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Testing linearity in semiparametric regression
models
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∗
, Jianxin Pan and Nicholas Mesue

One of the fundamental assumptions of a basic multiple
linear regression model is that the contribution of each of
the model terms is strictly linear. In many cases, this may
be an excessive simplification of the complicated relation-
ships. Moreover, it may be difficult or impossible to test the
hypothesized model against all possible kinds of relevant al-
ternative models. Therefore, tests that perform well under
more general circumstances are also required. This paper
considers the semiparametric model, where the contribution
of one of the model terms may not be strictly linear, and
also proposes an exact F-test for the situation. The method
also allows dependent error terms. The performance of the
proposed test is illustrated by simulation experiments and
in real air pollution and health data.
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1. INTRODUCTION

In many scientific fields, it is often necessary to estab-
lish a model that accurately describes real-life relationships.
Essentially, the modeling challenge can be driven by the
underlying task or data, or both. A traditional statistical
approach to modeling is based on linear or non-linear re-
gression model and least squares (or maximum likelihood)
methods. Generalized linear models can be considered to be
a further extension of these methods. The basic feature in
these models is that they are based on a strict assumption
of a parametric model. In some cases, these approaches may
provide a nice presentation of the data at hand. In many
cases, however, the true model form is not known and model
choice is restricted to rather arbitrary, parametric competi-
tive models. Over the last two decades, nonparametric meth-
ods such as Kernel estimation, local polynomials, regression
splines, smoothing splines, and generalized additive models
have provided a serious alternative to parametric statistical
methods (see e.g. [8, 14, 18] and [19]).

The present paper considers an interesting mixture of
parametric and nonparametric models. The model consid-
ered here is basically a multiple linear regression model with
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a possible smooth term. The study was primarily interested
in testing whether the smooth term could be exchanged to
the linear term so that the full multiple regression model
could be used instead of a semiparametric model. Statisti-
cal inference of semiparametric regression models have been
considered by several authors. However, most of the refer-
ences concentrate on the methods for independent data (see
e.g [1, 2, 5] and [7] for linear models and [10] and [11] for
generalized linear models). For dependent data, we may re-
fer to [20] who have considered statistical inference under
the semiparametric additive model framework. In summary,
most of the references rely on the independence assump-
tion and the exact distribution of the test statistics is either
not known or is fairly complicated. Our test relies on the
exact F-distribution and also applies under correlated ob-
servations. The test is computationally very simple and it
is not influenced by the correlation of the explanatory vari-
ables and the smooth term.

This article is structured as follows. Section 2 presents
the basic cubic smoothing spline model and its estimation.
Section 3 extends these results to a semiparamatric model
and proposes a new F-test based on a semiparametric model.
In Section 4 the performance of the proposed test is illus-
trated by simulation experiments and in real air pollution
and health data from the city of Tampere, Finland. Con-
cluding remarks are provided in Section 5.

2. CUBIC SMOOTHING SPLINES

Suppose that y = (y1, y2, . . . , yn)
′ is the n × 1 vector of

observations and that design points (knots) x1, x2, . . . , xn

are given at a certain interval [a, b] satisfying a < x1 < x2 <
· · · < xn < b. A cubic smoothing spline can now be written
as follows

(1) y = g + ε,

where g = (g(x1), g(x2), . . . , g(xn))
′, g(.) is a smooth twice

differentiable curve and ε = (ε1, . . . , εn)
′ ∼ N(0, σ2R),

where R is a covariance matrix with parameters θ.
Let hj = xj+1 − xj , j = 1, 2, . . . , (n− 1). Define the non-

zero elements of banded n × (n − 2) and (n − 2) × (n − 2)
matrices ∇ and Δ, respectively, as

∇k,k =
1

hk
, ∇k+1,k = −

(
1

hk
+

1

hk+1

)
, ∇k+2,k =

1

hk+1
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and

Δk,k+1 = Δk+1,k =
hk+1

6
, Δk,k =

hk + hk+1

3
,

where k = 1, 2, . . . , (n − 2). If the roughness matrix is de-
noted as K = ∇Δ−1∇′, the solution (at the design points)
to the penalized least squares criterion (PLS)

(2) Q1 = (y − g)′R−1(y − g) + αg′Kg

for fixed positive α is a cubic smoothing spline

(3) g̃ = (H+ αK)−1Hy = Sαy,

where it is denoted R−1 = H and the so-called smoother
matrix is Sα = (H + αK)−1H. If the covariance matrix R
satisfies the equation KR = K then

(4) K = KH

and the smoother matrix reduces to the simplified form
Sα = (I + αK)−1, which does not explicitly involve covari-
ance matrix R. The simplified estimator is then

(5) ĝ = (I+ αK)−1y.

Note that, in this case, spline estimates are simple linear
functions of the observations y1, y2, . . . , yn. A set of covari-
ance matrices satisfying the condition (4) can be generated
using the formulas discussed in [12] and [13]. As a special
case these structures include, for example, R = XDX′ + I,
whereX = [1,x], 1 = (1, . . . , 1)′ and x = (x1, . . . , xn)

′. Note
that for simplicity, hereinafter we take R = XDX′ + I, but
our results also applies under more general class of covari-
ance structures discussed in [13].

Generally, the smoother matrix Sα = (I + αK)−1 is not
a projection matrix; therefore, for example, the theory of
linear models is not directly applicable for statistical infer-
ence of smoothing splines. However, it is possible to plausi-
bly approximate Sα using a projection matrix [13]. Let the
eigenvalue decomposition of roughness matrix K be

(6) K = TΛT′,

where T is the matrix of n orthonormal eigenvectors and Λ
is the diagonal matrix of eigenvalues λ1, . . . , λn of K. It can
easily be seen that

(7) Sα = T(I+ αΛ)−1T′.

Note that the set of eigenvectors of Sα and K is the same
and the eigenvalues are connected such that the eigenvalues
of Sα are γ = 1/(1+αλ). Hereinafter we assume that eigen-
vectors are ordered according to eigenvalues of Sα. The first
two eigenvalues of Sα are always one and the first two eigen-
vectors span the subspace corresponding to the straight line
model [9]. In general the sequence of eigenvectors t1, . . . , tn

appears to increase in complexity like a sequence of orthog-
onal polynomials defined on x. The spline approximation
used here is based on the c > 2 first eigenvectors of T. This
approximation minimizes the least squares criterion

(y −T∗ξ)
′(y −T∗ξ),

where T∗ is the matrix of c first eigenvectors of T and the
fit is simply

ỹ = Py,

where P = T∗T
′
∗. It was shown in [13] that the approxima-

tion is good for relatively smooth data. It is computationally
simple (calculated directly from K) and P is now a projec-
tion matrix, which makes the application of the theory of
linear models possible in this framework.

3. SEMIPARAMETRIC MODEL

3.1 Estimation

The semiparametric model to be considered here is an
extension of the basic spline model of previous section. The
model takes the following form

(8) y = Ub+ g + ε

where the extension is the linear part Ub, where U is a full
rank n×k model matrix of k explanatory variables (constant
term not included) and b is a k-vector of unknown param-
eters. Estimation of semiparametric models have been con-
sidered in [4, 15] and [17] and applied in [16], for example.
Our approach is to minimize the penalized sum of squares
(see [4])

(9) Q2 = [y − (Ub+ g)]′H[y − (Ub+ g)] + αg′Kg.

The minimization with respect to b and g yields to estimates

(10) b̃ = [U′H(I− Sα)U]−1U′H(I− Sα)y

and

(11) g̃ = Sα(y −Ub̃)

where Sα = (H + αK)−1H. If the covariance structure is
assumed to be, for example R = XDX′ + I, the condition
K = KH holds and it can be shown that

H(I− Sα) = I− Sα

(see Appendix A for details). Therefore, the simplified es-
timators are

(12) b̂ = [U′(I− Sα)U]−1U′(I− Sα)y

and ĝ = Sα(y −Ub̂), where Sα = (I + αK)−1. The whole
semiparametric curve is then fitted by

(13) μ̂ = My,
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where M = Sα + Ũ[Ũ′U]−1Ũ′ and Ũ = (I−Sα)U, respec-
tively. Fixing the dimension of the spline approximation (see
the next section for details) gives

(14) μ̂ = M∗y,

where M∗ = P + U∗(U
′
∗U∗)

−1U′
∗ and U∗ = (I − P)U.

Note that M∗ is now a projection matrix and thus lays the
grounds for the application of the standard theory of linear
models.

Using the approximation (14) makes it easy to investigate
the statistical properties of the estimates of the linear part of
the model. As discussed in the previous section, parameter
estimates for b are then obtained by

(15) b̂ = (U′
∗U∗)

−1U′
∗y

and, if R = XDX′ + I and U′
∗X = 0, it can easily be seen

that

(16) V ar(b̂) = σ2(U′
∗U∗)

−1.

3.2 Testing the semiparametric model

This study aims to test whether our model is the full
linear model. The null hypothesis (linear model) is as follows

H0 : μ = Uk+2bk+2,

where Uk+2 = [U,X], where X = [1,x] and the alternative
hypothesis (semiparametric model) is

Ha : μ = Ub+ g,

where g is a smooth term. Testing is now based on the fit
obtained by the approximation (14) with μ̂ = M∗y. If we
take R = XDX′ + I, for example, M∗(XDX′) = XDX′

and it can easily be seen that

(I−M∗)(XDX′ + I)(I−M∗) = I−M∗

and therefore the distribution of (see also [3])

σ−2y′(I−M∗)y = σ−2Smin ∼ χ2
n−c−k,

where we denote y′(I − M∗)y = Smin. If now in M∗ we
define P = T∗T

′
∗ where T∗ = [t1, t2] (vectors spanning the

linear subspace) and denote the projection matrix asMOLS .
Then the distribution of

σ−2y′(I−MOLS)y = σ−2SOLS ∼ χ2
n−k−2,

where we denote y′(I−MOLS)y = SOLS , and further

σ−2(SOLS − Smin) ∼ χ2
c−2.

Since M∗MOLS = MOLSM∗ = MOLS it can also be easily
observed that (I − M∗)(M∗ − MOLS) = 0 and therefore

the sum of squares Smin and SOLS −Smin are independent.
Testing can now be based on

(17) F =
(SOLS − Smin)/(c− 2)

Smin/(n− c− k)
∼ F (c− 2, n− c− k).

Then observing the larger value for F than the quantile
F1−α(c− 2, n− c− k) yields rejection of the null hypothesis
of the full linear model. Note that since P and U∗ in M∗
are orthogonal F is not influenced by the correlation of the
explanatory variables U and the smooth term g. It should
also be emphasized that the exact results holds for fixed c
and for certain forms of correlation, e.g. R = XDX′ + I. In
the next section, empirical power of the proposed test was
studied when c is estimated from the data.

4. NUMERICAL EXAMPLES

4.1 A simulation study

To investigate the empirical power of our methods we
conducted a simulation study. We first introduce the mixed
model formulation

ĝ = Xβ̂ + Zξ̂

of the spline solution (3). The fitted spline is then obtained
as the BLUE (best linear unbiased) and BLUP (best linear
unbiased predictor) solutions of the mixed model (see [13])

y = Xβ + Zξ + ε

where Z = ∇(∇′∇)−1Δ−1/2, ξ and ε are independently dis-
tributed as ξ ∼ N(0, σ2

ξI) and ε ∼ N(0, σ2I). The smoothing

parameter can be viewed as the ratio α = σ2/σ2
ξ . If we define

the effective degrees of freedom as edf = tr(Sα) we can solve
for fixed values of edf and σ2 the corresponding value of σ2

ξ .
In our simulations random vectors were generated from the
model

(18) y = Ub+Xβ + Zξ + ε,

where Ub is the linear part and the smooth term is approx-
imated by Xβ + Zξ.

For our study 1000 random vectors were generated
from (18) for each value of edf = 2, 4, 6, 8, 10, 15, 20, 25, 30
with the corresponding σ2

ξ . We took X = (1,x), x =

(1, 2, . . . , 100)′, β = (500, 1)′ and σ2 = 15. The linear
part Ub of the model was defined using the column vec-
tor u = x + e with b = 1, where e is the vector of 100
realizations of independent standard normal variables. This
will create highly correlated smooth and linear parts.

Three different methods for the selection of c was used.
The first method is to set c equal to edf (and to correspond-
ing σ2

ξ ) used in simulations. The second method is to mini-
mize the information criterion BIC from y = Ub+T∗ξ+ε,
where T∗ contains the c first eigenvectors of Sα. In the third
method we simply fixed c = 3.
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Figure 1. Empirical power as the function of the effective
degrees of freedom (dashed line for method 1, solid line for

method 2 and dotted line for method 3).

From the Figure 1, it is easily observed that methods 1
and 2 performed practically equally. It seems that basically
only minor effects to the empirical power is observed when
c is estimated from the data (method 2). These results are
also in line with the earlier results by Nummi et al. [13] of
the more simple spline model. Also the method 3 performed
surprisingly well for low values of edf < 10, but for higher
values some power is clearly lost.

4.2 Air quality and health in Tampere

The example used health and air quality data measured in
the medium-sized Finnish city of Tampere daily from Jan-
uary 2006 to August 2008. This data measured air qual-
ity variables, weather conditions, traffic density, and health
outcomes (such as heart and respiratory diagnosis counts in
health centers). This example has concentrated on model-
ing the fine particle number counts (< 0, 01 μm/cm3). Traf-
fic is known to be one of the main sources of air pollution
in urban areas. Heating (connected with temperature) is
arguably another important source of air pollution, while
humidity has also been found to influence fine particle con-
centrations. Therefore, these variables were included in the
model as explanatory variables. Figure 1 plots a logarithm
of fine particle counts with temperature. On the basis of
Figure 2, it can be argued that the effects of temperature is
not linear within the range of observed values, whereas the
effects of traffic (mean number of vehicles/h) and humidity
(relative %) are assumed to be linear in the present model.
The model for the log fine particle counts is as follows

y = Ub+ g + ε,

where the columns of U consist of measurements for traffic
and humidity and g represents the effects of temperature.

Figure 2. Log fine particle counts as a function of
temperature. Note: Some of the original data was excluded

due to missing values.

Thus far, we have assumed separate measuring points
x1, . . . , xn for the smooth term g for the model. Unfortu-
nately, the data has multiple measuring times; therefore,
instead of the smoother Sα = (I+ αK)−1 we used

Sα = N(NN′ + αK)−1N′,

where N is an incidence matrix of measuring times. The
smoother matrix Sα was approximated by T∗T

′
∗, where

the dimension of the approximation was chosen to mini-
mize the BIC criterion. The values of BIC for c = 1, 2, . . . , 6
were: 2518.464, 1205.402, 1211.749, 1207.847, 1205.265 and
1211.364. The minimum is obtained at c = 5; therefore, this
was chosen as the dimension of the approximation. For this
model Smin = 214.3947 and SOLS = 220.6037. This gives

F =
6.20904)/3

214.3947/685
= 6.612715,

which is clearly greater than the quantile F0.95(3, 685) =
2.617906. Therefore, the null hypothesis of a linear regres-
sion model is rejected and the alternative hypothesis about
semiparametric regression is accepted.

Figure 2 plots the fitted smooth term of the semipara-
metric model with linear terms fixed to their mean val-
ues. The effects of temperature on the log fine particles
counts is clearly not linear (when also other predictors are
included). The effects of temperature increase dramatically
below approximately 4 Celcius, but no increase in fine parti-
cles counts are observed below−18 Celcius. According to the
plot of residuals (Figure 3) the model fits the data very well.

5. CONCLUDING REMARKS

This paper has presented a technique that is useful for in-
vestigating whether the contribution of a certain covariate
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Figure 3. Residuals of the fitted semiparametric model.

in a basic linear model is actually linear or whether it is bet-
ter to resort to semiparametric modeling. The approach can
be useful in situations where the form of the contribution
of a covariate is not known (for example, in many medical
applications) or if the relation is distorted by outlying ob-
servations. The test itself is exact for fixed dimension of the
approximation and for certain kind of correlated sequences.
However, estimation of the dimension of the approximation
seem to have only a minor influence to the empirical power.
The test is computationally very simple and it is not influ-
enced by the correlation of the explanatory variables and
the smooth term.

APPENDIX A. APPENDIX SECTION

The result is obtained by applying a well known matrix
inversion theorem

(A+UBV)−1 = A−1+A−1UB(B+BVA−1UB)−1BVA−1

to H = R−1 = (XDX′ + I)−1 and Sα = (I + αK)−1 =
(I+ α∇Δ−1∇′)−1. This yields

(I+XDX′)−1 = I−XD(D+DX′XD)−1DX′

and

(I+ α∇Δ−1∇′)−1 = X(X′X)−1X′ + Z(Z′Z+ αΔ−1)−1Z′,

where Z = ∇(∇′∇)−1. Since X and Z are orthogonal, we
can easily obtain

H(I− Sα) = I− Sα.
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