rates. Moreover, the stochastic approximation expectation-
maximization (SAEM) algorithm, proposed by [11], was em-
ployed to approximate the likelihood for NLME with the
purpose of estimating parameters in HIV dynamic systems.
[12] applied the SAEM algorithm to analyze left-censored
longitudinal HIV data. [13] applied the SAEM algorithm
to estimate population parameters for pharmacokinetic-
pharmacodynamic-viral dynamic models. [14] employed the
SAEM algorithm to estimate parameters for long-term HIV
dynamic systems. [15] used a viral dynamics nonlinear mixed
effects drug-disease model in NONMEM to fit HIV-RNA
data. It is interesting that different models result in differ-
ent conclusions. It is also worthwhile to mention that owing
to the complexity of ODE , too many unknown parameters
and the existence of unobservable state variables, reparam-
eterization, approximation and simplification are utilized to
estimate parameters in HIV dynamic models. Consequently,
the parameters in the simplified mixed-effects models may
not have the same biological meanings as in the original
dynamic models.

To avoid approximating dynamic models and repeatedly
solving ODE, [16] developed a nonparametric method based
on local smoothing and the pseudo-least square principles to
estimate unknown parameters for general ODE models. The
method avoids the concerns we just commented on and has
some advantages such as computational efficiency and easing
the convergency problem. It has some limitations, namely,
estimation errors are large and frequent measurements of
state variables are required to estimate derivatives. In order
to incorporate information from various subjects for better
estimated values, [17] extended the method proposed in [16]
to longitudinal data by adopting the mixed-effects modeling
approach. However, their approach still inherits the limita-
tions of [16].

When frequentists gained fruitful findings in HIV dy-
namic parameter estimation, the Bayesian principle was
widely used in HIV dynamic parameter estimation also. [18]
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introduced the Bayesian modeling approach to nonlinear
random effects estimation problems. [19, 20] estimated con-
stant coefficients and time-varying dynamic parameters for
long-term HIV viral dynamic models. [21] incorporated clin-
ical factors and baseline covariates into Bayesian models to
study treatment efficacy in long-term HIV viral dynamics.
It should be noted that all these Bayesian methods require
prior information for most of the parameters, which may not
be easy to obtain.

Facing the complexity of ODE models, the unobservable
features of some state variables and the sparsity of experi-
mental and clinical data for each individual, parameter esti-
mation for HIV dynamic models is still challenging. In this
paper, we introduce a novel application of NLME to esti-
mate parameters in Perelson’s HIV dynamic model [22], a
dynamic system which has been widely used to enhance our
understanding of immunological process against HIV infec-
tion [2, 23–25]. We solve Perelson’s HIV dynamic model di-
rectly via Fortran ODE solver Isoda (livermore solver for
ordinary differential equations, with automatic algorithm
selection) [26] to obtain numerical solutions. Then we fit
NLME to real data from a HIV clinical trial to estimate
population and individual parameters. Using the estimated
values, we design Monte Carlo simulation studies to assess
the performance of this approach.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce Perelson’s HIV dynamic model and
briefly describe the estimation method based on NLME. In
Section 3, we analyze a real data set and estimate the fixed-
effects and random-effects of dynamic parameters, and the
baseline of infected CD4+ T cells. In Section 4, we conduct
Monte Carlo simulation studies to evaluate the performance
of the approach. The paper ends with a discussion in Sec-
tion 5.

2. MODELS AND ESTIMATION METHODS

2.1 The ODE model

Consider the following HIV dynamic model after an-
tiretroviral therapy [22, 25]:

dTU (t)

dt
= λ− ρTU (t)− η(t)TU (t)V (t),

dTI(t)

dt
= η(t)TU (t)V (t)− δTI(t),(1)

dV (t)

dt
= NδTI(t)− cV (t),

where TU (t) is the concentration of uninfected CD4+ T cells,
TI(t) is the concentration of infected CD4+ T cells, V (t) is
the plasma virus concentration, λ is the rate at which new
CD4+ T cells are continuously generated, ρ is the death
rate of uninfected CD4+ T cells, δ is the death rate of the
infected CD4+ T cells, c is the clearance rate of free virions,
N is the number of virions produced from each infected cell

and η(t) is the time varying infection rate of T cells which
depends on the antiviral drug efficacy. When the time range
is small, η(t) can be treated as a constant parameter η. In
this system, TU (t), TI(t) and V (t) are state variables, and
(λ, ρ, δ, c,N, η) are unknown parameters.

In AIDS clinical studies, generally only V (t) and the total
CD4+ T cell counts, T (t) = TI(t) +TU (t), are measured for
cost concerns. By combining the first and second differen-
tial equations in the system (1), we remove η(t)TU (t)V (t).
As a result, we obtain a simplified differential equation sys-
tem (2),

dT (t)

dt
= λ− ρ{T (t)− TI(t)} − δTI(t),

dTI(t)

dt
= η{T (t)− TI(t)}V (t)− δTI(t),(2)

dV (t)

dt
= NδTI(t)− cV (t).

To obtain numerical solutions for TI(t), T (t) and V (t), we
apply the Fortran ODE solver lsoda to the first-order ODE
system (2). Theoretically the numerical solution can be writ-
ten as follows:

T (t) = g1
(
λ, ρ, δ, TI(t), T (0), t

)
,(3)

TI(t) = g2
(
η, δ, T (t), V (t), TI(0), t

)
,(4)

V (t) = g3
(
N, δ, c, TI(t), V (0), t

)
,(5)

where T (0), TI(0) and V (0) are the baselines of state vari-
ables at t = 0, the onset time of the drug effect. g1(.),
g2(.) and g3(.) are nonlinear functions. For simplicity, we
use T0, TI0 and V0 to represent T (0), TI(0) and V (0) in the
rest of the paper.

By plugging (4) in (3) and (5) respectively, we re-express
nonlinear functions (3) and (5) as follows:

T (t) = g̃1(λ, ρ, δ, η,N, c, TI0, T0, V0, t),(6)

V (t) = g̃2(λ, ρ, δ, η,N, c, TI0, T0, V0, t).(7)

Write Y =
(
T (t), V (t)

)T
, Y0 =

(
T0, V0

)T
,θ = (λ, ρ, δ,N, c,

η, TI0)
T and G = (g̃1, g̃2)

T. Functions (6), (7) can be repre-
sented as

Y = G(θ, Y0, t), t � 0.(8)

In equation (8), the baselines Y0 and the state variables
Y are measurable. θ = (λ, ρ, δ,N, c, η, TI0)

T are unknown
parameters and need to be estimated.

2.2 The mixed-effects model

Many AIDS clinical trial studies involve repeated obser-
vations from the same patient over a given period. Note that
G(.) in (8) is a complex function with seven unknown pa-
rameters, the estimation of unknown dynamic parameters
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may not be satisfactorily attained by using sparse individ-
ual observations. Here we estimate the fixed-effects asso-
ciated with the population and the random-effects related
to the between-subject variations by fitting NLME to ob-
served T (t) and V (t). To stabilize the computational algo-
rithms, θ, T0 and V0 were taken logarithm transformation
before analysis. The model framework can be described as
follows.

Denote the number of subjects by n, the number of ob-
servations for ith subject by ni. Let tij be the measure-
ment time for ith subject at jth time point; yij = (Tij , Vij)

T

where Tij , i = 1, . . . , n, j = 1, . . . , ni and Vij , i =
1, . . . , n, j = 1, . . . , ni are the measurements of CD4+ T
cells a nd plasma viral load at time tij respectively; the pa-
rameter vector after logarithm transformation for ith subject
is φi = (ln(λi), ln(ρi), ln(δi), ln(Ni), ln(ci), ln(ηi), ln(TI0i))

T.

The function (8) can then be re-written as

(9) yij = fi(φi, ln(Y0i), tij),

with fi(φi, ln(Y0i), tij) = (f1i(φi, ln(Y0i), tij), f2i(φi, ln(Y0i),
tij)) which satisfy f1i(φi, ln(Y0i), tij) = g̃1(θi, Y0i, tij) and
f2i(φi, ln(Y0i), tij) = g̃2(θi, Y0i, tij).

Using the nlmeODE function (available in the nlmeODE

R packages), we obtain the form for function fi(.). We
then apply the NLME model to estimate the fixed-effects
and random-effects for unknown parameters φi. We briefly
describe the model framework of NLME as follows [27–
30]):

Stage 1.

(10) yij = fi
(
φi, ln(Y0i), tij

)
+ εij ,

εij ∼ N(0, Ri) with Ri = σ2Ini , Ini is the ni identity
matrix, σ2 is an unknown parameter and needs to be
estimated.

Stage 2.

(11) φi = φ+ bi, bi ∼ N(0,Ψ),

where φ is k-dimensional vectors, and k is the number
of unknown parameters. The random-effects bi, i =
1, . . . , n follow multivariate normal distribution with
mean 0 and covariance matrix Ψ. To reduce the num-
ber of unknown parameters, we assume Ψ is a diagonal
matrix σb = diag(σ2

b,1, . . . , σ
2
b,7), which needs to be es-

timated.

Let Yi = (yi1,yi2, . . . ,yini) be the measurements of
CD4+ T cells and plasma viral load for the ith subject,
ti = (ti1, ti2, . . . , tini) and εi = (εi1, εi2, . . . , εini). Combin-
ing equations (10) and (11), we obtain

(12) Yi = fi
(
bi, φ, ln(Y0i), ti

)
+ εi, i = 1, 2, . . . , n.

The nlme algorithm (available in the nlme package) was
implemented to estimate unknown fixed-effects φ, variance
components of random-effects σb,k, k = 1, . . . , 7 and the
standard error of residual σ. The restricted maximum like-
lihood (REML) is a function of the marginal density of Y .
In the population level, the marginal density of Y can be
defined as follows:

(13) P (Y |φ, σ2, σb) =

∫
P (Y |φ, σ2, b)P (b|σb)db,

where P (Y |φ, σ2, b)P (b|σb) is the joint density function
of (Y, b), P (Y |φ, σ2, b) is the conditional density of Y
given the random-effects b and P (b|σb) is the marginal
distribution of b. Since the integral (13) generally has
no close-form, the nlme algorithm uses two alternating
steps: the penalized nonlinear least square (PNLS) step
and the LME step proposed by [27] to approximate
REML.

The PNLS step Fix the current estimate σb and then es-
timate the conditional estimator of random-effects bi’s
and the conditional estimator of the fixed-effects φ
based on current σb by minimizing the penalized non-
linear least-square objective function:

(14)
n∑

i=1

{
‖Yi − fi(bi, φ, ln(Y0i), ti)‖2

σ2
+ bTi σ

−1
b bi

}
.

The LME step Update σb based on the estimator of bi’s,
φ and the first order Taylor expansion of fi(.) around
the estimator of bi, φ which can be described as fol-
lows:

Yi ≈ fi
(
φ̂, b̂i, ln(Y0i), ti

)
+

∂fi
∂φT

∣∣∣∣
φ̂,b̂i

(
φ− φ̂

)
(15)

+
∂fi
∂bTi

∣∣∣∣
φ̂,b̂i

(
bi − b̂i

)
+ εi.

For notational simplicity, we use ∂fi
∂φT and ∂fi

∂bTi
to repre-

sent ∂fi
∂φT

∣∣
φ̂,b̂i

, ∂fi
∂bTi

∣∣
φ̂,b̂i

respectively and the approximate

restricted log-likelihood logLr
LME(φ, σ

2, σb) for updating σb

in the LME step can be written as:

logLr
LME(φ, σ

2, σb)

= −1

2

M∑
i=1

log

{∣∣∣∣∣σ2

(
∂fi
∂φT

)T
[
I+

∂fi
∂bTi

σb

(
∂fi
∂bTi

)T
]−1

∂fi
∂φT

∣∣∣∣∣
}

+ logLLME(φ, σ
2, σb),

where I is the identity matrix and the approximate
log-likelihood function logLLME can be described as:
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logLLME(φ, σ
2, σb)

= −M

2
log

(
2πσ2

)
− 1

2

M∑
i=1

{
log

∣∣∣∣σ2I+
∂fi
∂φT

σb

(
∂fi
∂φT

)T ∣∣∣∣
+

(
yi − fi(φ, bi) +

∂fi
∂bT

b̂i

)T

×
[
σ2I+

∂fi
∂φT

σb

(
∂fi
∂φT

)T ]−1

×
(
yi − fi(φ, bi) +

∂fi
∂bTi

b̂i

)}
,

where M =
∑n

i=1 ni, the total number of observations
of n individuals. The algorithm alternates between the
PNLS and LME steps until convergence criteria meet. As
a consequence, φ, σb and σ2 can be obtained. Meanwhile,
the random-effects bi’s can be estimated as a by-product of
the estimation procedure. The detailed description about
this algorithm was reported in [31].

3. ANALYSIS OF GLAXWELL DATA

In this section, we analyzed a real data set from an AIDS
clinical trial of HIV-1 study with patients treated with aba-
cavir combined with 5 different protease inhibitors: prenavir
(APV), indinavir (IDV), nelfinavir (NFV), ritonavir (RTV),
and saquinavir (SAQ). Blood samples were collected from
patients for quantitative analysis. Of all the 82 study sub-
jects enrolled in this study, 74 patients accepted antiretrovi-
ral therapy. 3 patients who accepted the antiretroviral ther-
apy were excluded from viral dynamic analysis for no con-
firmed viral decay during 8 weeks of treatment. 4 patients
were dropped for being lack of baselines, T0 and V0. As a
result, 67 subjects were included in this analysis. The mea-
surements of CD4 + T cells and plasma HIV-1 RNA were
collected before the start of study, at day 0, 3 or 4 ,7, and
10 or 11, week 2, 3, 4, 8, 12, 16, 24, 32, 40, 48 and every 8
weeks for up to 2 years. In this paper, we only analyzed the
measurements collected from day 0 to day 54. More details
about the study can be found in [32].

For the nlme algorithm, choosing start values is critical
because improper start values may cause convergence prob-
lems, moreover, different start values may result in different
estimated values. Here we generated 339 sets of start val-
ues based on crude parameter ranges from literature. For
example, [33] pointed out that the memory T cells may live
2–6 weeks in the absence of antigen-stimulated replication,
while [2] reported the approximate ranges of c and δ. [34]
suggested that N is between 50 and 1,000. The summary of
the parameter ranges are given in Table 1. The steps used
to generate start values are as follows:

Step 1. Multiply the lower bound and upper bound of each
interval given in Table 1 by 0.8 and 1.2 respectively and
generate 113 sets of (λ, ρ, δ,N, c, η, TI0) from expanded
intervals in an increasing consecutive order.

Table 1. The dynamic parameter ranges used to generate
start values

Parameters Ranges ln(ranges)

λ (10, 100) (2.30, 4.61)
ρ (0.071, 0.023) (−2.65, −3.77)
δ (0.26, 0.68) (−1.35, −0.39)
N (50, 1000) (3.91, 6.91)
c (2.06, 3.81) (0.72, 1.34)
η (10−6, 10−5) (−13.82, −11.51)
TI0 (77.0, 192.5) (4.34, 5.26)

Step 2. Fix the order of λ, ρ, δ,N, TI0 generated in step 1
and reverse the order of generated c, η simultaneously
to obtain 113 sets of parameters with different combi-
nations.

Step 3. Maintain the order λ, ρ, δ, η,N generate in step 1
and reverse the order of generated c and TI0 simulta-
neously, we got another 113 sets of parameters.

Taking natural logarithm transformation of the generated
339 sets of parameters, we obtain 339 sets of start values.
Using the modeling approach described in Section 2, we es-
timate φ, σ and σb,k’s. Applying AIC and loglikelihood as
selection criteria, we choose start values for NLME as fol-
lows: ln(λ) = 3.0910, ln(ρ) = −3.6212, ln(δ) = −1.2588,
ln(N) = 5.8141, ln(C) = 0.6999, ln(η) = −10.7245, and
ln(TI0) = 4.5164. Employing the modeling approach de-
scribed in Section 2 again, we obtain the estimates of the
fixed-effects and random-effects. The dynamic parameter es-
timates for 67 individuals φi’s can be obtained. To save the
space, we only report the estimates of fixed-effects φ, stan-
dard errors of φ and σb,k’s in Table 2.

The following findings can be observed in Table 2: (i) un-
infected CD4+ T cells on average have a lower death rate
compared with infected CD4+ T cells which is consistent
with previous research. The population estimates of the de-
cay rates of uninfected CD4+ T cells and infected CD4+ T
cells are ρ̂ = 0.1396 and δ̂ = 0.2136 which correspond to
log2

/
ρ̂ = 4.9652 and log2

/
δ̂ = 3.2451 days’ half-lives.; (ii)

the clearance rate for free virions is ĉ = 0.7105 which cor-
responds a half-life of log2

/
ĉ = 0.9756 day. The estimated

clearance rate is smaller than these from methods based on
close form solutions; (iii) the supply rate of CD4+ T cells,
the number of free viruses produced by a CD4+ T cell dur-
ing its lifetime and the unobservable baseline of infected
CD4+ T cells for short-term HIV clinical trial study are
λ ≈ 62, N ≈ 183 and TI0 ≈ 172, respectively. In an AIDS
clinical trial study, the concentration of infected CD4+ T
cells isn’t observable. To make dynamic parameters identi-
fiable, some estimation methods assume that for patients
at the start of therapy, the concentration of CD4+ T cells
and plasma viruses are in the quasi-steady state; the unin-
fected CD4+ T cells equal the observed CD4+ T cells. Our
result shows that the population mean of infected CD4+ T
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Table 2. The estimated values of fixed-effects and variance components of random-effects for Perelson’s HIV dynamic models

ln(λ) ln(ρ) ln(δ) ln(N) ln(c) ln(η) ln(TI0)

est 4.1271 −1.9687 −1.5439 5.2092 −0.3418 −12.6141 5.1443
se 0.1273 0.1415 0.1659 0.2621 0.0794 0.3149 0.4614
σb,k’s 0.3040 0.2780 0.5355 0.9146 0.3633 0.7680 1.1918

λ ρ δ N c η TI0

Exp(est) 62 0.1396 0.2136 183 0.7105 3.3249e-06 172

cell concentration TI0 ≈ 172 which indicate that the pro-
portion of infected CD4+ T cells isn’t ignorable. Moreover,
although the change rates of CD4+ T cells and plasma vi-

ral load are small, dTU (t)
dt , dTI(t)

dt and dV (t)
dt are not equal to

0 at the start time of therapy The estimated ρ̂ and ĉ are
out of the ranges given in Table 1, but they are close to
the estimated death rate of infected CD4+ T cells and the
clearance rate for free virions reported in [16]. One inter-
esting point of this approach is that the rate of converting
uninfected CD4+ T cells to infected CD4+ T cells η can
be obtained. By fitting data collected before and after an-
tiretroviral therapy with the approach described in this pa-
per separately and comparing estimated η, evaluating drug
efficiency becomes possible. In addition, the variance com-
ponents σb,k’s show significant between-patient variations.
Therefore, patients should be treated individually.

The curves of plasma viral load V (t) and total CD4+ T
cell counts T (t) for eight patients are shown in Figs 1 and 2,
respectively. One can see that the individual curves (dashed
lines) are closer to the observed values (dots) than the asso-
ciated population curves (solid lines). The fitted population
curves are defined by Y (ti) = fi(φ, ln(Y0i), ti) where Y (ti) =
(T (ti), V (ti)), φ is the fix-effect, ti = (ti1, ti2, . . . , tini) and
ln(Y0i) = (ln(T0i), ln(V0i)) (the baselines of CD4+ T cells
and plasma viral load after logarithm transformation). It
is worthwhile to mention that the population curves can be
distinctive because ln(Y0i) may be different for each subject.

Although the between-subjects variation is obvious, the
plasma virus concentration V (t) for all patients share a sim-
ilar pattern. After initiating antiretroviral therapy, the num-
ber of viruses falls to a low level, and then because of the
drug resistance, inadequate drug concentration in certain
tissues and the persistence of long-lived viruses, the decline
rate of virus concentration tends to become slow and reaches
a stable period during which the viral load changes little.

Meanwhile the CD4+ T cell counts T(t) rise steadily. The
change trends of V (t) and T (t) are similar to the typical dy-
namic feature for HIV-infected patients reported in [3, 22–
24]. Model assumption verifications are conducted by exam-
ining standard diagnostic plots: the Q-Q plots, and the ob-
served values vs. fitted values. Figure 3 indicates that λ, ρ, δ
and TI0 are normally distributed and that there is no serious
violation to the normal assumption. Meanwhile Fig. 4 shows
a good agreement between the observed measurements and
predicted values.

4. SIMULATION STUDIES

In this section, we conduct Monte Carlo simulation stud-
ies to examine the performance of the modeling approach.
Considering the fact that observations for individuals may
be sparse, we vary the sample size ni=15, 21 and 41, to
examine the performance of the estimators. In AIDS clin-
ical studies, because of measurement errors and the natu-
ral variation of state variables, observed state variables are
very noisy with large variation. We further examine the per-
formance of this approach by assuming measurements are
collected with 10% measurement errors. In Section 2.2, in
order to reduce the number of parameters for variance com-
ponents, we assume Ψ is diagonal. Herein, we choose two
different Ψ’s for our simulation studies to examine the in-
fluence of this assumption. The detail of simulation studies
is given as follows.

We generate parameters (φi, ln(T0i), ln(V0i))
T, i =

1, . . . , 12 from multivariate normal distribution N9(μ,Σ),
with μ = (4.1271,−1.9687,−1.5439, 5.2092,−0.3418,
−12.6141, 5.1443, 5.8665, 10.9956) and Σ = Σ1 or Σ = Σ2

respectively. Σ1 is a diagonal matrix with diag =
(0.0428, 0.0215, 0.0370, 0.3788, 0.0745, 0.2804, 0.8843, 0.1963,
1.9312) and

Σ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0428 −0.0232 −0.0114 −0.0035 −0.0094 −0.0537 −0.0016 0.0531 0.0742
−0.0232 0.0215 0.0002 0.0095 −0.0001 0.0082 0.0215 −0.0462 −0.0035
−0.0114 0.0002 0.0370 0.0581 0.0180 −0.0024 0.0377 −0.0107 −0.0015
−0.0035 0.0095 0.0581 0.3788 0.0655 −0.0674 0.0104 −0.0812 0.2711
−0.0094 −0.0001 0.0180 0.0655 0.0745 0.0489 −0.0548 0.0098 −0.0877
−0.0537 0.0082 −0.0024 −0.0674 0.0489 0.2804 −0.0011 −0.0432 −0.2998
−0.0016 0.0215 0.0377 0.0104 −0.0548 −0.0011 0.8843 −0.1762 0.4209
0.0531 −0.0462 −0.0107 −0.0812 0.0098 −0.0432 −0.1762 0.1963 −0.1140
0.0742 −0.0035 −0.0015 0.2711 −0.0877 −0.2998 0.4209 −0.1140 1.9312

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 1. The observed (dots) and fitted population (solid)
and individual (broken) curves of CD4 cell counts for 8

patients.

Here, the mean and the variance-covariance matrix
used for generating parameters are obtained from the
estimates and observed baseline T0 and V0 in Section 3.
By applying equations (6) and three outputting schedules:
(1) t = 0, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 21, 27, 28, 29 (the sched-
ule is similar to that of the real data in Section 3, (2) at
every 1 unit on the interval [0, 20], (3) at every 0.5 unit on
the interval [0, 20], we generate T ∗(tij) and V ∗(tij) (the
generated state variables without measurement error), with
sample size ni = 15, 21 and 41 respectively. We then add
10% measurement errors to T ∗(tij) and V ∗(tij):

Figure 2. The observed (dots) and fitted population (solid)
and individual (broken) curves of viral load for 8

patients.

Tij = T ∗(tij)(1 + 0.1 ∗ e1ij),
Vij = V ∗(tij)(1 + 0.1 ∗ e2ij),

where e1ij ∼ N(0, 1), e2ij ∼ N(0, 1).
Employing the procedure described above, we generate

150 data sets for eight combinations of measurement errors,
covariance matrix Σ and ni. Applying the approach given in
Section 2 to the generated data sets, we obtain 150 sets of
estimated fixed-effects φ, the standard errors of estimated
fixed-effects φ and the variance components of random-
effects σb,k’s for each combination. Here we summarize the
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Figure 3. The Q-Q Plots of the estimated parameters in
Perelson’s HIV dynamic models for individuals.

10% trimmed means and standard deviations (the mean and
standard deviations of estimates after discarding 5% of the
lowest and the highest values) of the estimated φ and σb,k’s
in Tables 3 and 4 respectively. Table 3 shows that the biases
of φ are small and the standard errors of the estimated fixed-
effects φ are reasonable. Meanwhile, Table 4 shows that for
setting 1 and setting 2 in which the data are generated with-
out measurement errors, the estimated σb,k’s are very close
to the true values which indicates that the approach intro-
duced in this paper has the potential capability to estimate
the variance components of random-effects if we can improve
the accuracy of measurements. For the settings with 10% er-

Figure 4. The plots of the observed versus individual fitted
values.

rors, when ni=15 the variance components for ln(λ), ln(ρ),
ln(δ), ln(c), and ln(TI0) can be roughly approximated. How-
ever when ni=41, the variance components for ln(λ), ln(ρ),
ln(δ), ln(c) and ln(TI0) can be well estimated. Although the
biases of the estimated variance components for ln(η) and
ln(N) are large, we can see from Table 4 that when ni in-
creases from 15 to 41, the variance component estimates for
both ln(η) and ln(N) have the tendency toward the true
value. In practice, obtaining a HIV clinic trial data set with
small measurement errors may be difficult. According to our
simulation studies, we can see that increasing the frequency
of collecting measurements can efficiently improve the esti-
mation of the variance components of random-effects.

Generally speaking, the estimates of fixed-effects outper-
forms these of the random-effects. The fixed-effects φ, to-
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Table 3. The 10% trimmed mean and standard deviation of the fixed-effects estimators φ̂ for Perelson’s HIV dynamic model
based on 150 replications

Setting ni Errors Σ ln(λ) = 4.13 ln(ρ) = −1.97 ln(δ) = −1.54 ln(N) = 5.21 ln(c) = −0.34 ln(η) = −12.61 ln(TI0) = 5.14
est sd est sd est sd est sd est sd est sd est sd

1 15 0% Σ1 4.13 0.09 −1.97 0.08 −1.53 0.17 5.10 0.35 −0.33 0.11 −12.29 0.50 5.36 0.51
2 15 0% Σ2 4.15 0.11 −1.94 0.15 −1.49 0.17 5.18 0.45 −0.32 0.13 −12.44 0.55 5.21 0.63
3 15 10% Σ1 4.22 0.16 −1.88 0.16 −1.48 0.22 5.28 0.48 −0.29 0.17 −12.21 0.57 5.59 0.73
4 15 10% Σ2 4.24 0.22 −1.87 0.23 −1.43 0.33 5.02 0.59 −0.40 0.17 −12.23 0.76 5.26 1.02
5 21 10% Σ1 4.30 0.17 −1.78 0.19 −1.37 0.23 5.36 0.39 −0.25 0.13 −12.25 0.45 5.52 0.65
6 21 10% Σ2 4.29 0.18 −1.81 0.19 −1.39 0.24 5.24 0.49 −0.28 0.17 −12.37 0.56 5.44 0.78
7 41 10% Σ1 4.25 0.14 −1.83 0.16 −1.44 0.18 5.35 0.34 −0.25 0.14 −12.34 0.36 5.53 0.59
8 41 10% Σ2 4.29 0.18 −1.77 0.19 −1.37 0.25 5.22 0.37 −0.29 0.15 −12.32 0.43 5.42 0.77

Table 4. The 10% trimmed mean and standard deviation of the random-effects estimates σb,k’s for Perelson’s HIV dynamic
models based on 150 replications

Setting ni Errors Σ ln(λ) ln(ρ) ln(δ) ln(N) ln(c) ln(η) ln(TI0)
σb,1 = 0.21 σb,2 = 0.15 σb,3 = 0.13 σb,4 = 0.62 σb,5 = 0.27 σb,6 = 0.53 σb,7 = 0.94
est sd est sd est sd est sd est sd est sd est sd

1 15 0% Σ1 0.18 0.10 0.18 0.09 0.29 0.18 0.57 0.39 0.31 0.14 0.66 0.43 0.89 0.53
2 15 0% Σ2 0.21 0.13 0.18 0.13 0.32 0.20 0.58 0.43 0.33 0.20 0.58 0.42 0.89 0.67
3 15 10% Σ1 0.13 0.10 0.12 0.10 0.13 0.12 0.17 0.26 0.23 0.16 0.09 0.19 0.42 0.42
4 15 10% Σ2 0.20 0.13 0.12 0.13 0.10 0.13 0.07 0.15 0.15 0.12 0.08 0.17 0.36 0.43
5 21 10% Σ1 0.14 0.09 0.14 0.11 0.10 0.11 0.26 0.30 0.23 0.12 0.15 0.21 0.70 0.48
6 21 10% Σ2 0.22 0.12 0.12 0.12 0.13 0.15 0.16 0.23 0.18 0.12 0.13 0.20 0.76 0.52
7 41 10% Σ1 0.16 0.08 0.15 0.10 0.11 0.12 0.31 0.30 0.25 0.14 0.25 0.27 1.08 0.63
8 41 10% Σ2 0.24 0.10 0.13 0.12 0.14 0.16 0.23 0.25 0.23 0.12 0.19 0.23 1.13 0.50

gether with the variance components of random-effects σb,k’s
can be well estimated when plasma viral load and the to-
tal CD4+ T cell counts can be observed precisely. For the
generated data sets with 10% measurement errors, the fixed-
effects φ can be well estimated whether the sample size for
individuals is large or small. And when ni=41, the estima-
tion for most of the variance components σb,k’s can be well
performed which indicates that increasing sample size can
result in better estimates even for data with measurement
errors. In addition, from Tables 3 and 4, one can see that
there is no substantial difference among the estimates ob-
tained from data generated by Σ1 and Σ2. As a result, we
know that the assumption employed in Section 2.2 does not
ruin the estimated results and estimates obtained in Sec-
tion 3 are reliable.

5. CONCLUSION

In this paper, we apply NLME to estimate the fixed-
effects and random-effects for parameters in Perelson’s HIV
dynamic model and the baseline of infected CD4+ T cells
based on partially observed state variables. All dynamic pa-
rameters and TI0 were directly estimated from experimental
data. To the best of our knowledge, there is no literature con-
sidering the estimation of unobservable TI0. In our paper,
to maintain the biological meanings of dynamic parameters,

we solve Perelson’s HIV dynamic system directly to obtain
numerical solutions. As a result, the numerical solutions are
functions of unknown dynamic parameters and baselines of
state variables. And the value of TI0 may affect the estima-
tion of dynamic parameters. Although TI0 isn’t our interest
parameter, simply treating the baselines of state variables as
functions of dynamic parameters may cause misleading re-
sults. When we perform the real data analysis, to overcome
common problems for general NLME such as convergence
problems, we tried multiple start values generated from the
ranges given by previous research.

Moreover, we design eight different settings based on the
estimates of real data analysis to verify the reliability of
the obtained estimates and explore possible approaches to
improve the accuracy of the estimators. Our simulation re-
sults demonstrate small biases of the fixed-effects estimates
in settings where the observations for individual are rich as
well as sparse. As to the challenging problem, the estima-
tion of variance components for the random-effects, settings
considering the data without measurement errors provide
us with good estimates which are very close to the true val-
ues, therefore, indicating that the approach is promising in
parameter estimation for the random-effects once we can im-
prove the accuracy of clinical trial data. For the generated
data considering 10% measurement errors, when the sample
size for individuals is 41, the variance components of ln(N)
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and ln(η) can be estimated roughly and the variance com-
ponents of the rest of the dynamic parameters can be well
estimated.

Here, we only consider short-term data analysis while
assuming η is constant. An algorithm being able to deal
with time-varying dynamic parameters for long-term HIV
dynamic model will be considered in the near future.
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